A Novel Generative Encoding for Exploiting
Neural Network Sensor and Output Geometry

In Proceedings of the Genetic and Fvolutionary Computation Conference (GECCO-2007). New York, NY: ACM
Nominated for Best Paper Award in Generative and Developmental Systems.

David B. D’Ambrosio
Evolutionary Complexity Research Group
School of EECS
University of Central Florida
Orlando, FL 32836
ddambro@cs.ucf.edu

ABSTRACT

A significant problem for evolving artificial neural networks
is that the physical arrangement of sensors and effectors is
invisible to the evolutionary algorithm. For example, in this
paper, directional sensors and effectors are placed around
the circumference of a robot in analogous arrangements.
This configuration ensures that there is a useful geomet-
ric correspondence between sensors and effectors. However,
if sensors are mapped to a single input layer and the effec-
tors to a single output layer (as is typical), evolution has no
means to exploit this fortuitous arrangement. To address
this problem, this paper presents a novel generative encod-
ing called connective Compositional Pattern Producing Net-
works (connective CPPNs) that can effectively detect and
capitalize on geometric relationships among sensors and ef-
fectors. The key insight is that sensors and effectors with
consistent geometric relationships can be exploited by a re-
peating motif in the neural architecture. Thus, by employ-
ing an encoding that can discover such motifs as a function
of network geometry, it becomes possible to exploit it. In
this paper, a method for evolving connective CPPNs called
Hypercube-based Neuroevolution of Augmenting Topologies
(HyperNEAT) discovers sensible repeating motifs that take
advantage of two different placement schemes, demonstrat-
ing the utility of such an approach.

Categories and Subject Descriptors: 1.2.6 [Artificial
Intelligence]: Learning-Connectionism and neural nets, con-
cept learning

General Terms: Experimentation, Algorithms

Keywords: Compositional Pattern Producing Networks,
NEAT, HyperNEAT, large-scale artificial neural networks

1. INTRODUCTION

The geometry of physical space can provide a potentially
useful constraint on the evolution of artificial neural net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

Kenneth O. Stanley
Evolutionary Complexity Research Group
School of EECS
University of Central Florida
Orlando, FL 32836
kstanley@cs.ucf.edu

works (ANNSs). In particular, physical space by virtue of its
Cartesian organization produces inherent regularities within
physical tasks. For example, many tasks on land are inher-
ently symmetric. Thus, genetic encoding can exploit such
symmetry advantageously by simply repeating the same con-
nectivity motifs throughout the brain [13].

In biological organisms, the placement and configuration
of sensors and effectors bridges between the geometry of the
physical world and the geometry of the brain. By preserv-
ing the most salient physical relationships of the outside
world, such as symmetry (e.g. left and right eyes and ears)
and locality (e.g. the retinotopic map of visual experience),
sensory configuration allows neural organization to largely
mirror the same relationships. For example, the visual cor-
tex preserves the retinotopic layout of the eye [4]. In this
way, nearby events in physical space are easily represented
by similarly proximal neurons.

Interestingly, existing approaches to evolving ANNs gen-
erally employ a single layer of inputs and single layer of out-
puts with no explicit or implicit geometry in the representa-
tion [18, 22]. Therefore, evolution cannot exploit the geom-
etry of such neurons even if it theoretically could provide a
powerful bias. In fact, exploiting sensor geometry requires
a generative encoding because it is necessary to correlate
repeated connectivity motifs to regularities in the physical
placement of sensors and effectors. This paper introduces
such an encoding, called connective Compositional Pattern
Producing Networks (connective CPPNs) and a method to
evolve them called Hypercube-based Neuroevolution of Aug-
menting Topologies (HyperNEAT). Connective CPPNs ab-
stract the properties of developmental encoding at a high
level and apply this abstraction to encoding connectivity
patterns. In this way, HyperNEAT is able to find solutions
that truly exploit task geometry.

This capability is demonstrated through a food gathering
experiment designed to show how different layouts of sen-
sors and effectors lead to contrasting solutions with varying
efficiency and ability to scale. The main conclusion is that
with HyperNEAT an experimenter can now significantly en-
hance evolution’s chance of solving a task by simply arrang-
ing sensors in a way that reflects the task geometry. Thus
the geometry of inputs and outputs now becomes a crucial
constraint for the learning algorithm.

