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Abstract—A challenge for current evolutionary algorithms is to
yield highly evolvable representations like those in nature. Such
evolvability in natural evolution is encouraged through selection:
Lineages better at molding to new niches are less susceptible
to extinction. Similar selection pressure is not generally present
in evolutionary algorithms; however, the first hypothesis in this
paper is that novelty search, a recent evolutionary technique,
also selects for evolvability because it rewards lineages able to
continually radiate new behaviors. Results in experiments in
a maze-navigation domain in this paper support that novelty
search finds more evolvable representations than regular fitness-
based search. However, though novelty search outperforms fitness-
based search in a second biped locomotion experiment, it proves
no more evolvable than fitness-based search because delicately
balanced behaviors are more fragile in that domain. The second
hypothesis is that such fragility can be mitigated through self-
adaption, whereby genomes influence their own reproduction.
Further experiments in fragile domains with novelty search
and self-adaption indeed demonstrate increased evolvability,
while, interestingly, adding self-adaptation to fitness-based search
decreases evolvability. Thus, selecting for novelty may often
facilitate evolvability when representations are not overly fragile;
furthermore, achieving the potential of self-adaptation may often
critically depend upon the reward scheme driving evolution.

I. INTRODUCTION

The philosopher Diderot [5] once wrote, “It seems that
Nature has taken pleasure in varying the same mechanism
in an infinity of different ways ... She abandons one class
of production only after having multiplied the individuals of
it in all possible forms.” Naturalists of all generations have
been similarly inspired by the vast productivity and creativity
of evolution. Such diversity in nature highlights the significant
evolvability of natural organisms; the tree of life branches ever
outwards with high degree.

Evolvability, or the capacity of an individual or a population
to further evolve, has often been studied in the context of
natural evolution [3, 12, 20, 31]. A potential explanation for
natural evolution’s propensity to generate a wide diversity of
organisms is that greater evolvability is selected for. That is,
evolvable lineages that are able to modify into more niches
have less chance of going entirely extinct [3, 12]. Because
of the apparent chasm between the evolvability of organisms
in natural evolution and in artificial systems, measuring and

increasing evolvability has also been the subject of many
studies within evolutionary computation (EC) [6, 9, 22, 31].

Traditional evolutionary algorithms (EAs), which typically
are driven to converge to a fitness optimum, contrast with nat-
ural evolution and its consistent exploratory diffusion through
niches. Such EAs thus often lack selection pressure towards
greater evolvability. That is, lineage-level selection is con-
founded when evolution converges to a single lineage; in such
cases there is no variety of lineages upon which a higher level
of selection pressure can act. Thus when optimizing static
fitness functions like those prevalent in EC, fitness may be
an impoverished indicator of evolvability.

In contrast, a recent technique in EC, novelty search [16],
directly rewards individuals exhibiting novel behaviors and is
inspired by natural evolution’s continual production of novel
forms. Such selection for novelty naturally maintains a wide
diversity of behaviors and lineages more similar in spirit than
traditional EAs to the accumulation of niches seen in nature.

The first hypothesis in this paper is thus that novelty search
may also indirectly select for evolvable lineages just as natural
evolution does. That is, in the long run, lineages in novelty
search more predisposed to producing novelty will generate
more offspring than those lineages that are less evolvable. The
converse does not hold for traditional objective-based EAs:
Once such EAs converge to a local optimum, selection rewards
individuals with decreased variability that are able to achieve
ever slighter fitness increases [31]; the prototypical fitness
curve in EC illustrates that in general as fitness increases it
becomes increasingly difficult to further increase it.

In this paper, following Kirschner and Gerhart [12], evolv-
ability is defined as the capacity of an organism to “gen-
erate heritable phenotypic variation.” While evolvability is
often discussed in relation to adaptation, the chosen defini-
tion reflects a growing consensus in biology that phenotypic
variability in its own right deserves study in the context
of evolvability [3, 12, 20, 31]. Thus the evolvability of an
individual is accordingly quantified in this paper by measuring
its propensity for phenotypic variation [3]. Supporting the
first hypothesis, experiments in a maze navigation domain
demonstrate that novelty search does discover more evolvable



individuals, populations, and solutions than traditional fitness-
based search. However, in a challenging biped domain, though
it outperforms fitness-based search, novelty search is no more
evolvable than fitness-based search.

