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ABSTRACT
Legged robots can potentially venture beyond the limits of
wheeled vehicles. While creating controllers for such robots
by hand is possible, evolutionary algorithms are an alterna-
tive that can reduce the burden of hand-crafting robotic con-
trollers. Although major evolutionary approaches to legged
locomotion can generate oscillations through popular tech-
niques such as continuous time recurrent neural networks
(CTRNNs) or sinusoidal input, they typically face a chal-
lenge in maintaining long-term stability. The aim of this
paper is to address this challenge by introducing an effective
alternative based on a new type of neuron called a single-
unit pattern generator (SUPG). The SUPG, which is indi-
rectly encoded by a compositional pattern producing net-
work (CPPN) evolved by HyperNEAT, produces a flexible
temporal activation pattern that can be reset and repeated
at any time through an explicit trigger input, thereby allow-
ing it to dynamically recalibrate over time to maintain sta-
bility. The SUPG approach, which is compared to CTRNNs
and sinusoidal input, is shown to produce natural-looking
gaits that exhibit superior stability over time, thereby pro-
viding a new alternative for evolving oscillatory locomotion.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets

General Terms
Algorithms, Experimentation, Performance

Keywords
HyperNEAT, Generative and Developmental Systems, Neu-
roevolution, Gait Generation, Oscillation
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1. INTRODUCTION
Legged robots have attracted significant interest in a broad

range of applications ranging from consumer toys to military
transporters, and even planetary exploration [10, 17, 23].
Legs offer several benefits over wheels, such as increased
maneuverability in tight quarters and over rugged terrain.
However, the potential advantages of legged robots are tem-
pered by the difficulty of formulating effective methods to
control them. For example, they have many degrees of free-
dom, which adds to the complexity of the task. While con-
trollers for legged robots are often hand crafted [1], the de-
sign process is time consuming and would need to be re-
peated for a different body morphology. Thus a promis-
ing alternative to hand-crafting controllers is to train them
through machine learning. Popular approaches include neu-
roevolution (i.e. evolving neural networks) and other evo-
lutionary algorithms, which have achieved some success in
approaching the challenge of creating controllers for legged
robots [4, 8, 17, 19, 20, 35, 36, 38]. Evolutionary algorithms
offer the increased flexibility of being possible to re-run for
different body morphologies, alleviating the burden of creat-
ing a new controller by hand for each new body morphology.

Among the various neuroevolution-based approaches to
solving the problem of legged locomotion, a common theme
is to facilitate oscillation within the neural architecture. One
popular approach is to enable oscillation by evolving cen-
tral pattern generators (CPGs) based on continuous time
recurrent neural networks (CTRNNs) [3, 4, 35], which are
inspired by mechanisms in the nervous systems of many
animals [9, 28]. Another approach is to integrate oscilla-
tion more directly by inputting a sine wave (or other os-
cillatory pattern) directly into the artificial neural network
(ANN) [8, 20, 38]. Still another is to compute leg motion
as a function of the positions of other legs [36]. While these
approaches each offer a useful contribution, a general prob-
lem for the field is that all approaches tend to trade off be-
tween flexibility and stability. For example, oscillators based
on recurrent architectures can produce almost unlimited dy-
namics, but require significant design effort to achieve stable
oscillation [6, 25]. Non-recurrent architectures on the other
hand may be stable, but often restrict potential dynamics.
For example, inputting a sine wave constrains the period
from the start, and linking leg movement to other legs’ po-



sitions determines a priori the kind of gait that can emerge
depending on which legs are functions of which.

The aim in this paper is to provide a novel alternative that
offers both flexibility and stability, while also being easy to
set up. Rather than creating oscillation indirectly through
the complex interactions of CPGs or directly through a sine
wave, the proposed strategy is to produce oscillation by in-
troducing a new type of neuron, called a single-unit pattern
generator (SUPG) that once triggered generates a single
cycle of a genetically-encoded temporal activation pattern.
Through the repeated triggering of the SUPG, the activation
pattern is generated repetitively, producing oscillations. Be-
cause the trigger can reset the oscillation at any point in the
cycle, the SUPG can continually recalibrate to maintain sta-
bility. The SUPG approach takes advantage of the Hyper-
NEAT method [11, 34] for indirectly encoding ANNs by en-
coding the temporal patterns of SUPGs through a composi-
tional pattern producing network (CPPN) that encapsulates
SUPG activation patterns as a function of their location
within the network. That way, a single CPPN can indirectly
encode the temporal dynamics of every joint in the body
without the need for recurrence or for pre-arranged dynam-
ics. Furthermore, the well-established pattern-generating
capabilities of CPPNS [7, 15, 29, 30] now can benefit the
discovery of temporal patterns underlying gaits.

