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ABSTRACT

Genetic programming (GP) has proven to be a powerful tool
for (semi)automated problem solving in various domains.
However, while the algorithmic aspects of GP have been a
primary object of study, there is a need to enhance the un-
derstanding of the problems where GP is applied. One par-
ticular goal is to categorize problems in a meaningful way,
in order to select the best tools that can possibly be used to
solve them. This paper studies modal problems, a conceptual
class of problems recently proposed by Spector at GECCO
2012. Modal problems are those for which a solution pro-
gram requires different modes of operation for different con-
texts. The thesis of this paper is that modality, in this sense,
is better understood by analyzing program performance in
behavioral space. The behavior-based perspective is seen as
part of a scale of different forms of analyzing performance;
with a coarse view given by a global fitness value and a
highly detailed view provided by the semantics approach.
On the other hand, behavioral analysis is seen as a flexible
approach where the context of a program’s performance is
considered at in a domain-specific manner. The experimental
evidence presented here suggests that behavior-based search
could allow a GP to find programs with disjoint behavioral
structures, that can satisfy the requirements of each mode of
operation of a modal problem.
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1. INTRODUCTION
Evolutionary computation research has generated a di-

verse set of algorithmic tools for search and optimization that
are robust and applicable to many domains. Nonetheless, it
is also clear that each algorithm is well suited for some prob-
lems and fails in others. Therefore, there is a need to ana-
lyze, understand and categorize problems in a meaningful
way [11], to define problem classes and identify what type of
algorithms perform well on each problem class.

Spector [26] describes a new conceptual class of problems
for genetic programming (GP). To understand it, we must as-
sess the state of current GP research. While the original goal
of GP, the automatic synthesis of computer programs, still re-
mains as a guiding principle, current systems have hit a more
realistic plateau. GP has proven to be a tool for the automatic
generation of small computer functions or mathematical ex-
pressions that perform very specific tasks.

There are many reasons why synthesizing complete soft-
ware solution still lies beyond current algorithms. In partic-
ular, Spector proposes the concept of modality to describe
problems where a software system must produce qualita-
tively different actions for different types of inputs. He refers
to such input-action pairs as a program’s mode of operation;
i.e., to solve a modal problem a program must exhibit dif-
ferent modes of operation for each context or circumstance.
Spector points out that, in general, GP systems “are generally
limited to problems for which solution programs can per-
form similar actions for all possible inputs” [26]. Here, we
refer to these type of problems as modal problems and the gen-
eral concept as problem modality; stressing the difference of
the nomenclature with other uses of the term. For instance,
the term modal is used to describe multimodal landscapes [30],
or multimodal information processing systems [25].

Nevertheless, the concept of modality is somewhat am-
biguous. For instance, it might not be clear how modality
can be used to further problem understanding. It could seem
that all problems are modal, since performing a different action
for different inputs can be considered as a tautology. How-
ever, it is important to consider that different actions are not
implied by different outputs, just consider a simple function
y = x + 2. Another issue with problem modality is that it
overlaps with other concepts in the field, particularly multi-
objective and decomposable problems. Spector [26] outlines
arguments to distinguish problem modality, which are here
recounted in Section 2. Spector also proposes a measure of
modality; however, it leads to a circular definition that de-
pends on the solution strategy. Nonetheless, thus far it is the



only quantitative measure proposed for problem modality,
and the issue is not addressed here.