This discrepancy leads to the insight that fragile domains,
i.e. those in which nearly every mutation is fatal, can preclude
search methods from finding evolvable representations. That
is, the weak indirect selection pressure towards evolvability
in novelty search can be overpowered by the combination of
uniform mutation operators with an unforgiving domain.

Yet the second hypothesis is that self-adaptation can restore
the evolvability of novelty search. Thus to remedy domain
fragility, both novelty search and fitness-based search are ex-
tended with the capability to self-adapt mutational parameters,
effectively giving the genome greater control over the creation
of its offspring. An important result is that the greater control
provided by such self-adaptation does not help fitness-based
search, which exploits self-adaptation to more effectively
converge as it nears local fitness optima [4, 7, 24]. However,
it does allow novelty search to discover more evolvable
representations and sometimes to perform better.

There are two conclusions. The first is that because nov-
elty search indirectly selects for evolvable lineages, it may
often discover more evolvable representations than traditional
objective-based search. The second conclusion is that while
self-adaptation has the potential to increase both perfor-
mance and evolvability, achieving the latent potential of self-
adaptation may be more effective in evolutionary algorithms
that encourage novelty.

II. BACKGROUND

Evolvability in both natural and artificial systems is re-
viewed in this section, as is the neuroevolution method applied
in the experiments in this paper. Finally, novelty search, the
evolutionary technique inspired by natural evolution’s contin-
ual production of diverse novel forms, is explained.

A. Evolvability in Natural Evolution and EC

Natural evolution has discovered flexible, highly evolvable
representations that have facilitated the discovery of widely di-
verse organisms. An important question that could inform EC
is what properties of natural evolution led to such evolvability?
At the same time, EC enables studies of evolvability that can
potentially inform biology through computational experiments
impossible in nature.

From a biological perspective, Kirschner and Gerhart [12]
describe evolvability as “an organism’s capacity to generate
heritable phenotypic variation,” and suggest that evolvability
in natural evolution results from an accumulation of flexible
building blocks that are heavily conserved. However, they can
be combined and regulated in many ways to yield substantial
phenotypic variety with few mutations. Further, they argue that
such evolvable lineages may be selected for; a lineage able to
discover and exploit new niches or to quickly radiate through
existing niches following extinctions will itself be less likely
to go completely extinct.

Examining evolvability from both biology and EC, Wagner
and Altenberg [31] similarly describe evolvability as relating
to the phenotypic variability of a genome, and argue that
EC can potentially provide insight into evolvability that bi-
ology cannot; the effect of alternate genetic representations
on evolvability can be tested within EC but are not easily
explored in nature. Furthermore, the authors argue that the
structure of the genotype to phenotype mapping is fundamental
to evolvability. This mapping, which includes the mechanism
for the reproduction and mutation of an organism, is itself
subject to selection and evolution in nature.

Studies in EC have described a lack of evolvability in prac-
tice [22, 31] and have noted possible directions for increasing
evolvability. Some argue that static fitness functions, which
are prevalent in most of EC, do not encourage evolvability
[6, 22] and instead suggest that fitness functions should change
over the course of evolution. Other suggestions for improving
evolvability are to allow adaptation of the genetic operator
set [9], to increase the extent of neutral networks [6], or to
employ indirect encodings that allow more plastic genotype to
phenotype mappings [22, 31]. However, prior studies have not
examined the effects of alternate reward schemes like novelty
search on evolvability, as is undertaken in this paper.

B. NeuroEvolution of Augmenting Topologies (NEAT)

In experiments in this paper, behaviors are evolved that
are controlled by artificial neural networks (ANNs). Thus a
neuroevolution (NE; [32]) method is needed to implement
these experiments. The NEAT method is appropriate because
it is widely applied [1, 2, 28, 29], well understood, and often
run in conjunction with novelty search.

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential decision tasks
[28, 29]. Evolved ANNs control agents that select actions
based on their sensory inputs. Like the SAGA method [10]
introduced before it, NEAT begins evolution with a population
of small, simple networks and complexifies them. The popula-
tion expands into diverse species over generations, leading to
increasingly sophisticated behavior. A similar process of grad-
ually adding new genes is seen in natural evolution [17]. This
section briefly reviews the NEAT method; for comprehensive
introductions see Stanley and Miikkulainen [28, 29].