The SUPG approach is compared in this paper to CTRNN
and sine-based approaches. Not only do SUPG-based quad-
rupeds evolve faster and walk farther, but they exhibit sig-
nificantly greater temporal stability (far beyond the training
window), an essential property for any industrial applica-
tion of evolved controllers that until now had not yet been
achieved in bodies that require balance. The hope is that
the SUPG approach can thereby open a new research di-
rection in evolving robotic gaits that can provide a viable
alternative to today’s dominant approaches.

2. BACKGROUND
This section first discusses prior work in neuro-evolved

gait generation and then reviews the NEAT and Hyper-
NEAT approaches that enable SUPGs.

2.1 Neuro-evolved Gaits
The main challenge in applying neuroevolution to gait

generation is to encourage some form of oscillation to pro-
duce regular gaits. A popular approach is to evolve CPGs by
evolving a special kind of neural network called a continu-
ous time recurrent neural network (CTRNN) [3, 4, 35]. It is
important also to note that while non-neural CPGs [18, 25]
are investigated outside evolutionary computation, the fo-
cus of this paper is on evolving neural network-based CPGs.
In such neural CPGs, CTRNNs often produce regular os-
cillatory patterns that are suited to gaits in legged robots.
However, while CPGs may be the most biologically authen-
tic approach, they can be difficult for an evolutionary algo-
rithm to tune. The oscillatory pattern produced by a CPG
is the product of multiple neurons interacting in a complex
network, which requires significant care in design to main-
tain stability [6].

Other approaches avoid this problem by inserting an os-
cillatory pattern directly into the network [8, 38]. These os-
cillations can be more easily tuned, alleviating some of the
burden faced by the evolutionary algorithm. However, im-
posing a fixed oscillation period on the network constrains

evolution’s ability to find viable gaits that may exist out-
side the chosen period. Furthermore, fixing the period does
not guarantee stability because the physical environment it-
self might gradually degrade a behavior cycle intended to
repeat perfectly every time. One interesting alternative ap-
proach by Valsalam and Miikkulainen [36] is to compute leg
movements as a function of the positions of specific other
legs. This idea yielded robust gaits of specific types that
correspond to the leg-leg dependencies defined by the exper-
imenter. In contrast to these approaches, the new approach
in this paper, based on HyperNEAT (described next), aims
for the flexibility of a CTRNN (e.g. to determine period and
dynamics) but with stability more like a fixed-period con-
troller. Furthermore, the hope is to let evolution decide the
best gait without any explicit enumeration of possible leg-leg
dependencies.

2.2 NEAT and HyperNEAT
The new approach in this paper is based on HyperNEAT,

which is an extension of the original NEAT algorithm that
evolves ANNs with a direct encoding. The NEAT method
has proven effective in a variety of control and decision-
making domains [21, 31, 33]. NEAT draws much of its
strength from the idea of increasing complexity. In particu-
lar, it begins with simple ANNs and gradually increases the
complexity of their genotypes to produce more sophisticated
behavior in their phenotypes. A full description of NEAT
is available in Stanley and Miikkulainen [31] or Stanley and
Miikkulainen [33].

With direct encodings such as in NEAT, each weight in
the network is represented by a single parameter in the geno-
type. This one-to-one mapping works in simple problems
but cannot exploit domains with very large phenotypic so-
lutions that contain self-similar parts. For example, a struc-
ture that effectively controls one leg of a quadruped is likely
similar to the structure that effectively controls one of the
other legs. With a direct encoding, any such regularities in
the solution must be discovered separately.