2. BACKGROUND

This section provides an overview of CPPNs and NEAT,
which are foundational to the novel approach introduced in
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Figure 1: CPPN Encoding. (a) The function f takes
arguments x and y, which are coordinates in a two-
dimensional space. When all the coordinates are drawn
with an intensity corresponding to the output of f, the
result is a spatial pattern, which can be viewed as a phe-
notype whose genotype is f. (b) The CPPN is a graph
that determines which functions are connected. The con-
nections are weighted such that the output of a function
is multiplied by the weight of its outgoing connection.

this paper, in which NEAT evolves CPPNs that are inter-
preted as ANN connectivities.

2.1 Compositional Pattern Producing Networks

In biological genetic encoding the mapping between geno-
type and phenotype is indirect. The phenotype typically
contains orders of magnitude more structural components
than the genotype contains genes. Thus, the only way to
discover such high complexity may be through a mapping
between genotype and phenotype that translates few dimen-
sions into many, i.e. through an indirect encoding. A promis-
ing research area in indirect encoding is generative and de-
velopmental encoding, which is motivated from biology [1,
2, 8]. In biological development, DNA maps to the pheno-
type through a process of growth that builds the phenotype
over time. Development facilitates the reuse of genes be-
cause the same gene can be activated at any location and
any time during the development process.

This observation has inspired significant research in gen-
erative and developmental systems [2, 3, 5, 8, 9, 11, 12, 19,
21]. The aim is to find the right abstraction of natural devel-
opment for a computer running an evolutionary algorithm,
so that EC can begin to discover complexity on a natural
scale [19].

Compositional Pattern Producing Networks (CPPNs) are
a novel abstraction of development that can represent so-
phisticated repeating patterns in Cartesian space [15, 16].
Unlike most generative and developmental encodings, CPPNs
do not require an explicit simulation of growth or local in-
teraction, yet still exhibit their essential features. The re-
mainder of this section briefly reviews the theory behind
CPPNs, which will be augmented in this paper to represent
connectivity patterns and ANNs.

Consider the phenotype as a function of n dimensions,
where n is the number of dimensions in physical space. For
each coordinate in that space, its level of expression is an
output of the function that encodes the phenotype. Figure
la shows how a two-dimensional phenotype can be generated
by a function of two parameters.

Stanley [15] showed how simple canonical functions can
be composed to create networks that produce complex reg-
ularities and symmetries. Each component function creates
a novel geometric coordinate frame within which other func-
tions can reside. The main idea is that these simple canon-
ical functions are abstractions of specific events in develop-

(b) Imperf. Sym. (c) Rep. with var.

(a) Symmetry

Figure 2: CPPN-generated Regularities. Spatial pat-
terns exhibiting (a) bilateral symmetry, (b) imperfect
symmetry, and (c) repetition with variation are depicted.
These patterns demonstrate that CPPNs effectively en-
code fundamental regularities of several different types.

ment such as establishing bilateral symmetry (e.g. with a
symmetric function such as Gaussian) or the division of the
body into discrete segments (e.g. with a periodic function
such as sine). Figure 1b shows how such a composition is
represented as a network.

Such networks are called Compositional Pattern Produc-
ing Networks because they produce spatial patterns by com-
posing basic functions. While CPPNs are similar to ANNs;
they differ in their set of activation functions and how they
are applied. Furthermore, they are an abstraction of devel-
opment rather than of biological brains.

Through interactive evolution, Stanley [15] showed that
CPPNs can produce spatial patterns with important geo-
metric motifs that are expected from generative and devel-
opmental encodings and seen in nature. Among the most
important such motifs are symmetry (e.g. left-right symme-
tries in vertebrates), imperfect symmetry (e.g. right-handed-
ness), repetition (e.g. receptive fields in the cortex [23]), and
repetition with variation (e.g. cortical columns [6]). Figure
2 shows examples of several such important motifs produced
through interactive evolution of CPPNs.

These patterns are generated by applying the right ac-
tivation functions (e.g. symmetric functions for symmetry;
periodic functions for repetition) in the right order in the
network. The order of activations is an abstraction of the
unfolding process of development.

2.2 CPPN-NEAT

Because NEAT was originally designed to evolve increas-
ingly complex ANNs, it is naturally suited to doing the
same with CPPNs, which are also represented as graphs.
The NEAT method begins evolution with a population of
small, simple networks and complezifies them over genera-
tions, leading to increasingly sophisticated solutions. While
the NEAT method was originally developed to solve difficult
control and sequential decision tasks, [17, 18, 20], in this pa-
per it is used to evolve CPPNs. This section briefly reviews
the NEAT method. See also Stanley and Miikkulainen [18,
20] for detailed descriptions of original NEAT.