To keep track of which gene is which while new genes are
added, a historical marking is uniquely assigned to each new
structural component. During crossover, genes with the same
historical markings are aligned, producing meaningful off-
spring efficiently. Speciation in NEAT protects new structural
innovations by reducing competition among differing struc-
tures and network complexities, thereby giving newer, more
complex structures room to adjust. Networks are assigned to
species based on the extent to which they share historical
markings. Complexification, which resembles how genes are
added over the course of natural evolution [17], is thus
supported by both historical markings and speciation, allowing
NEAT to establish high-level features early in evolution and
then later elaborate on them.



The next section reviews novelty search, a technique in EC
that rewards only behavioral novelty.

C. Novelty Search

The problem with the objective-based search paradigm that
is common in EC models is that an objective function (i.e.
the fitness function) does not necessarily reward the interme-
diate stepping stones that lead to the objective, nor does it
necessarily distinguish more evolvable individuals. The more
ambitious the objective, the harder it is to identify a priori
these evolvable stepping stones.

The approach suggested by Lehman and Stanley [16] is
to identify novelty as a proxy for stepping stones. Instead of
searching for a final objective, the learning method is rewarded
for finding any instance whose functionality is significantly
different from what has been discovered before. Thus, instead
of an objective function, search employs a novelty metric.

Novelty search differs from objective-based search by re-
warding stepping stones. That is, anything that is genuinely
different is rewarded and promoted as a jumping-off point
for further evolution. Additionally, those lineages discovering
more stepping stones will be indirectly rewarded, encouraging
evolvability. While we cannot know which stepping stones
are the right ones, if we accept that the primary pathology
in objective-based search is that it cannot detect the stepping
stones at all, then that pathology is remedied. This idea is
also related to research in curiosity seeking in reinforcement
learning [25].

EAs such as NEAT are well-suited to novelty search because
the population that is central to such algorithms naturally cov-
ers a range of behaviors. In fact, tracking novelty requires little
change to any evolutionary algorithm aside from replacing the
fitness function with a novelty metric.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, novelty search rewards diverging
from prior behaviors. Therefore, novelty needs to be measured.

The novelty of a newly-generated individual is computed
with respect to the behaviors (i.e. not the genotypes) of an
archive of past individuals and the current population. The aim
is to characterize how far away the new individual is from the
rest of the population and its predecessors in behavior space,
i.e. the space of unique behaviors. A good metric should thus
compute the sparseness at any point in the behavior space.
Areas with denser clusters of visited points are less novel and
therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. The
sparseness ρ at point x is given by

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to the
distance metric dist, which is a domain-dependent measure of

behavioral difference between two individuals in the search
space. The nearest neighbors calculation must take into con-
sideration individuals from the current population and from the
permanent archive of novel individuals. Candidates from more
sparse regions of this behavioral search space then receive
higher novelty scores.

The current generation plus the archive give a compre-
hensive sample of where the search has been and where it
currently is; that way, by attempting to maximize the novelty
metric, the gradient of search is simply towards what is new,
with no other explicit objective. Note that novelty search is
not an exhaustive or random search because many genotypes
map to the same behavior, and the number of novel behaviors
is reasonable and limited in many practical domains.

Once objective-based fitness is replaced with novelty, the
underlying NEAT algorithm operates as normal, selecting the
most novel individuals to reproduce. Over generations, the
population spreads out across the space of possible behaviors,
sometimes finding an individual that solves the problem even
though progress towards the solution is not directly rewarded.

In fact, there have been several successful applications of
novelty search in neuroevolution [16, 19, 23] and genetic pro-
gramming [8, 15]. Novelty search was introduced in Lehman
and Stanley [14] and applied to a deceptive maze task; these
results were replicated in Mouret [19]. Experiments have also
shown that encouraging novelty is useful in evolving adaptive
ANNs (i.e ANNs that learn during their lifetimes) [23, 26].