In this paper, the goal is to provide a different, hope-
fully clarified, picture of modal problems using the concept
of behavioral space. Instead of focusing on an analysis of
input-output pairs, the proposal is to move towards an un-
derstanding of program behaviors. Behaviors are a descrip-
tion of what a solution (GP individual) does within a given
environment. The behavior of an individual is expressed
in a domain-specific manner, using domain knowledge to
describe how an individual performs. In this way, under
some reasonable assumptions, each individual is mapped to
a single point in behavioral space. This introduces a higher
level of abstraction, compared to the more traditional fitness,
genotypic or phenotypic spaces considered in evolutionary
algorithms. From this high-level view, it is possible to pose
the search within a behavioral space that is intuitive and nat-
ural to the problem domain. Then, a modal problem can be
described as one that requires complex or disjoint behavioral
solutions; i.e., solutions that exhibit two or more distinct be-
havioral patterns, one for each context in which the solu-
tion can be expected to operate. For instance, a robot con-
troller might induce a robot to exhibit a wall following pat-
tern and an obstacle avoidance pattern as part of a navigation
behavior, where each pattern is activated by different envi-
ronmental contexts. Concretely, Section 5 proposes two do-
mains where modal problems could be expected: evolution-
ary robotics and pattern analysis. This work argues that by
leveraging the idea of behavioral-space, problem modality
can be defined and understood more clearly. Moreover, the
paper suggests that searching for solutions of modal prob-
lems is easily posed by considering behavioral space. In par-
ticular, the paper reports recent results of applying novelty
search (NS) [8, 10, 17, 16], a behavior-based search that fo-
cuses selective pressure on finding novel solutions.

The remainder of this paper proceeds as follows. Section
2 defines the concept of modal problems [26]. Section 3 de-
scribes behavioral space and behavior-based search. Section
4 analyzes modal problems from the behavioral space per-
spective and proposes novelty search as a plausible solution
strategy. Section 5 proposes two domains where modal prob-
lems are common and shows how behavior-based search has
been used to solve them. Conclusions are given in Section 6.

2. PROBLEM MODALITY
As stated above, Spector [26] defines a problem to be

modal if a solution has to perform qualitatively different ac-
tions depending on the inputs. Moreover, it is important
to consider that we may or may not know in advance how
many modes of operation are required to solve a problem.

Modal problems are similar to multi-objective problems
[3], since in both cases a solution has to exhibit acceptable
performance from various perspectives. It might be possible
to pose modal problems as multi-objective, by considering
performance in each mode of operation as a separate objec-
tive. However, this would only be possible if the different
modes were known in advance. Moreover, multi-objective
problems are not necessarily modal, since a single mode
could be evaluated using different performance criteria.

Another conceptual class related to modal problems is de-
composable or modular problems. A decomposable prob-
lem can be partitioned, or decomposed, into a set of smaller
sub-problems, or modules, following a divide-and-conquer

approach. It is normally expected that sub-problems will
be easier then the original one, and that solutions will be
easier to evolve. The complete solution for a decomposable
problem can then be constructed from an aggregation of sub-
problem solutions. In the more general and difficult case, the
number and form of these sub-problems is not known in ad-
vance. This topic has been extensively studied from different
perspectives and following different approaches [4, 22, 31].
In this sense, each mode of operation of a modal problem
could be solved by a different specialized module. How-
ever, such a strategy might only increase complexity and de-
crease code optimization, since sub-problems can conceiv-
ably require the same, or similar, portions of code. More-
over, if non-linear interdependencies exist between each sub-
problem, then concurrently decomposing and optimizing in-
dividual solutions will not be a trivial endeavor [4].

For these reasons, Spector proposes a novel selection strat-
egy for modal problems called lexicase selection. During
evolution, lexicase selection selects parents by starting with
a pool of candidates and filtering it on the basis of perfor-
mance on single fitness cases, considered one after another.
In the basic implementation, the initial pool of candidates is
all the population and the fitness cases are ordered randomly.
Moreover, only the best individuals are selected at each iter-
ation, an elitist approach. Spector presented initial experi-
ments on a symbolic regression problem for GP with good
results. However, lexicase selection suffers from two short-
comings. First, in its most basic form it is a computationally
expensive process. Second, it is not only a proposal to solve
modal problems but it is also proposed as a measure to de-
termine if a problem is modal or not; a logical problem dis-
cussed at length by Spector [26]. However, instead of focus-
ing on the circularity of the original definition (which is not
addressed or resolved in this work), this paper argues that
the concept of problem modality is troublesome because of
the level of abstraction at which program performance is ana-
lyzed. Therefore, the proposal is to use the concept of behav-
ioral space to define, and hopefully clarify problem modal-
ity. Based on this definition, a plausible solution strategy
is proposed based on a behavior-based open-ended search.
This paper does not suggest that lexicase selection should be
abandoned as a plausible approach to solve modal problems;
indeed, it has recently been demonstrated to have utility on
other problems as well [6]. The goal here is to propose a dif-
ferent conceptual framework with which to describe prob-
lem modality and explore alternative solution strategies.