NEAT is based on three key ideas. First, in order to
allow network structures to increase in complexity over gen-
erations, a method is needed to keep track of which gene is
which. Otherwise, it is not clear in later generations which
individual is compatible with which, or how their genes
should be combined to produce offspring. NEAT solves this
problem by assigning a unique historical marking to every
new piece of network structure that appears through a struc-
tural mutation. The historical marking is a number assigned
to each gene corresponding to its order of appearance over
the course of evolution. The numbers are inherited during



crossover unchanged, and allow NEAT to perform crossover
without the need for expensive topological analysis. That
way, genomes of different organizations and sizes stay com-
patible throughout evolution.

Second, NEAT speciates the population, so that individu-
als compete primarily within their own niches instead of with
the population at large. This way, topological innovations
are protected and have time to optimize their structure be-
fore competing with other niches in the population. NEAT
uses the historical markings on genes to determine to which
species different individuals belong.

Third, NEAT begins with a uniform population of simple
networks with no hidden nodes, differing only in their ini-
tial random weights. Speciation protects new innovations,
allowing diverse topologies to gradually complexify over evo-
lution. Thus, NEAT can start minimally, and grow the nec-
essary structure over generations. A similar process of grad-
ually adding new genes has been confirmed in natural evolu-
tion [10]. Through complexification, high-level features can
be established early in evolution and then elaborated and
refined as new genes are added.

For these reasons, in this paper the NEAT method is used
to evolve increasingly complex CPPNs. CPPN-generated
patterns evolved with NEAT exhibit several essential mo-
tifs and properties of natural phenotypes [14, 16]. If such
properties could be transferred to evolved connectivity pat-
terns, the representational power of CPPNs could poten-
tially evolve large-scale ANNs and other graph structures,
as explained in the next section.

3. HyperNEAT

The spatial patterns in Section 2.1 present a challenge:
How can such spatial patterns describe connectivity? This
section explains how CPPN output is effectively interpreted
as a connectivity pattern rather than a spatial pattern. Fur-
thermore, this novel interpretation allows neurons, sensors,
and effectors to exploit meaningful geometric relationships.
The next section introduces the key insight, which is to as-
sign connectivity a geometric interpretation.

3.1 Geometric Connectivity Patterns

The main idea is to input into the CPPN the coordinates
of the two points that define a connection rather than in-
putting only the position of a single point as in Section 2.1.
The output is then interpreted as the weight of the connec-
tion rather than the intensity of a point. This way, connec-
tions are defined in terms of the locations that they connect,
thereby taking into account the network’s geometry.

For example, consider a 5 x 5 grid of nodes. The nodes are
assigned coordinates corresponding to their positions within
the grid (labeled substrate in figure 3), where (0,0) is the
center of the grid. Assuming that these nodes and their po-
sitions are given a priori, a geometric connectivity pattern is
produced by a CPPN that takes any two coordinates (source
and target) as input, and outputs the weight of their connec-
tion. The CPPN is queried in this way for every potential
connection on the grid. Because the connection weights are
thereby a function of the positions of their source and target
nodes, the distribution of weights on connections through-
out the grid will exhibit a pattern that is a function of the
geometry of the coordinate system.

Such a CPPN in effect computes a four-dimensional func-
tion CPPN(z1,y1,T2,y2) = w, where the first node is at
(z1,y1) and the second node is at (x2,y2). This formalism
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Figure 3: Hypercube-based Geometric Connectivity
Pattern Interpretation. A grid of nodes, called the sub-
strate, is assigned coordinates such that the center node
is at the origin. 1. Every potential connection in the sub-
strate is queried to determine its presence and weight;
the dark directed lines in the substrate in the figure rep-
resent a sample of connections that are queried. 2. For
each query, the CPPN takes as input the positions of the
two endpoints and (3) outputs the weight of the connec-
tion between them. Thus, connective CPPNs can produce
regular patterns of connections in space.

returns a weight for every connection between every node
in the grid, including recurrent connections. By conven-
tion, a connection is not expressed if the magnitude of its
weight, which may be positive or negative, is below a min-
imal threshold wmin. Magnitudes above this threshold are
scaled to be between zero and a maximum magnitude in the
substrate. That way, the pattern produced by the CPPN
can represent any network topology (figure 3).