In contrast, HyperNEAT [11, 34] is an extension of NEAT
that evolves an indirect encoding called a compositional pat-
tern producing network (CPPN). In effect, the CPPN in
HyperNEAT is evolved by NEAT. One common advantage
of indirect encodings such as CPPNs is that they can learn
regularities all at once by reusing genetic information. The
simultaneous discovery of regularities is one reason indirect
encodings [2, 5, 13, 16, 22, 32] have become an important
area of research. CPPNs are a type of network that serve
as an indirect encoding in which each node can contain one
of several functions such as sine and Gaussian. The use of
such functions allows the CPPN to easily discover natural
patterns that contain symmetry, repetition, and repetition
with variation [30]. These patterns can then map to a con-
nectivity pattern that also contains such regularities. CPPNs
thus allow the simultaneous discovery of regularities across
the connectivity of an ANN.

By convention, the nodes connected by the CPPN are
placed in a geometric space called the substrate, as shown in
figure 1. Notice that each node in the substrate in figure 1 is
placed at an explicit (x, y) location. That way, it is possible
to query the CPPN for the weight of any connection between
two points (x1, y1) and (x2, y2) by inputting (x1, y1, x2, y2)
into the CPPN, which then outputs the associated weight.
The key idea is that the CPPN in effect paints a pattern



across the geometry of the network by querying all the po-
tential connections for their weights. This pattern thereby
yields a function of the geometry of the underlying problem
domain, allowing HyperNEAT to exploit the structure of the
problem. Kodjabachian and Meyer [19] have noted that ge-
ometry is important in particular to evolving effective gait
controllers. Notice that querying the weight of a connection
requires inputting the four dimensions x1, y1, x2, and y2. In
effect, as HyperNEAT queries all such connection weights, it
is painting its pattern within a four-dimensional hypercube,
which is why it is called HyperNEAT.

Because in this paper HyperNEAT also evolves properties
of nodes (such as the SUPG), it is also important to note
that the CPPN can also be queried to output parameters of
individual nodes in the substrate instead of just parameters
of connections. The convention for this purpose is to query
a node at position (x, y) as (x, y, 0, 0) and to retrieve the
corresponding node-specific parameter (such as a bias) from
the a special node-specific output on the CPPN (figure 1).
In this way, HyperNEAT can also evolve properties of nodes
as a function of where they appear in the network.

HyperNEAT has been successful in a variety of challeng-
ing domains that require the discovery of regularities [11,
12, 34, 37]. Because effective legged locomotion exhibits
regularities, HyperNEAT is also well-suited to the task of
discovering controllers that produce regular gaits [8]. The
next section describes the new HyperNEAT-based approach
proposed for this problem.

3. SUPG APPROACH
Producing oscillations can be difficult and deliberately

tuning such oscillations poses a serious challenge to any neu-
ral architecture. The pattern of oscillations may require
significant complexity. Because CPPNs have exhibited the
ability to encode spatial patterns with a natural appear-
ance [7, 29, 30], an interesting possibility is that they could
be successful at encoding patterns across time as well. In
fact, their use in generating temporal music sequences [14,
15] further supports this idea. After all, a pattern across
space or a pattern across time is still just a pattern. Thus
CPPNs could serve as the foundation for an oscillatory sys-
tem. This observation is the motivation behind the intro-
duction of the single-unit pattern generator (SUPG). The
SUPG, shown in figure 2, is a type of neuron whose acti-
vation pattern over time is actually encoded by a CPPN.
As is conventional for CPPNs, the CPPN takes as inputs
the (x, y) coordinates of the SUPG, but it also takes a novel
input: the time since the SUPG began the current cycle. In
other words, the CPPN computes the activation level of the
SUPG as a function of the time since its last cycle began (in
addition to its position in the substrate). That way, all the
pattern-generating capabilities of CPPNs are now brought
to bear on generating temporal patterns that can be ac-
tivated in cycles, which is a novel approach to generating
gaits.