3. BEHAVIOR-BASED SEARCH
In general, an evolutionary algorithm concurrently sam-

ples three different spaces during a search. First, genotypic
or search space, which corresponds to the encoding used to
represent each valid solution to a problem. Second, pheno-
typic or decision space, which represents the domain spe-
cific space where solutions are expressed, such as program
space. Finally, objective or fitness space, that corresponds to
the space constructed by the set of performance criteria.

While these three spaces have been the focus of most re-
search in GP, other spaces have recently entered discourse in
the field. Consider that, in most applications, the fitness of a
GP individual gives a coarse global evaluation of its perfor-
mance, usually averaging out differences in program qual-
ity when it is evaluated on several fitness cases. Consider-



ing this, some researchers have proposed a finer grained ap-
proach to analyze an evolved program’s performance.

One approach is known as semantics in GP literature
[12, 13, 29], with its corresponding semantic space. Seman-
tic space in GP corresponds to the space of possible program
outputs [13]; i.e., given a set of n fitness cases the semantics of
a program K is the corresponding set of outputs it produces,
normally expressed as a vector y ∈ R

n . Semantics is an im-
portant concept in GP because (vastly) many genetically dif-
ferent programs can produce the same semantics. However,
strictly analyzing program outputs might not be the best ap-
proach in some domains. For instance, consider the GP clas-
sifier based on static range selection (SRS) described in [32].
For a two class problem and real-valued GP outputs, the SRS
classifier is simple: if the program output for input pattern
x is greater than zero then the pattern is labeled as belong-
ing to class A, otherwise it is labeled as a class B pattern. In
this case, while the semantics (as defined above) of two pro-
grams might be strictly different, they can still produce the
same high-level classification (to illustrate this, consider any
two outputs y1,y2 ∈ (0,∞) with y1 6= y2).

Now consider a second example from another domain.
In evolutionary robotics (ER), evolutionary algorithms are
used to search for robust controllers of autonomous systems
[20]. What is of importance in the ER approach, is to find
high quality solutions introducing as little prior knowledge
as possible into the objective function; i.e, the evolutionary
process should perform a search based on a very high-level
definition of the robotic task [18]. In this scenario, the cor-
respondence between program inputs, outputs and induced
actions is much less clear cut. Moreover, evolution in an ER
system is performed within real or simulated environments,
where noisy sensors and the physical coupling between ac-
tuators and the real world can produce a non-injective and
non-surjective relation between program output and the ac-
tions performed by the robot.

Therefore, researchers in ER have proposed another ap-
proach towards performance analysis, focused on the idea
of behavioral space [14, 27]. The concept of behaviors in
robotics dates back to the seminal works of Brooks from the
1980’s [1], making it easy to include the concept of behaviors
in ER research. A behavior can be understood as a descrip-
tion β of the way an agent K (program in the GP case) acts
in response to a series of stimuli within a particular context
C. A context C includes the internal state of the robot, ex-
ternal environmental conditions that are not sensed or given
as input, and the coupling process between the outputs and
the actions performed. Stated another way, a behavior β

is produced by the interactions of agent K, output y and
context C. In behavior-based robotics, for instance, behav-
iors were described at a very high level of abstraction by
the system designer. In ER, on the other hand, researchers
have recently proposed domain-specific numerical descrip-
tors that describe each behavior, allowing them to explicitly
consider behavioral space during evolution [14]. The justi-
fication for this is evident, given that the objective function
is stated as a high-level goal, then population management
should take in to account the behavioral aspect of the solu-
tions that are evolved. Following this approach, researchers
have been able to develop diversity preservation techniques
[27, 28] and open-ended search algorithms [8, 10]; for a com-
prehensive review on the topic see [14].