These results were surprising because they established that
an algorithm with no knowledge of its objective can often out-
perform one specifically rewarded for achieving that objective.
However, an interesting question orthogonal to performance
that is addressed in this paper is whether abandoning pressure
to optimize the objective can also affect higher-level properties
such as evolvability.

III. MEASURING EVOLVABILITY

The primary hypothesis in this paper is that rewarding
novelty increases evolvability when compared with rewarding
progress towards a fixed objective. Therefore, an important
aspect of evaluating this hypothesis is quantifying evolvability.

One definition of evolvability is “an organism’s capacity to
generate heritable phenotypic variation” [12]. Brookfield [3]
similarly suggests evolvability is “the proportion of radically
different designs created by mutation that are viable and fer-
tile.” These definitions reflect a growing consensus in biology
that the ability to generate phenotypic variation is fundamental
to evolvability [3, 12, 20, 31].

From these definitions, a way of estimating an individual’s
evolvability is to generate many children from it and then mea-
sure the degree of phenotypic variation among those offspring.
In effect, this measure quantifies how well the organization
of the individual’s representation has internalized domain
information to enable more behaviorally diverse mutations.
This measure is similar in intention to that in Reisinger et al.
[22] but is more granular because it quantifies how well an



individual’s evolved representation exploits domain structure
instead of measuring an encoding’s ability to do the same.

Accordingly, the measure of evolvability in this paper is to
count how many distinct behaviors there are among a series
of generated offspring of a particular individual. An individual
whose offspring tend to display many distinct behaviors is
capable of generating much heritable phenotypic variation,
and is thus evolvable. In practice, such a measure requires
a domain-fitted test between two individuals to determine
whether their behaviors are distinct.

The domain-specific novelty metric in novelty search that
measures behavioral distance between two individuals can
naturally be adapted for this purpose: Two behaviors are
distinct if the behavioral distance between them is greater than
a fixed threshold.

Using this test of behavioral distinction, the number of
distinct behaviors among a list of behaviors can be calculated
by the following greedy algorithm that accumulates a list of
distinct behaviors: The first behavior is added to this list by
default, and each subsequent behavior is added if it is distinct
from each behavior already in the distinct behavior list. The
size of this filtered list is the number of distinct behaviors, an
estimate of the individual’s evolvability.

At regular intervals during a run, the evolvability of each
individual in the population is measured. That is, for each
individual in the population many offspring are sequentially
generated by first cloning the individual and then mutating
the clone; the idea is to sample the genotypic space around
an individual and examine the distribution of those samples in
behavior space. The behaviors of these perturbed clones are
then concatenated to form a list, with the number of distinct
behaviors in the concatenated list acting as an indicator of that
individual’s phenotypic variability, i.e. its evolvability.

IV. EXPERIMENTS

To compare the evolvability of individuals evolved by both
novelty search and traditional objective fitness-based search,
experiments are conducted in two domains previously em-
ployed to compare the performance of the two varieties of
search, i.e. maze-navigation and biped locomotion [16].

This paper’s experiments utilize NEAT, which has been
proven in many control tasks [2, 14, 16, 28, 29], including
maze navigation [14] and biped locomotion [2], the test
domains in this paper. In both experiments, the evolvability
of individuals evolved with NEAT with novelty search is
compared to that of traditional fitness-based NEAT.

The next sections describe these maze navigation and biped
locomotion experiments in detail.

A. Maze Experiment

The maze navigation domain in Lehman and Stanley [16]
is a good model for behavior spaces in general because it is
easy to understand and visualize [16, 19]. In this domain, a
robot controlled by an ANN must navigate in a maze (figure
1) from a starting point to an end point in a fixed time. The
robot (figure 2) has six rangefinders that indicate the distance

Fig. 1: Maze Navigation Map. In this map, the larger circle
represents the starting position of the robot and the smaller circle
represents the goal.

Evolved Topology

Rangefinder
Sensors

Radar
Sensors

Bias

Left/Right Forward/Back

(a) Neural Network (b) Sensors
Fig. 2: Maze-Navigating Robot. The artificial neural network that
controls the maze navigating robot is shown in (a). The layout of the
sensors is shown in (b). Each arrow outside of the robot’s body in
(b) is a rangefinder sensor that indicates the distance to the closest
obstacle in that direction. The robot has four pie-slice sensors that act
as a compass towards the goal, activating when the goal falls within
the infinite projection of that pie-slice. The solid arrow indicates the
robot’s heading.

to the nearest wall within the maze, and four pie-slice radar
sensors that fire when the goal is within the pie-slice. The
robot’s two effectors result in forces that respectively turn and
propel the robot.

