Joel Lehman and Kenneth O. Stanley (2011) 
Improving Evolvability through Novelty Search and Self-Adaptation
In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC 2011). Piscataway, NJ: IEEE (8 pages)

Abstract
A challenge for current evolutionary algorithms is to yield highly evolvable representations like those in nature. Such evolvability in natural evolution is encouraged through selection: Lineages better at molding to new niches are less susceptible to extinction. Similar selection pressure is not generally present in evolutionary algorithms; however, the first hypothesis in this paper is that novelty search, a recent evolutionary technique, also selects for evolvability because it rewards lineages able to continually radiate new behaviors. Results in experiments in a maze-navigation domain in this paper support that novelty search finds more evolvable representations than regular fitness-based search. However, though novelty search outperforms fitness-based search in a second biped locomotion experiment, it proves no more evolvabe than fitness-based search because delicately balanced behaviors are more fragile in that domain. The second hypothesis is that such fragility can be mitigated through self-adaption, whereby genomes influence their own reproduction.Further experiments in fragile domains with novelty search and self-adaption indeed demonstrate increased evolvability, while, interestingly, adding self-adaptation to fitness-based search decreases evolvability. Thus, selecting for novelty may often facilitate evolvability when representations are not overly fragile; furthermore, achieving the potential of self-adaptation may often critically depend upon the reward scheme driving evolution.