Care must be taken to understand the suggested difference

Figure 1: Conceptual view of how the performance of a
program can be analyzed. At one extreme we have fitness-
based analysis, a coarse view of performance. Semantics
lies at another extreme, where a high level of detail is
sought. Finally, behavioral analysis provides a variable
scale based on how context is considered.

between semantics and behaviors. A behavior, as defined
above, is a higher-level description of the semantics of a pro-
gram. An individual’s behavior is described at a higher level
of abstraction, accounting not only for program output but
the context in which the output was produced. While se-
mantics can imply an injective or non-injective relation be-
tween input and output, behaviors are more general, allow-
ing for multi-valued functions or many-to-many relations, if
only input is considered and context is not. For instance, for
the SRS GP classifier described above, context is given by the
SRS heuristic rule used to assign class label. This is more ev-
ident in the ER examples, where context includes those parts
of the surrounding environment that are not sensed or con-
sidered by the controller and that can effect behavior, what is
known as the embodiment problem [1].

A final comment is pertinent. In essence, fitness, seman-
tics, and behaviors are different levels of abstraction of a
program’s performance, see Figure 1. At one extreme form
of analysis, fitness provides a coarse grained look at perfor-
mance, a single value (for each criterion) that attempts to cap-
ture a global description of performance. At the other end of
the analysis scale, semantics describe program performance
in great detail, considering the raw outputs. On the other
hand, behavioral descriptors move between fitness and se-
mantics, providing a finer or coarser level of description de-
pending on how behaviors are meaningfully characterized
within a particular domain. Therefore, the behavior based
approach might provide an advantage in two scenarios: (a)
when fitness does not give sufficient detail to differentiate be-
tween individuals, given their performance and the current
state of a search; or when (b) semantics gives to much detail
and you cannot see the forest for the trees, and a higher-level
view of performance might be required.

4. MODAL PROBLEMS AND BEHAVIOR-

BASED SEARCH
The main thesis of this paper is that modal problems

may be productively described and understood in behav-
ioral space. The main argument is that we can equate each
mode of program operation with a different context in which
the program can be applied. Since a program that behaves



differently in different contexts will exhibit a disjoint behav-
ioral descriptor, then each unique behavioral pattern can be
considered as a different mode of operation. Therefore, a so-
lution program should exhibit a unique behavioral sequence
based on the sequence of contexts it encounters, and modes
it must exhibit, to solve a modal problem.

Therefore, a plausible strategy to solve modal problems is
to describe performance behaviorally. However, for modal
problems, contexts and behaviors cannot be defined gener-
ally, they are domain specific and care should be taken to de-
sign them. For instance, for some problems a fitness-based
description of performance might be sufficient, and for oth-
ers a detailed semantics approach might be best. Nonethe-
less, as argued in the previous section, fitness, semantics and
behaviors can be interpreted as just different abstractions of
performance, and thus the correct level of abstraction must
be chosen based on the problem and desired results.

From this perspective, problem modality might only ap-
pear to be a conceptual taxonomical tool, that maybe simpli-
fies our understanding but does not allow us to build real al-
gorithms that can explicitly address problem modality. How-
ever, such an observation would be incorrect, since it is sim-
ilar to the original critiques given to Brooks’ behavior-based
robotics [1], a research program that has produced many
promising technological advances [21]. On the contrary, a
behavior-based analysis of modal problems might help clar-
ify the object of discourse and maybe lead to a plausible solu-
tion strategy. In particular, if a specific behavioral pattern is
required, then the evolutionary algorithm should explicitly
consider how behavioral space is sampled during the search.

4.1 An overview of Novelty Search
The main idea behind novelty search (NS) is to eliminate

an explicit objective function from an evolutionary search
[8, 9, 10]. In other words, evolution is not guided by the
measured quality of each individual, instead it is guided by
a measure of uniqueness; i.e., how novel each individual is
with respect to what has been found by the search in earlier
generations. A known limitation of the traditional objective-
based search is a tendency to converge and stagnate on local
optima, particularly in multi-modal problems with irregu-
lar fitness landscapes. Diversity preservation techniques are
usually incorporated within an EA to overcome the above
shortcoming. However, most proposals are ad-hoc solutions
that attempt to balance exploration and exploitation during
the search. Conversely, through the search for novelty alone,
diversity preservation introduces the sole selective pressure.