The temporal duration of an SUPG cycle is called the
period of the SUPG. During the period of the SUPG, its
internal timer climbs linearly at each tick of the clock in
simulation from a starting value of zero at the start of the
period to an ending value of 1.0 at the end of the period. In
effect, the CPPN that encodes the resultant temporal pat-
tern of the SUPG is computing this pattern as a function
of the current state of the timer, as shown in figure 3. In-
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Figure 1: How CPPNs encode connection weights
and node properties in HyperNEAT. The substrate
(left) consists of a collection of nodes and connections, where
each node is placed in a geometric location ranging from -1
to 1 in each dimension. Connection weights and node prop-
erties are generated by feeding coordinates into the CPPN
(right), which is evolved with the NEAT algorithm. Con-
nection weights are produced by inputting the coordinates
of the connected nodes, such as (x1, y1, x2, y2). Node prop-
erties, such as bias and time constant, are produced by in-
putting the coordinates of the node into one coordinate pair
and setting the other coordinate pair to 0, such as (x, y, 0, 0).
Although only one node property output is shown, any num-
ber of node property outputs can be included depending on
the number of node properties that need to be determined.
In the depicted CPPN, which is evolved by NEAT, S stands
for sigmoid and G stands for Gaussian.
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Figure 2: Visualization of a single SUPG. Once trig-
gered, the activation produced is based upon the neuron’s
coordinates (x, y) in the substrate and the time since it was
last triggered. The offset determines the time of the ini-
tial trigger. For simplicity, potential x2 and y2 inputs to
the CPPN, which could allow it also to generate connection
weights (in addition to SUPG properties) are not shown.



Figure 3: One period of an SUPG. Once triggered, the
timer within an SUPG starts at zero and increases linearly
until it reaches a maximum of one at the end of the period.
This timer output is input into the CPPN that encodes the
SUPG (along with the SUPG’s x and y coordinates) to de-
termine the output of the SUPG.

terestingly, unlike with a sine-based controller, this SUPG
period does not need to match the length of the optimal or
desired gait. The reason is that the period can be restarted
at any time by the occurrence of an external event called the
trigger. That way, instead of simply repeating its pattern
at a set interval, the SUPG contains a trigger that when
fired resets its activation pattern to the start (i.e. time zero)
of a new period. If the trigger is fired again before the pe-
riod is complete, the period is interrupted and restarts. One
logical choice for a trigger in locomotion is a foot touching
the ground. That way, when a foot touches the ground,
it thereby restarts all SUPGs that are connected to that
foot. This triggering mechanism means that the ultimate
cycle depends on events in the world rather than on a fixed
(and thereby brittle) mechanism. It also potentially per-
mits flexible adjustment to variation in terrain, in addition
to reducing the accumulation of errors that can occur with
a fixed repeated period. Thus the combination of the pat-
tern generating capability of the CPPN with the new trig-
ger introduces a new oscillatory mechanism to ANNs that is
naturally suited to evolution by HyperNEAT.

SUPGs must be placed in the HyperNEAT substrate in
a principled manner. Because HyperNEAT can take advan-
tage of the geometry of the problem, it is desirable to select a
configuration that exploits such an advantage. For example,
consider a quadruped with three motors per leg: one knee
joint and two hip joints. Because legs in most quadrupeds
perform similar motions to each other, the SUPGs can be
grouped closely on the substrate to SUPGs for other legs
that control motors of the same type (which conveys to Hy-
perNEAT that their patterns will be similar). In this con-
figuration, the different motor types are spread along the
x axis, as shown in figure 4. By grouping SUPGs for re-
lated joints together, but spreading them far from the joints
of other types, HyperNEAT can exploit such geometry to
produce gaits in which each of the legs behave in a similar
manner (though of course potentially not all in phase), but
each joint of a particular leg can yield a different motion
trajectory from the other joints on that leg.

Figure 4: SUPG-based substrate for quadruped lo-
comotion (not drawn to scale). Each depicted node is
an SUPG at its designated position in the substrate. The
SUPGs for each motor type are grouped tightly together,
resulting in each leg producing similar motion trajectories
(though with different offsets). At the same time, differ-
ent types of joints are placed farther apart, reflecting that
the trajectories of different types of joints likely differ from
each other. The three motors are knee, hip in/out, and hip
forward/back.

Note that if all four legs start touching the ground, then all
four would be triggered simultaneously, which would make
it difficult to produce any gait except a pronk, a hopping
gait common in some quadrupedal animals in which all four
legs move in unison. To allow a wider range of gaits, an
offset can be evolved for the first step. Because SUPGs are
temporal, adding this offset is simple. For this purpose, a
second output is added to the CPPN, as shown in figure 2,
that defines the offset for a given SUPG. When querying
the CPPN to obtain this offset, the x value and time value
are set to 0, and the y value is set to the y position of the
SUPG. This configuration ensures that all SUPGs for the
same leg are started at the same time. Note that once the
initial offset time elapses, offsets are discarded and leg cycles
thereafter depend entirely on triggers.