The connectivity pattern produced by a CPPN in this way
is called the substrate so that it can be verbally distinguished
from the CPPN itself, which has its own internal topology.
Furthermore, in the remainder of this paper, CPPNs that
are interpreted to produce connectivity patterns are called
connective CPPNs while CPPNs that generate spatial pat-
terns are called spatial CPPNs. This paper focuses on neural
substrates produced by connective CPPNs.

Because the CPPN is a function of four dimensions, the
two-dimensional connectivity pattern expressed by the CPPN
is isomorphic to a spatial pattern embedded in a four-di-
mensional hypercube. Thus, because CPPNs generate reg-
ular spatial patterns (Section 2.1), by extension they can be
expected to produce geometric connectivity patterns with
corresponding regularities. The next section demonstrates
this capability.

3.2 Producing Regular Connectivity Patterns

Simple, easily-discovered substructures in the connective
CPPN produce connective motifs in the substrate. The key
difference between connectivity patterns and spatial pat-
terns is that each discrete unit in a connectivity pattern has
two x values and two y values. Thus, for example, symmetry
along x can be discovered simply by applying a symmetric
function (e.g. Gaussian) to either z; or z2 (figure 4a).

The human brain is roughly symmetric at a gross resolu-
tion, but its symmetry is imperfect. Thus, imperfect sym-
metry is an important structural motif in ANNs. Connec-
tive CPPNs can produce imperfect symmetry by composing
symmetric functions of one axis along with asymmetric coor-
dinate frames such as the axis itself. In this way, the CPPN
produces varying degrees of imperfect symmetry (figure 4b).

Another important motif in biological brains is repeti-
tion, particularly repetition with variation. Just as sym-
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Figure 4: Connectivity Patterns Produced by Connec-
tive CPPNs. These patterns, produced through inter-
active evolution, exhibit important connectivity motifs:
(a) bilateral symmetry, (b) imperfect symmetry, (c) rep-
etition, and (d) repetition with variation. That these
fundamental motifs are compactly represented and eas-
ily produced suggests the power of this type of encoding.
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Figure 5: Alternative Substrate Configurations. There
exist many potential substrate configurations. This fig-
ure shows (a) a grid and (b) a concentric configuration.
Different configurations are likely suited to problems
with different geometric properties. The generality of
connective CPPNs is supported by their ability to gener-
ate connectivity patterns across any such configuration.

metric functions produce symmetry, periodic functions such
as sine produce repetition (figure 4c). Patterns with vari-
ation are then produced by composing a periodic function
with a coordinate frame that does not repeat, such as the
axis itself (figure 4d). Repetitive patterns can also be pro-
duced in connectivity as functions of invariant properties
between the two nodes, such as connection length. Thus,
symmetry, imperfect symmetry, repetition, and repetition
with variation, key structural motifs in biological brains,
are compactly represented and therefore easily discovered
by connective CPPNs.

3.3 Substrate Configuration

CPPNs produce connectivity patterns among nodes on
the substrate by querying the CPPN for each pair of points
in the substrate to determine the weight of the connection
between them. The layout of these nodes can take forms
other than the planar grid (figure 5a) discussed thus far.
Different such substrate configurations are likely suited to
different kinds of problems.

For example, the nodes need not be distributed in a grid.
The nodes within a substrate that controls a radial entity
such as a starfish might be best laid out with radial geometry
(figure 5b) so that the connectivity pattern can be situated
with perfect polar coordinates.

3.4 Input and Output Placement

Part of substrate configuration is determining which nodes
are inputs, which are outputs, and which are hidden. The
flexibility to assign inputs and outputs to specific coordi-
nates in the substrate creates a powerful opportunity to ex-
ploit geometric relationships advantageously.

In many ANN applications, the inputs are drawn from a
set of sensors that exist in a geometric arrangement in space.
Because connective CPPN substrates are aware of their in-
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Figure 6: Placing Inputs and Outputs. Unlike tradi-
tion ANN representations, neurons on the substrate ex-
ist at defined locations in space that are accessible to the
learning algorithm. The figure depicts a robot (a) with
eight radar sensors along its circumference and eight mo-
tion effectors set at the same angle. In (b), the inputs
(labeled I) and outputs (labeled O) are placed such at
their location along = determines whether they represent
a corresponding direction. In (c), the inputs and outputs
are laid out literally according to the eight directions in
space. Both arrangements create a geometric relation-
ship between each input and its corresponding output.
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Figure 7: Equivalent Connectivity Concept at Differ-
ent Substrate Resolutions. A connectivity concepts is
depicted that was evolved through interactive evolution.
The CPPN that generates the concept at (a) 5 x 5 and
(b) 7 x 7 is shown in (c). This illustration shows that
CPPNs represent a mathematical concept rather than a
single structure. Thus, the same connective CPPN can
produce patterns with the same underlying concept at
different substrate resolutions (i.e. node densities).

puts’ and outputs’ geometry, they can use this information
to their advantage.