In NS, individuals are described in behavioral space using
a domain-specific descriptor that captures the main traits of
an individual’s actions [27, 28]. Since many genetically dif-
ferent individuals can express the same behavior (mapped
to the same point in behavioral space), the search for nov-
elty is often feasible. Moreover, if the number of simple be-
haviors is relatively small, then the search for novelty could
lead to ”complex" solutions. To clarify, since complexity, in
general, can be an ambiguous term, complex solutions are
here equated with solutions that exhibit disjoint behaviors,
or behaviors that exhibit distinct patterns on different types
of inputs. For instance, in ER a disjoint navigation behavior
exhibited by a mobile robot might include a wall following
pattern and goal homing pattern. Therefore, the thesis of this
paper is that problems that require solutions with disjoint be-
haviors can be regarded as being modal.

Summarizing, NS uses a measure of novelty to characterize
each individual. The sparseness of each individual within
behavioral space is measured, with respect to other individu-
als in the population and novel solutions from previous gen-
erations. NS measures the sparseness ρ around each individ-
ual K, described by its behavioral descriptor β, using the av-
erage distance to the k-nearest neighbors in behavioral space,
with k an algorithm parameter, given by

ρ(β) =
1

k

k
∑

i=0

dist(β,αi) , (1)

where αi is the behavioral descriptor of the ith-nearest
neighbor of K in behavioral space with respect to distance
metric dist, a domain-dependent measure that depends on
how descriptors are represented. If the average distance is
large then the individual lies within a sparse region of behav-
ioral space and it lies in a dense region when the measure is
small.

Sparseness is computed based on the contents of the cur-
rent population and an archive of individuals that at one mo-
ment were considered to be novel. Therefore, an individual
is added to the archive if its sparseness is above a minimal
threshold ρmin, the second parameter of the NS algorithm.
The archive can also mitigate backtracking by the search pro-
cess. The archive growth can be seen as a shortcoming, be-
cause if the archive grows then a higher computational cost
is incurred when sparseness is measured. Therefore, [9] im-
plements the archive as a fixed size FIFO queue.

5. DOMAINS WITH MODAL PROBLEMS
The goal of this section is to propose specific domains

where modal problems are common. In particular, two do-
mains are considered: robotics and pattern analysis. In [26],
Spector analyzes the most common application domain for
GP, symbolic regression. The modal problem he presents
is a piece-wise function and experiments show that lexicase
selection provides improved performance compared with a
canonical GP. Recent work has also extended the applica-
tion of lexicase selection to boolean regression problems [6].
However, providing a behavioral descriptor for symbolic re-
gression is not straightforward and has been proposed only
recently [15]; the point is discussed further in Section 6.

5.1 Modal problems in robotics
The first plausible domain where modal problems arise is

ER. In ER researchers start with a high-level description of
a problem, such as developing a gait [2], autonomous nav-
igation [20] or other complex tasks [19]. The strategy is to
use evolution to search for robot behaviors that perform the
desired task while introducing the smallest amount of prior
knowledge into the search. In most problems, the robot has
to perform different types of actions in different contexts.
For instance, for navigation a robot must learn to move in
a straight line in open spaces or evade obstacles in crowded
areas. Each of these can represent the different modes of op-
eration of a modal problem. In fact, considering ER as an ex-
tension of the behavior-based approach to robotics, it is easy
to see that the original formulation by Brooks explicitly con-
templates several modes of operation that are dynamically
combined by the subsumption architecture [1].