Fitness-based NEAT, which will be compared to novelty
search, requires a fitness function to reward maze-navigating
robots. The same fitness function from the original formulation
is used, which rewards a robot’s nearness to the goal at the
end of an evaluation [16, 19]; that is, the fitness f of a robot
is defined as: f = bf − dg , where bf is a constant bias and
dg is the distance of the robot to the goal at the end of the
evaluation. This measure reflects that the objective of the robot
is to reach the goal.

NEAT with novelty search, on the other hand, requires a
novelty metric to distinguish between maze-navigating robots.
Following Lehman and Stanley [16], the behavior of a robot is
defined as its location in the maze at the end of the evaluation
[14, 19], reflecting what is important in navigating a maze.
The novelty metric is then the squared Euclidean distance
between the ending positions of two individuals. This same
novelty metric also distinguishes behaviors when calculating
evolvability; two behaviors are distinct if the metric between
them is greater than a fixed threshold.

Population size for the hard maze was 250 and each run
lasted 1, 000 generations. When measuring evolvability, 200
offspring were created for each individual in the population
and evolvability was measured every 50 generations. Solution
criteria in the maze domain are the same as in Lehman and
Stanley [16] (i.e. ending within five units of the goal). All
other parameters are the same as in Lehman and Stanley [16].



B. Biped Experiment
A more challenging domain is biped locomotion, a difficult

control task that is popular within machine learning [2, 18,
21, 30]. The key issue is whether the brittleness in the biped
domain from the need for balance and oscillation [11] might
prevent an evolutionary algorithm from discovering evolvable
individuals able to walk far.

In this domain, a three-dimensional biped robot in a realistic
physics simulation is controlled by a type of ANN called
a continuous time recurrent neural network (CTRNN) that
is able to express the non-linear dynamics found in natural
gaits and is common in other biped experiments [18, 21]. The
objective is to walk as far as possible within a given time limit.
The task is difficult because it requires coordination, balance,
and the discovery of oscillatory patterns. Discovering such
oscillatory patterns critical to cyclic walking is particularly
deceptive because they may initially provide no immediate
fitness advantage; fitness-based search quickly converges to
robots that fall the farthest, and the nascent discovery of
oscillatory patterns may actually impede such strategies.

The biped domain works as follows. A biped robot is
controlled by an ANN for a fixed duration (15 simulated
seconds). The evaluation is terminated if the robot falls or
after the allocated time expires. The objective is that the robot
travel the greatest possible distance from the starting location.

The ANN that controls the biped has only two inputs, which
are contact sensors that signal for each foot whether it is
touching the ground. The sparsity of input makes the problem
more difficult because the ANN has no information on the
orientation of the robot or on the current angles of its joints.

The biped robot (figure 3) has a total of six degrees of
freedom (DOF): two degrees in each hip joint (pitch and roll)
and one degree in each knee joint (pitch). Simple sphere-
shaped feet make ankle joints unnecessary in this model,
although the lack of typical feet or a torso (which could
provide a counterbalance) require knees to bend backwards
(as in birds) to balance, adding to the challenge of the model.

The ANN outputs movement requests for each degree of
freedom (DOF) in the model, i.e. for each independent axis of
rotation for all joints in the model. The outputs are scaled to
match the angular range of the corresponding DOF, which is
interpreted as the angle that the neural controller is requesting.
The difference between the requested angle and the current
orientation of the DOF denotes the disparity between the state
the ANN is requesting and the current state of the model. A
proportional controller applies torque to reduce this disparity.
In other words, the ANN directs the low-level controllers
towards a particular state. This model and method of control
are similar to those in Reil and Husbands [21].