There is room to be creative and try different configu-
rations with different geometric advantages. For example,
figure 6 depicts two methods in which the inputs and out-
puts of a circular robot can be configured, both of which
create an opportunity to exploit a different kind of geomet-
ric relationship.

3.5 Substrate Resolution

As opposed to encoding a specific pattern of connections
among a specific set of nodes, connective CPPNs in effect
encode a general connectivity concept, i.e. the underlying
mathematical relationships that produce a particular pat-
tern. The consequence is that same connective CPPN can
represent an equivalent concept at different resolutions (i.e.
node densities). Figure 7 shows a connectivity concept at
different resolutions.

For neural substrates, a significant implication is that the
same ANN can be generated at different resolutions. With-
out further evolution, previously-evolved connective CPPNs
can be re-queried to specify the connectivity of the substrate
at a new, higher resolution, thereby producing a working
solution to the same problem at a higher resolution! This



operation, i.e. increasing substrate resolution, introduces a
powerful new kind of complexification to ANN evolution. It
is an interesting question whether, at a high level of abstrac-
tion, the evolution of brains in biology in effect included
several such increases in density on the same connectivity
concept. Not only can such an increase improve the imme-
diate resolution of sensation and action, but it can provide
additional substrate for increasingly intricate local relation-
ships to be discovered through further evolution.

3.6 Computational Complexity

Querying every potential connection in the substrate is
realistic for modern computers. For example, a CPPN gen-
erating a substrate with 250,000 potential connections is
queried 250,000 times, which can be computed e.g. in 4.64
seconds on a 3.19 Ghz Pentium 4. Note that this substrate
is an enormous ANN with up to a quarter-million connec-
tions. Connective CPPNs present an opportunity to evolve
structures of a complexity and functional sophistication gen-
uinely commensurate with available processing power.

3.7 Evolving Connective CPPNs

The approach in this paper is to evolve connective CPPNs
with NEAT. This approach is called HyperNEAT because
NEAT evolves CPPNs that represent spatial patterns in hy-
perspace. Each point in the pattern, within a hypercube, is
interpreted as a connection in a lower-dimensional connected
graph. NEAT is the natural choice for evolving CPPNs
because it evolves increasingly complex network topologies.
Therefore, as CPPNs complexify, so do the regularities and
elaborations (i.e. the global dimensions of wvariation) that
they represent in their corresponding connectivity pattern.
Thus, HyperNEAT is a powerful new approach to evolv-
ing large-scale connectivity patterns and ANNs. The next
section describes initial experiments that demonstrate how
HyperNEAT can exploit input and output geometry.

4. FOOD GATHERING EXPERIMENT

If sensors and outputs are placed such that they respect
regularities in the outside world, HyperNEAT can discover
those regularities through connective CPPNs and exploit
them to solve the problem. For example, HyperNEAT can
discover that the way one reacts to stimulus on the left
is related to the way one react to similar stimulus on the
right. In this way, HyperNEAT can solve problems with
high-dimensional input because it does not need to learn
the meaning of each sensor independently.

The experiments in this paper demonstrate this capabil-
ity and its implications through a food gathering task. This
task was chosen for its simplicity as a proof-of-concept; it
effectively isolates the issue of sensor and output placement,
which is the primary topic of this paper. Furthermore, al-
though the task is simple, at high resolutions (i.e. with large
numbers of sensors and effectors) it becomes a difficult op-
timization problem because of its increasing dimensionality.
In the experiments, two different sensor placement arrange-
ments are compared that both present a chance to exploit
regularity in different ways.

The food gathering domain works as follows. A single
piece of food is placed within a square room with a robot at
the center (figure 6a). A set of n rangefinder sensors, placed
at regular angular intervals, encircle the robot’s perimeter.
The robot has a compass that allows it to maintain the same

orientation at all times, that is, its north-facing side always
faces north and never rotates. Internally, the robot also
contains a set of n effectors. Each effector, when activated,
causes the robot to move in one of n directions. Thus, there
is one effector for each sensor that points in the same direc-
tion. The robot’s objective is to go to the food.