Moreover, there is strong evidence that corroborates the



second claim of this work; that modal problems are effec-
tively solved by explicitly considering behavioral-space dur-
ing a search. For instance, almost all successful applica-
tions of the NS algorithm have been on ER problems, includ-
ing navigation with obstacle avoidance and gait control [10].
Moreover, as stated above, behavioral space has successfully
been used to promote diversity and find a diverse set of so-
lutions for multimodal search spaces [14, 27, 28]. In fact, this
has been the case because posing robotic problems in terms
of behaviors is a common conceptual tool that continues to
play a big role in state-of-the art robotics research [21].

5.2 Modal problems in pattern analysis
A second domain where modal problems can be identi-

fied is pattern analysis, particularly in data classification and
clustering. By definition, in these problems the goal is to find
a function, or program from the GP perspective, that is able
to identify underlying regularities within a set of sample pat-
terns. In each case, the program will have multiple modes of
operation, depending on the number of classes, or clusters,
in which sample patterns are organized. Hence, depending
on the input, a program must exhibit distinct modes of oper-
ation, deriving the correct mode from the values of the input
patterns themselves. In what follows, two recent behavior-
based approaches are reviewed, for supervised classification
[17] and unsupervised clustering [16].

In both cases, a domain specific behavioral descriptor is
proposed and the NS algorithm is used to search within be-
havioral space. Besides the specifics of the NS algorithm, a
traditional Koza-style GP was used for program representa-
tion and genetic operators. The parameters of the GP sys-

tems are given in Table 1 1. The NS-based GP is implemented
with an archive limit of 400 individuals, denoted hereafter as
NS-GP. The NS parameters are set to ρmin = 40 and k = 15.
In both test cases the algorithm was run 30 times, and imple-
mented using Matlab 2009a and the GPLAB toolbox [23].

5.2.1 Supervised classification

This work uses the static range selection GP classifier (SRS-
GPC) described by Zhang and Smart [32]. In a classification
problem, a pattern x ∈ R

p has to be classified as belong-
ing to a single class from Ω = {ω1, ..., ωM}, where each ωi

represents a distinct class label. Then, in a supervised learn-
ing approach the goal is to build a mapping g(x) : Rp → Ω,
that assigns each pattern x to a corresponding class ωi, where
g is derived based on evidence provided by a training set
T of N p-dimensional patterns with a known classification.
In this work, only two-class classification problems are con-
sidered. In SRS-GPC, R is divided into M non-overlapping
regions, one for each class. Then, GP evolves a mapping
g(x) : R

p → R, such that the region in R where pattern x

is mapped to, determines the class to which it belongs. For
a two-class problem, if g(x) > 0 then x belongs to class ω1,
and belongs to ω2 otherwise. The fitness function consists on
minimizing the classification error. To apply NS, the fitness
function is substituted by the sparseness measure of Equa-
tion 1, that requires a domain specific behavioral descriptor.

Accuracy Descriptor βA: The training set T used by SRS-
GPC contains sample patterns from each class. For a two-
class problem with Ω = {ω1, ω2}, if T = {y1,y2, ...,yL},

1The IF function has arity 3, IF (a, b, c); it evaluates the sub-
tree rooted at node c if a = 0 and evaluates the sub-tree
rooted at b otherwise.
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Figure 2: Fitness landscape in behavioral space for the ac-
curacy descriptor.

then the behavioral descriptor for each GP classifier Ki is a
binary vector βAi = (β1, β2, ..., βL) of size L, where each
vector element βj is set to 1 if classifier Ki correctly classi-
fies sample yj , and is set to 0 otherwise. Obviously, the de-
scriptor considers classifier accuracy at a finer level of detail
compared with a global fitness score. Now, let x represent
a binary vector, function u(x) return the number of 1s in x,
and let KO be the optimal classifier that achieves a perfect ac-
curacy on the training set.