Taken together, the SUPG approach encompasses three
key concepts: (1) the CPPN encodes the shape of the cy-
cle, (2) the trigger determines its timing, and (3) the offset
controls its initiation. By encapsulating this system within
the geometry of the HyperNEAT substrate, a simple and
clean approach (which does not depend on recurrence) is
introduced to describe and evolve complex oscillatory gait
patterns.

4. EXPERIMENT
The aim of this experiment is to establish the viability of

SUPGs as an alternative research direction in legged loco-
motion. Thus it is compared to two more traditional archi-
tectures in the quadruped domain described in the previous
section. The hope is that this comparison can help to show
that SUPGs are viable without unnecessarily implying that
they are the “best” among all possible alternative methods.
That is, the aim is to establish SUPGs as a viable alterna-
tive.

The quadruped domain is implemented in the Open Dy-
namics Engine (ODE) physics simulator (http://www.ode.

http://www.ode.org


Figure 5: The starting position of the quadruped
in the training environment. The environment is an
unlimited flat plane with no obstacles. The quadruped starts
in a standing position with all feet touching the ground. It
is controlled with 12 motors: one for each knee, one for each
hip forward and back, and one for each hip in and out.

org). The quadruped’s body is 1.17m long, 0.43m wide, and
0.40m high. Each leg is 0.7m long. The quadruped starts
in a standing position with all legs precisely vertical and
knees locked, as shown in figure 5, and attempts to ambulate
across an infinite flat plane. It is important to note that un-
like some quadruped architectures [8, 38], this quadruped’s
legs are vertical and relatively long, which necessitates con-
sistent stability to avoid falling. This quadruped physics
model is also used in Risi and Stanley [26], which focuses
on the problem of training for multiple body morphologies.
Each leg has three degrees of freedom: knee, HipFB (foward
and backward) and HipIO (inward and outward). Each sub-
strate output is scaled to match the angular range of the
corresponding joint and is interpreted as the desired angle.
The difference between the desired angle and current angle
guides a proportional controller that applies torque to re-
duce this difference. This method of control is similar to
those in Reil and Husbands [24] and Lehman and Stanley
[21].

The SUPG architecture described in the previous sec-
tion (shown in figure 4) is compared to architectures that
exploit CTRNNs and sine waves to create oscillation. All
three architectures are evolved by HyperNEAT with the
same parameter settings. The sine wave architecture,
detailed in figure 6, is inspired by Clune et al. [8], which first
demonstrated HyperNEAT effectively applied to quadruped
locomotion. In fact, a later test of this approach on a real
quadruped robot yielded the fastest gait yet demonstrated
by any optimization method for that model [20] (though of
course the robot in this paper has a different morphology).
The period of the sine wave is set to one second, which
matches the period of the SUPGs (though recall that the
actual period realized by the SUPG can vary because of the
trigger). The CTRNN architecture, detailed in figure 7,
is inspired by Téllez et al. [35] and Risi and Stanley [26].
In those works, each leg contains an identical recurrent neu-
ral structure while connections between the modules provide
information needed to coordinate the different legs. The Hy-
perNEAT substrate in the experiment augments the original
architecture by incorporating geometric information. It is
important to note that the sine wave and CTRNN results
are not directly comparable to their inspirations in Clune
et al. [8] and Téllez et al. [35] because the physical simula-
tion and quadruped architectures are not identical to those
works in this experiment. For example, the legs in the model
in this paper are relatively long, increasing the challenge of
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Figure 6: Substrate for the sine wave architecture
(inspired by Clune et al. [8]). The substrate consists of
three planes: input, hidden, and output. The input layer
includes rows of sensors for each of the twelve joints, along
with touch sensors for each of the feet. It also inputs the
pitch, roll, and yaw of the body, and the sine wave that
provides the main fixed period of the gait. The hidden layer
contains twenty hidden nodes and the output layer produces
twelve outputs for the twelve joint motors. The CPPN takes
six (two sets of three) inputs for the x and y position and
layer, and has a single output for connection weight.

maintaining stability, which is a focus of this study. Also,
the CTRNN cannot be directly compared to Risi and Stan-
ley [26] because their architecture receives joint angles as
input while the one in this paper receives only foot touch
(just like the SUPG), which is less informative. However,
these re-implemented approaches do respect the overall de-
signs of the originals and furthermore were both validated
to evolve effective walking gaits that can last the duration
of the training trial.