The interpretation of effector outputs constrains the prob-
lem and the potential solutions. For the experiments in this
paper, the motion vector resulting from effector output is
interpreted to incentivize HyperNEAT to find holistic solu-
tions, i.e. solutions that do not only require a single connec-
tion. The robot moves in the direction corresponding to the
largest effector output. In the case of a tie, the robot moves
in the direction of the first tied output in sampling order.
The robot’s speed s is determined by

o
s = (Smaromaaz)( Omaw )7 (1)
tot

where Smaqg is the maximum possible speed, 0mqs is the
maximum output, and o is the sum of all outputs. The
first term correlates speed with output, such that to go the
maximum speed, the robot must maximize the output cor-
responding to the direction of the food. The second term
encourages the robot to excite a single output by penalizing
it for activating more than one at a time. Furthermore, out-
puts have sigmoidal activation, which means that if their
input is zero, they will output 0.5. Thus, the robot also
needs to inhibit effectors that point in the wrong direction
because they will otherwise slow down motion in the cho-
sen direction. Thus, while diverse solutions still work in
this domain, many are not optimal in terms of speed. The
best solutions require a correct pattern connecting to all the
outputs from all the sensors.

Each robot attempts r trials, where r is twice the reso-
lution; thus higher resolutions are evaluated on more trials.
For each trial a single piece of food is placed 100 units away
from the robot at either the center of a sensor or the bor-
der between two sensors. Each trial tests a different such
location. If a robot is not able to get food for a particular
trial after 1,000 ticks, its trial ends. Individuals are evalu-
ated based on their amount of food collected and the average
speed at which they obtain each item:

fitness = (107000%) + (1,000 — ttot), (2)

where f. is the total number of food collected and t;.: is the
total time spent on all trials.

This task is a good proof of concept because it requires
discovering the underlying regularity of the domain: Two
nodes at the same angle (i.e. the sensor and effector) should
be connected and the others inhibited. If this concept is
discovered, the task is effectively trivial. However, direct
encodings would need to discover the connection between
each pair independently. That is, they cannot discover the
underlying concept that describes the solution. In contrast,
HyperNEAT can discover the general concept. Demonstrat-
ing this fact helps to establish the promise of HyperNEAT
in more complex domains.

4.1 Sensor Placement

HyperNEAT makes it possible to decide how the sensors
and effectors should be placed in the substrate to allow the
concept to be discovered. In general, the geometry of the
placement scheme should reflect the correlation between sen-
sors and effectors. Two different configurations are tested:



(1)Two parallel lines of nodes (figure 6b). The top
row of sensors are placed in clockwise order starting from
the sensor closest to 45° above west. In the bottom row,
effectors are placed in the same order. In this way, the key
regularity is geometrically expressed as two nodes being in
the same column.

(2)Two concentric circles of nodes (figure 6¢). The
inner circle (radius .5) is the sensors and the outer circle
(radius 1) is the effectors. The nodes are placed at the same
angle as they exist in the robot. In this layout, the key
regularity is captured by shared angle. It is also interesting
because the sensors and effectors are placed exactly in the
shape of the robot, an intuitive scheme that would not be
meaningful to traditional methods.

4.2 Additional Geometric Bias

Connective CPPNs already provide a strong geometric
bias, but they also make possible injecting additional a pri-
ori knowledge about the problem into the search. In biology,
distance is a significant bias simply because in the physical
world it is easier to connect to something closer than farther
away. Thus, if a CPPN is given connection length as an in-
put, related concepts placed close together on the substrate
can be treated specially by the CPPN.

In both placement schemes, sensors should excite their
nearest neighbor effector and inhibit those farther away.
While CPPNs have the capability to discover the concept of
distance themselves, they may solve tasks more efficiently if
it is given. To explore this capability, a separate experiment
is performed on both substrate configurations in which the
CPPN receives an extra input representing the Euclidean
distance between the two points being queried.

4.3 Scaling

An important question is whether HyperNEAT will dis-
cover the key regularity and whether one configuration has
an advantage over another. Furthermore, if HyperNEAT
does discover the underlying concept, then solutions should
scale to more sensors and effectors without further evolution
simply by increasing the resolution of the substrate.

Therefore, the number of inputs and outputs of each gen-
eration champion from all runs of both configurations is
doubled several times starting from the evolved 8 x 8 res-
olution. Each double-resolution substrate samples twice as
many points as its predecessor by decreasing the angular
sampling interval around the robot by half. Doubling for
each champion proceeds from the initial 8 x 8 resolution to
a maximum size of 128 x 128, a 16-fold increase in resolution.