This experiment again compares the evolvability of fitness-
based NEAT to NEAT with novelty search. It is important to
note that NEAT was extended for these experiments to evolve
CTRNNs (i.e. it also evolves the time constant assigned to
each node). A natural fitness function is the squared distance
traveled from the starting location. This distance is measured
by recording the location of the center of mass of the biped

Fig. 3: Biped Robot. A visualization of the biped robot
controlled by an evolved ANN in the biped experiment in
this paper.

robot before and after evaluation, and then calculating the dis-
tance between the two points. Distance traveled is a standard
measure among evolutionary biped locomotion experiments
[18, 21, 30], and matches the intuitive notion of learning to
walk with increasing stability and efficiency.

In contrast, NEAT with novelty search requires a behavioral
characterization to distinguish biped gaits. The behavioral
characterization in this domain is the offset of the biped’s
center of mass sampled at one second intervals during the
evaluation:

x′k = sign(xk − x0) ∗ (xk − x0)
2, (2)

y′k = sign(yk − y0) ∗ (yk − y0)
2, (3)

where x0 and y0 correspond to the initial planar center of mass
(i.e. ignoring the vertical z component) of the biped robot,
and xk and yk correspond to the center of gravity sample
taken after the kth second of simulation. The magnitude of
the offsets is squared just as the fitness measure is to make
the comparison uniform. If the robot falls, the center of gravity
for all remaining samples is set to the robot’s center of gravity
when it fell. The behavioral characterization of a particular
controller is then the vector that concatenates all pairs (x′i, y

′
i),

where 1≤i≤m and m is the final sample taken, to form
(x′1, y

′
1, x

′
2, y

′
2, ..., x

′
m, y

′
m).

The novelty metric for two different controllers is the
same as in the maze domain, i.e. the sum of the squared
distances between the controllers’ behavioral characterization
vectors. Unlike in the maze domain, temporal sampling is
necessary because the temporal pattern is fundamental to
walking. This additional information allows the novelty metric
to differentiate two gaits that end up at the same location by
different means.

Again, this novelty metric also acts as a behavioral dis-
tinction test when measuring evolvability; two behaviors are
distinct if the behavioral distance between them is greater than
a fixed threshold.

The population had 500 individuals and each run lasted
2, 000 generations. When measuring evolvability, 200 off-
spring were cloned from each individual in the population and
evolvability was measured every 100 generations. The walker
traveling the farthest in each run is considered the solution.
Other parameters are the same as in Lehman and Stanley [16].

V. RESULTS

In the hard maze experiment, novelty search discovered
solutions in every one of the 20 runs while fitness-based
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(c) Biped
Fig. 4: Comparing the evolvability of novelty search and fitness-based search. The average evolvability of evolved solutions is shown
in (a). The average and maximum evolvability of all individuals in the population are shown for novelty search and fitness-based search in
(b) the hard maze and (c) the biped walking experiments. Results are averaged over the initial 20 runs. Error bars indicate standard deviation.

search solved it only once. Thus an additional 580 runs of
fitness-based search were conducted to accumulate a more
representative sample of solutions. Out of the combined 600
runs, 41 were successful. The average evolvability of solutions
(figure 4a) discovered by novelty search in the hard maze
(µ = 26.03, sd = 2.026) was significantly higher (p < 0.05;
Mann-Whitney U-test) than that that of solutions found by
fitness-based search (µ = 24.76, sd = 2.97). In addition,
reflecting evolvability across evolution, after the 25th genera-
tion, the evolvability of the most evolvable individual and the
average evolvability of individuals (figure 4b) in the population
were significantly higher (p < 0.01; Mann-Whitney U-test) in
novelty search than in fitness-based search.

In the biped experiment, novelty search outperformed
fitness-based search by evolving walkers that traveled farther
on average (p < 0.01; Mann-Whitney U-test). Yet, unlike in
the maze, the evolvability of biped champions (figure 4a) was
not significantly higher in novelty search than in fitness-based
search. Neither were the evolvability of the most evolvable
individual or the average evolvability of individuals in the
population (figure 4c) significantly different between novelty
search and fitness-based search (Mann-Whitney U-test).