Previous work has shown that novelty search [21], which
alters the traditional fitness function to search for novelty
rather than optimality, is effective for biped locomotion be-
cause it avoids deception [27]. Therefore, both novelty search
and conventional fitness-driven search are attempted for each
of the three variant approaches. In novelty search, individ-
uals are rewarded not for how well they perform in an ob-
jective sense, but for how much their behavior is different
from that of their peers. For this purpose, the behavior
of an individual in the quadruped domain is defined as a
vector of coordinates corresponding to the center of mass
of the individual at each of the 1, 500 simulated time steps
over each 15-second trial. The similarity of individuals for
the purpose of measuring novelty is then the Cartesian dis-
tance between their behavior vectors. The fitness function
for the more traditional fitness-driven runs is the Cartesian
distance from the starting point to the endpoint at the end
of the 15-second trial.

Each individual is evaluated during training for fifteen sec-
onds of simulation time. The population size is 300 and
each run is given 800 generations. The activation func-
tions for the CPPN are sine, Gaussian, bipolar sigmoid,
and linear, each with an equal probability. The proba-
bility of adding a connection and node to the CPPN is
0.06 and 0.01, respectively. The elitism proportion is set

http://www.ode.org
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Figure 7: Substrate for the CTRNN architecture
(inspired by Téllez et al. [35] and Risi and Stan-
ley [26]). Each leg is controlled by its own recurrent mod-
ule. The bottom node of each module is the touch sensor,
while the top three nodes correspond to its three motor out-
puts. Each module is connected to neighboring modules
with dashed lines. Each node has four points defining its
location in space: an x and y value within its module and
an x and y value for the location of its module within the
overall substrate. The weight between the nodes is deter-
mined by sending in the eight (four for each node) coor-
dinates of the connected nodes into the CPPN. There are
then separate CPPN outputs for inter-module connections,
intra-module connections, node bias, and node time con-
stant. When querying the CPPN for bias and time constant,
target node inputs are set to zero, as explained in Section
2.2.

to 10%, and elitism is carried out using the objective fit-
ness, to ensure the objective fitness never decreases. The
novelty threshold is set to 1, 000 initially. Novelty is cal-
culated as the sum of distances to the 15 nearest neigh-
bors. To test stability, the best individuals from training
are later tested in much longer five minute trials. Source
code for the experiments in this paper can be found at
http://eplex.cs.ucf.edu/uncategorised/software.

5. RESULTS
Figure 8 shows the final training performance for the three

neural architectures (averaged over 20 runs for each), which
is measured as their distance traveled within the 15-second
training window. If success in producing legged locomotion
is defined as four or more meters traveled (recall the body is
just 1.17m long), then all architectures sometimes produce
controllers that succeed in traversing the environment. The
ability of all variants to succeed in this way validates the
viability of all of them. However, the CTRNN architecture
performs significantly better (p < .01; Student’s t-test) than
the sine wave architecture, while the SUPG architecture per-
forms significantly better than either alternative (p < .01 in
both cases). It is important to note that by 800 genera-
tions, all methods converge, that is, further evolution would
not be expected to significantly alter the final results. Fur-

Figure 8: Training performance of the sine wave,
CTRNN, and SUPG-based architectures with both
objective fitness and novelty search. Each result rep-
resents the distance traveled in a 15 second period averaged
over 20 runs. Bars indicate 95% confidence intervals. The
main result is that the SUPG travels significantly farther
with either method of evolution.

thermore, the relative results are the same whether training
with novelty or fitness, though novelty does tend to out-
perform fitness for any given approach. The average CPPN
complexity for SUPG solutions from novelty search is 6.4
hidden nodes (sd = 2.8) and 39.7 connections (sd = 17.0);
for the sine wave it is 10.5 hidden nodes (sd = 8.5) and 64.8
connections (sd = 47.4); for the CTRNN it is 2.0 hidden
nodes (sd = 3.95) and 48.2 connections (sd = 19.7).