Then, the descriptor of KO is βAO where u(βAO ) = L.
For a two-class problem, an equally useful solution is to take
the opposite (complement) behavior and invert the classifi-
cation, such that a 1 is converted to a 0 and vice-versa. This
is a similar strategy to what is done to solve deceptive prob-
lems in genetic algorithms. The complement behavior is βA∗

with u(βA∗) = 0. Figure 2 shows the fitness landscapes of
the accuracy descriptor in behavioral space [17]. The land-
scape has two global optima, at βAO and βA∗ . Notice that
the worst performance is given by a random classifier with
50% accuracy, depicted in the middle valley of Figure 2. On
difficult problems, worst case performance can be expected
from random individuals in the initial generation. However,
NS does not search directly within this landscape; indeed
an algorithm that could, would be the best possible solution
strategy given the smooth gradient of the landscape towards
each global optimum, but no such algorithm exists. How-
ever, when the gradient for novelty is positively correlated
with the gradient for fitness, then NS can exploit its explo-
ration for novel individuals to find high quality solutions,
indirectly climbing towards either of the optimal behaviors.

To illustrate the performance of NS with the accuracy de-
scriptor, a synthetic classification problem is used. A ran-
dom Gaussian mixture model is used to generate a two-class
problem within the R

2 plane, generating 200 random sam-
ple points for each class; following the strategy reported in
[28, 17]. The graphical representation of the two class prob-
lem is shown in Figure 3. Table 2 presents the results of NS-
GP and the baseline SRS-GPC method on the test data av-
eraged over all thirty runs. Results indicate that both algo-
rithms achieve similar results on this hard problem, with NS
exhibiting a slightly better average classification error.



Table 1: Parameters for the GP-based search.

Parameter Description

Population size 200 individuals.
Generations 200 generations.
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth.
Operator probabilities Crossover pc = 0.8, Mutation pµ = 0.2.
Function set

{

+ , − , × , ÷ , | · | , x2 ,
√
x , log , sin , cos , IF

}

Terminal set {x1, ..., xi, ..., xp}, where xi is a dimension of the data pat-
terns x ∈ R

n.
Bloat control Dynamic depth control [24].
Initial dynamic depth 6 levels.
Hard maximum depth 20 levels.
Selection Tournament.
Training/Testing partition 70%/30%.
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Figure 3: Synthetic 2-class problem for supervised classifi-
cation.

Table 2: Average classification error of the best solution
found by each algorithm on the classification problem.

Algorithm SRS-GPC NS-GP

Performance 0.374 0.365

5.2.2 Unsupervised clustering

In clustering, a set of patterns is partitioned into disjoint
groups, or clusters, such that patterns that belong to the
same cluster are similar, and patterns from different clus-
ters are dissimilar. The GP approach implemented here uses
the same heuristic as the SRS classifier to assign cluster la-
bels. Performance is measured using the class distance ratio
(CDR), that compares the dispersion within the clusters to
the gap between the clusters [7, 16].

Unlike the supervised classification case, in a clustering
problem no prior-knowledge of the correct grouping is avail-
able. Therefore, there is no training phase, since all data is
test data; and a clustering algorithm must infer class mem-
bership based on the properties of the data itself. Hence, the
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Figure 4: Fitness landscape in behavioral space for the clus-
ter descriptor.

accuracy descriptor cannot be used in this case, so a different
descriptor is required [16].

Cluster Descriptor βC : For a problem where two clus-
ters are assumed {ω1, ω2} (most clustering algorithms re-
quire this information as input) the cluster descriptor is con-
structed in the following way [16]. If T = {y1,y2, ...,yL}
represents the data samples, then the behavioral descriptor
for each GP clustering function Ki is a binary vector βCi =
(β1, β2, ..., βL) of size L, where each vector element βj is set
to 1 if Ki assigns label ω1 to pattern yj and is set to 0 other-
wise. Then, the cluster descriptor of the optimal clustering
function KO is given by βC0 = (11, 12, ..., 1L

2

, 0L

2
+1

, ...., 0L).

As in the accuracy descriptor case, an equally useful solu-
tion is to take the opposite (complement) behavior βC∗ =
(01, 02, ..., 0L

2

, 1L

2
+1

, ...., 1L). Then, suppose that the num-

ber of samples from each cluster is L
2

, and that the first L
2

elements in T have a ground truth label of ω1. The fitness
landscapes of βC in behavioral space is depicted in Figure
4, where uL measures the number of ones in the first L

2
bits

of a behavior descriptor βC , and uR does the same for the
remaining L

2
bits; see [16] for a detailed explanation.