VI. SELF-ADAPTATION EXPERIMENTS

The results in the hard maze conflict with those in the biped
domain; though novelty search evolved more evolvable indi-
viduals in the maze domain, those evolved in the biped domain
were not significantly more evolvable. Further examination
shows that individuals evolved by novelty search and fitness-
based search in the biped domain are very fragile; nearly all
mutations of such individuals immediately fall, suggesting that
the mutation and recombination operators are ill-fitted to the
evolved representations.

A potential remedy to such fragility is self-adaptation:
Augmenting a genome with additional parameters can allow
evolution to adapt parameters governing reproduction such
as mutation rate [4, 13]. A genome with such self-adaptive
capabilities has greater influence over how its offspring are
created. The idea is that evolution can select for self-adaptive
parameters that better complement a genome’s evolved repre-
sentation and mitigate domain fragility.

An additional fragile domain is crafted to more generally
test the new hypothesis that self-adaptation may encourage
evolvability in fragile domains. In the original conception of
the maze domain there is no penalty for colliding with walls,
and all evolved solutions collide with walls as they navigate
to the goal. Thus, a more difficult variant of the maze domain
is created that terminates an evaluation when an individual
collides with a wall; a crashed individual receives a very low
fitness (for fitness search) and a dummy behavior characteriza-
tion to a particular point outside the map (for novelty search).
The motivation is to make gradients of both improvement
(for fitness-based search) and behavioral change (for novelty
search) more brittle, mirroring the inherent brittleness of the
biped domain.

To implement self-adaptation in NEAT, genomes are aug-
mented with floating point parameters that influence the muta-
tion of connection weights. Two such parameters are consid-
ered here: Connection mutation power, which modulates the
magnitude of a potential change to a weight, and connection
mutation rate, which specifies the probability that a particular
connection weight will be changed at all.

Initial experiments revealed that evolving a single mutation
power and rate for each entire genome is too coarse; certain
connections in the neural network may be more or less
sensitive to perturbation, a possibility impossible to exploit
with only a single set of mutation parameters per genome [7].
At the opposite extreme, evolving separate sets of mutation
parameters for every connection in an ANN greatly expands
the parameter space evolution searches through. A balance is
achieved by augmenting NEAT’s genome with a fixed-length
set of mutation parameters for each genome among which
each connection within the ANN can choose. That is, with this
kind of self-adaption each connection weight in a genome is
mutated according to a particular rule within the set of rules
the genome contains. This setup is similar to that employed
by Stanley and Miikkulainen [27] in the context of rules for
adaptation in plastic networks.

Thus, each genome is given a list of three pairs of mutation
settings and each connection is augmented with an integer
parameter that indexes within the list. When an individual
is mutated, every one of its links are usually mutated by



adding to its weight a random number chosen from the same
uniform distribution. With self-adaptation, each connection of
the neural network may be exempted from mutation with
probability determined by the connection mutation rate. If
it is chosen to be mutated, the power of the mutation is
modulated by multiplying it with the connection mutation
power. Thus, a self-adaptive genome can potentially craft
an architecture of mutation that complements the genome’s
evolved representation.

It is important to note that reproduction in these self-
adaptation experiments is only asexual, as in some other
studies [4, 7]; the reason here is that crossover facilitates
mixing of self-adaptive parameters between different lineages,
which can overpower weaker lineage-level selection pressure
on such parameters that have no immediate impact on fitness
[20, 31]. The previous experiments, with the addition of
the new fragile hard maze domain, are repeated with self-
adaptation to investigate the effect of such self-adaptation on
the evolvability of both fitness-based NEAT and NEAT with
novelty search.

The added self-adaptive rules that influenced mutation of
ANN connection weights themselves changed probabilisti-
cally at fixed rates [4, 13]. During mutation of a genome,
a randomly-selected rule would be changed with probability
0.75. Each of the two floating point parameters making up
such a rule are then perturbed with probability 0.2 by a
random number uniformly selected between −0.2 and 0.2.
Each genome also had a 10% chance of changing to which
rule a randomly-chosen connection was linked.

The population size for the fragile hard maze was 250 and
evolution lasted 2, 000 generations. Evolvability was measured
every 100 generations. Other parameters were the same as for
the normal hard maze experiment.