4.4 Experimental Parameters

Because HyperNEAT differs from original NEAT only in
its set of activation functions, it uses the same parameters
[18]. Experiments were run using a modified version of the
public domain SharpNEAT package [7]. The size of each
population was 150 with 20% elitism. Reproduction had an
equal chance of being sexual or asexual. Asexual offspring
had .96 probability of link weight mutation, .03 chance of
link addition, and .01 chance of node addition. The coef-
ficients for species similarity were 1.0 for nodes and con-
nections, and 0.1 for weights. CPPN connection weights
ranged between -3.0 and 3.0. Sigmoid, Gaussian, absolute
value, and sine nodes were created with equal probability.
Parameter settings are based on standard SharpNEAT de-

faults and prior reported settings for NEAT [18, 20, 17].
They were found to be robust to moderate variation through
preliminary experimentation.

5. RESULTS

All sensor configurations were able to collect food at all
positions within the first few generations except unbiased
concentric, which took on average 33 generations to learn
how to get food at every position. Thus, for most configura-
tions, the main challenge was to learn to get food efficiently.
The performance measure in this section is thus the average
time (i.e. number of ticks) it takes the robot to get a piece
of food over all its trials. Robots that cannot get the food
in a trial are given the maximum time 1,000 for that trial.
Results are averaged over 20 runs.

Figure 8a shows how performance improved over 500 gen-
erations for both placement schemes, with and without the
length-input geometric bias. Parallel placement on average
evolved significantly faster strategies (p < .05) than concen-
tric. This disparity is explained by a more complex rela-
tionship, in Cartesian coordinates, between corresponding
nodes in the concentric case. However, the geometric bias
significantly increased performance of both methods after
the fourth generation (p < .01). Furthermore, the geomet-
ric bias is so useful that it erases the difference between
the two schemes, causing both to perform similarly when
present. Thus, parallel placement is easier to exploit for
HyperNEAT except when the CPPN is provided connection
length as input.

5.1 Scaling Performance

As described in Section 4.3, after evolution at resolution
eight is completed, generation champions are reevaluated by
doubling their resolution repeatedly without further evolu-
tion. Individuals generally did retain the ability to collect
food although there is some degradation in performance at
each increment in resolution. To illustrate this degradation
for different configurations, figure 8b shows the average dif-
ference in efficiency between resolution eight and resolution
32; lower numbers imply better ability to scale.

Parallel placement scaled significantly more effectively than
concentric except in the earliest generations (p < .01). How-
ever, as with efficiency, when concentric placement’s CPPN
was provided length as input, it scaled as well as parallel
placement did with length input. In both biased cases, scal-
ing significantly improved over runs using concentric place-
ment without the geometric bias (p < .01), but not signifi-
cantly over unbiased parallel placement.

As figure 8b shows, unbiased concentric placement de-
graded significantly between resolution eight and 32; in fact
individuals could no longer collect food in every position.
However, it turns out that information about the task was
still retained implicitly at the higher resolution: When al-
lowed to continue evolving at the higher resolution, solutions
that collect all the food were always found within five gen-
erations (2.5 on average). On the other hand, when concen-
tric evolution is started from scratch at a lower resolution, it
takes on average 33 generations to learn to get food on every
trial. Thus, even when performance degrades significantly
after scaling, the resultant individual still retains important
geometric information that can be quickly tweaked to work
at the higher resolution.

Figure 8c shows the average absolute performance at dif-
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(d) Biased Scaling

The performance of both sensor layouts at resolution eight with and without

biasing is shown in (a). The difference in speeds when different methods are scaled from 8 to 32 is shown in (b).
Graphs (c) and (d) show the speeds of the two sensor placement schemes at all resolutions with and without biasing,
respectively. The conclusion is that HyperNEAT learns to exploit the placement geometry.

ferent resolutions for CPPNs without the geometric bias,
and 8d shows the same comparison for those with the bias.
Parallel placement consistently outperformed concentric on
the same resolution (figure 8c). However, again, when pro-
vided the length input (figure 8d), the performance of the
two placement schemes no longer significantly differed. Al-
though each increment in resolution leads to a graceful degra-
dation in performance, scaled individuals at all resolutions
and in all configurations significantly outperformed a set of
random individuals, showing further that scaling indeed re-
tains abilities present in the lower-resolution network (p <
0.01 vs. random) Furthermore, remarkably, although aver-
age time degrades, most scaled networks could still collect
all the food if their unscaled predecessor could.