To illustrate the performance of NS with the cluster de-
scriptor, a synthetic clustering problem is constructed using
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Figure 5: (a) Ground truth data; (b) clustering achieved by
the NS-GP search.

the same strategy described above, except that the data sam-
ples are set in R

3 [16]. The graphical representation of the
two-cluster problem is shown in Figure 5a. In this case, the
parameters of the GP search are the same as in Table 1 ex-
cept that all of the data is used during evolution to construct
the descriptor of each individual. Table 2 presents results of
NS-GP compared with two common clustering methods, the
k-means (KM) and Fuzzy C-means (FC) algorithms provided
with Matlab toolboxes. The table uses the ground truth data
to compute the clustering error for each algorithm, computed
as the percentage of samples placed in the wrong cluster.
Notice the strong performance achieved by behavior-based
search on this problem. Finally, Figure 5b shows the cluster-
ing of an example run obtained of the NS-GP clustering.

6. CONCLUSIONS
This paper presents a behavior-based analysis of modal

problems; problems that require different modes of opera-
tion when applied in different contexts. The main thesis is
that the concept of problem modality can be clearly under-
stood when behavioral space is explicitly considered. Liter-
ature and experimental work is presented as evidence that

Table 3: Average classification error for each algorithm on
the clustering problem.

Algorithm KM FC NS-GP

Performance 0.360 0.355 0.335

modal problems can be solved when the search incorporates
a behavior-based analysis of GP individuals. Moreover, an
extreme approach is considered, where behavioral diversity
is the sole source of selective pressure during evolution, us-
ing the novelty search algorithm. First, evolutionary robotics
is identified as a plausible domain where modal problems
appear; current literature seems to support this claim, by il-
lustrating that posing problems in behavioral space can be
useful and sometimes required. Then, pattern recognition
is considered as a second domain where modal problems
are common; in particular data classification and clustering
problems are considered, and a behavior descriptor is de-
scribed for each. In pattern recognition, it seems that the re-
quirement of different modes of program action is built into
how these problems are posed. Experimental results show
that behavior-based search can perform well in this domain,
relative to control methods.

A final note on lexicase selection approach proposed by
Spector in [26] is also relevant. In that work, modality is
studied in a symbolic regression problem, achieving encour-
aging initial results. An interesting question is to determine if
lexicase selection is equivalent to the behavior-based search
proposed here. While a complete answer is left as future
work, an outline of a possible strategy to tackle it is given
here. Consider the nature of a symbolic regression prob-
lem, where the goal is to fit program output to each fitness
case. In this sense, a proper description of what the pro-
gram does might be the output vector, what amounts to a
semantics-based analysis of a program. The actions of a pro-
gram might not be context dependent, and therefore its per-
formance might be better described using great detail, an ex-
treme within the conceptual scale of Figure 1. In fact, this
is exactly how lexicase selection operates, by comparing so-
lutions based on their raw output; also see [6]. If this is the
case, it is possible to argue that while lexicase selection and
behavior-based search focus on different details of program
performance, the approaches are more similar to each other
than each is to a global fitness-based selection. Therefore, it
seems that selecting the proper level of analysis will surely
depend upon the nature of the problem domain. However,
future work should sharpen this notion, since recent results
have shown that NS might also be applicable to symbolic re-
gression [15]. Moreover, NS and lexicase selection seem to
overlap in another way. NS promotes diversity above all else,
achieving good results when an evolutionary road that leads
towards novelty also leads towards quality; this is particu-
larly the case when a problem is difficult and random indi-
viduals perform poorly [10, 15, 16, 17]. On the other hand,
lexicase selection is biased towards solutions that perform
well on fitness cases where the rest of the population per-
forms poorly. In a sense, lexicase selection seems to combine
diversity preservation and fitness based selection. For now,
the evidence provided in this work should help strengthen
the concept of problem modality within the GP community
and allow us to explore novel solution strategies.
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