VII. SELF-ADAPTATION RESULTS

Figure 5 shows how self-adaptation effects novelty search
and fitness-based search in the hard maze, biped, and fragile
hard maze domains. The main result is that self-adaptation
allows novelty search to discover significantly more evolvable
representations in the biped and fragile hard maze (p < 0.05;
Mann-Whitney U-test), while combining fitness-based search
and self-adaptation is universally detrimental across every
measure and domain (p < 0.05; Mann-Whitney U-test).

In addition, novelty search combined with self-adaptation
increased performance in the fragile hard maze as well; in
300 additional runs it was solved 31 times by that setup,
while it was solved at best only 14 times out of 300 by
other setups. The difference is significant (p < 0.05; Fisher’s
exact test). There was no significant difference in the average
distance traveled by biped champions between novelty search
with self-adaptation and without it, but the two novelty search
setups significantly outperformed the two fitness-based setups
(p < 0.05; Mann-Whitney U-test). Additionally, combining
fitness-based search with self-adaptation hurt performance
when compared to fitness-based search without self-adaptation
(p < 0.05; Mann-Whitney U-test).

VIII. DISCUSSION

The results support the idea that novelty search may often
discover more evolvable representations than fitness-based
search, although the ability of any method to discover evolv-
able representations is likely stymied by a poor fit between
reproductive operators, the representation, and the domain. In
addition, while novelty search can effectively mold mutational
parameters to match the representations it discovers, fitness-
based search instead suffers from such an additional capability.

More significantly, the inability of fitness-based search to
exploit self-adaptation and its lesser evolvability may illustrate
the greater conflict between greedily pursuing the objective
and desirable representation. That is, a lack of representa-
tional variety prevents discovering better representations. This
handicap is a significant challenge that evolution may often
face when employed as an optimizer; by considering only
current fitness, traditional EAs often converge to a particular
lineage and its corresponding representation without regard
to higher-level properties such as evolvability. Evolution must
then elaborate on what may be a poor representation.

Interestingly, the results in this study may suggest revisiting
prior disappointing results from testing EAs with self-adaptive
mutation rates on non-trivial fitness landscapes [4, 7, 13, 24].
Often in such cases self-adaptive mutation rates are prema-
turely minimized (which accelerates premature convergence)
because mutations leading to further fitness increases become
exceedingly rare [4, 7, 13, 24]. In contrast, coupling self-
adaptation with novelty search facilitates an improved balance
between mutation rate and innovation, even in the deceptive
and challenging biped locomotion domain. Thus prior exper-
imental results that might be interpreted as illustrating the
limitations of self-adaptation could be partially misleading.
That is, the tendency of self-adaptation to exacerbate prema-
ture convergence in prior experiments may be an incidental
byproduct of the reward scheme currently dominant in EC.

An interesting direction for future research is to conduct a
similar study with indirect encodings that have more powerful
genotype to phenotype mappings than NEAT’s direct encoding
of neurons and connections in an ANN. The representations
learned by such indirect encodings may more heavily constrain
and directionally influence the behaviors of their offspring, al-
lowing for greater degrees of evolvability. For example, in nat-
ural evolution organizational principles themselves can evolve,
enabling structural regularities like symmetry or modularity
and exploratory mechanisms such as adaptive immune systems
or behavioral plasticity [12]. Thus, the gain in evolvability
from rewarding novelty may be greater and more critical in
indirect encodings also able to exploit similar regularities.

IX. CONCLUSIONS

The conclusion is that oftentimes pursuing an objective may
not only hinder evolvability but also prevent the achievement
of self-adaptation’s full potential. The lesson is that the type of
evolutionary search applied can influence important properties
beyond performance, including the quality of representation
discovered and the ability of search to exploit selection on
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Fig. 5: Effects of self-adaptation on evolvability. In all figures, methods with self-adaptation are indicated by the abbreviation SA. The
average evolvability of all individuals in the final population for each variant are shown in (a), the maximum evolvability of all individuals
in the final population are shown in (b), and the average evolvability of discovered solutions are in (c). Results are averaged over 20 runs
and error bars indicate standard deviation. The main implication is that self-adaptive parameters help evolvability in novelty search but not
in fitness-based search.

higher levels. At heart, natural evolution is not a method for
black-box optimization; by shackling EC to that end we may
inadvertently obfuscate the emergence of natural evolution’s
characteristic properties.
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