In a more dramatic demonstration of scaling, one high fit-
ness individual of each sensor placement scheme was scaled
to a resolution of 1024. The resulting ANNs each had over
one million connections and could still gather all the food.

5.2 Typical Solutions

In the optimal solution for both placement schemes, the
sensor excites its corresponding effector while inhibiting all
other connections (figure 9). There are also a surprising
diversity of alternative solutions that are not optimal but
can still collect all the food. Within a run, early solutions
generally employ excitatory connections to several adjacent
effectors or inhibitory connection to farther ones, while later
solutions gradually pruned excess excitatory connections.
Especially with concentric placement, suboptimal solutions

(a) Concentric

(b) Parallel

Figure 9: Repeated patterns in solutions. The figure
depicts repeated motifs found by HyperNEAT at 8 x 8
resolution (top rows, two examples) and 16 x 16 resolu-
tion (bottom rows, same CPPNs). (a) Concentric and
(b) parallel solutions are both shown. These patterns are
encoded compactly by CPPNs with (a) 2 hidden nodes
and 11 connections and (b) 2 hidden nodes and 9 connec-
tions. Thus an appropriate motif is discovered for both
configurations for different resolutions.

sometimes included a few “good” sensor-effector connections
that could quickly gather food, while using their other effec-
tors only to drive the robot until the food was within range
of a good sensor.

No matter the form of the solution, symmetry and rep-
etition were ubiquitous. Figure 9 shows actual outgoing
connections from sensors in evolved optimal solutions for
each placement scheme. The same motif is duplicated at
each sensor and continues to appear as the resolution is



scaled. Although concentric layouts typically had more dif-
ficulty discovering fine-grained repetition, they frequently
created bilaterally-symmetric solutions that exploit the in-
herent symmetry of moving in two dimensions.

6. DISCUSSION AND FUTURE WORK

The main result is that different placement schemes cre-
ate geometric relationships that are exploitable in different
ways, some more easily than others. Connective CPPNs ex-
ploit regularities in parallel placement more efficiently than
in concentric. The reason is that angular differences nec-
essary to exploit concentric regularity take more structure
to compute. Thus the activation functions in the CPPN are
like a language that describes geometric structure. With the
right words, it is easier to describe a particular relationship.

However, the results also show that the coordinate frames
provided as input to the connective CPPN can significantly
simplify the structure necessary to describe key motifs. When
the geometric bias connection length is provided, both place-
ment schemes produce equivalent results.

Furthermore, solutions are able to scale to higher reso-
lutions while still retaining the general connectivity con-
cept. This ability shows that even with their differences,
both placement schemes can leverage the regularities in the
physical task to encode a solution. The solutions thus can-
not be simple explicit descriptions of which node connects to
which, and thus must be generative. Slight degradation be-
tween successive resolutions occurs because the newly sam-
pled points may contain elements of the pattern that were
not evaluated by the fitness function. Nevertheless, that
such solutions can recover the same performance as their
lower-resolution predecessor after no more than five genera-
tions shows that the general concept is still present and only
needs slight refinement to recover completely.

That different placement schemes and coordinate frames
do produce different results creates a new category of re-
search in ANN evolution. HyperNEAT allows the exper-
imenter to inject knowledge into the search through such
configurations, e.g. by grouping correlated objects or arrang-
ing sensors analogously to their real world geometry.

It is now possible to exploit the geometry of many domains
and tasks for the first time. Thus, by applying HyperNEAT
to tasks in control, vision, and decision-making, new kinds
of solutions may be discovered that genuinely exploit reg-
ularities in such tasks. Finally, in the future, HyperNEAT
will also choose the connectivity of hidden nodes.

7. CONCLUSIONS

A novel encoding called connective CPPNs was introduced
that generates a connectivity pattern as a function of sub-
strate geometry. This capability allows the evolutionary
algorithm HyperNEAT to discover ANNs that exploit ge-
ometric regularities among sensors and effectors by discov-
ering their underlying connectivity concept. Results from
two different sensor placement schemes in a food gathering
domain showed that some placement schemes are easier to
exploit than others, although HyperNEAT ultimately could
discover perfect regular solutions for both. Because they
are encoded as concepts, these solutions could scale to up
to over one million connections and still retain the ability to
collect all the food. The long term implication of this work
is that sensor and effector spatial geometry is now a crucial
and useful factor in the evolution of ANNs.
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