Qualitatively, the SUPG architecture produces steadier
and more natural-looking gaits (see videos at http://eplex.
cs.ucf.edu/supg/supgql). The only standard gait pro-
duced by the sine wave and CTRNN architectures is a pace,
a gait in which the left legs move in unison and the right
legs move in unison. In contrast, the SUPG architecture
produces a pace, trot (in which diagonal legs move in uni-
son) and walk (a four-beat gait that is between a pace and a
trot). While the CTRNN and sine wave architectures may
be capable of producing a wider variety of quadrupedal gaits
in some domains, the challenging morphology of the body
in this domain likely restricts the range of gaits produced.

To test for long-term stability, a major challenge for
evolved walkers, figure 9 shows the average performance of
the champions of each architecture on a five minute extended
trial, which is many times longer than the 15-second train-
ing trials. Because novelty proves superior in training, only
walkers evolved with novelty are tested in the extended trial.
While the sine wave architecture travels on average 36% far-
ther in the extended trial than in the 15-second training win-
dow and the CTRNN architecture travels more than twice
as far, the SUPG architecture exhibits a highly significant
difference by traveling on average over eight times as far
in the extended trial than in training. Of the 20 runs per-
formed on each of the other architectures, only a single run
with the CTRNN architecture reached the average testing
performance of the SUPG architecture. Also, while no indi-
viduals evolved from the CTRNN or sine wave architectures
walk for more than three minutes, five of the individuals

http://eplex.cs.ucf.edu/uncategorised/software
http://eplex.cs.ucf.edu/supg/supgql
http://eplex.cs.ucf.edu/supg/supgql


Figure 9: Testing performance of the sine wave,
CTRNN, and SUPG-based architectures on the five
minute trial. Each result represents the distance trav-
eled in a five-minute period averaged over the 20 champions
from each approach. Training performance is also shown for
each method for comparison. Bars indicate 95% confidence
intervals. The SUPG approach averages over five times far-
ther than the CTRNN and ten times farther than the sine,
demonstrating superior long-term stability.

evolved from the SUPG architecture walk for the duration
of the five minute testing period. In fact, one individual
walks for over three hours before falling.

6. DISCUSSION AND FUTURE WORK
The success of the SUPG establishes that CPPNs can

produce temporal patterns suited to the task of controlling
legged robots. Not only does the SUPG approach yield con-
trollers that can produce locomotion, but the resultant gaits
are both natural-looking and robust, that is, they are able to
continue walking well beyond the training window. While all
three architectures could produce walkers that remain stable
during training, only the SUPG produces such performance
well beyond the training window. The relative simplicity
of the SUPG substrate, detailed in figure 4, is also notable
because it is easier to set up. Its robustness is a product
of both the ability of CPPNs to encode complex patterns
and the novel triggering mechanism for resetting the cycle
of each SUPG, which permits imperfections in the timing of
the gait to be corrected while the robot is in motion.

The major contribution of this work is not simply a good
result, but rather a new research direction for evolving ef-
fective locomotion through indirect encoding. The simple
walkers evolved in this paper are only a first step. For ex-
ample, the SUPG architecture could include the ability to
dynamically modulate either the period of the SUPG cycle
or the shape of the temporal pattern produced by the SUPG,
based upon other inputs such as leg angles. In this way, the
pattern produced by the SUPG could be tuned in response
to changes in the environment such as obstacles or inclines.
The substrate that incorporates the SUPGs could also be
significantly more sophisticated. For example, it could in-
clude additional traditional neurons as well as connections
among SUPGs and neurons, e.g. to control turning or gait
modulation. In addition, the transition from one cycle to an-
other in the current architecture may be abrupt because the

SUPG output at the end of the cycle may differ from that
at the start. Future research could identify steps to smooth
this transition and thereby offer improved stability. Finally,
other legged morphologies, such as bipeds or hexapods, may
also benefit from SUPGs. In this way, SUPGs open a rich
set of future possibilities.

7. CONCLUSION
This paper presented a novel approach called a single-

unit pattern generator (SUPG) for harnessing the pattern
producing capabilities of CPPNs to encode temporal pat-
terns that can be applied to the domain of legged robot
locomotion. Results in a quadruped domain comparing the
SUPG to more traditional oscillatory gait generating tech-
niques show that not only does this approach produce con-
trollers that solve the locomotion task, but that it is also
sufficiently robust to continue performing well beyond the
short window of training. This novel approach provides a
new avenue for confronting the enduring challenge of evolv-
ing fluid and effective walking robots.
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