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Abstract. The game of Go has attracted much attention from the artificial in-
telligence community. A key feature of Go is that humans begin to learn on a
small board, and then incrementally learn advanced strategies on larger boards.
While some machine learning methods can also scale the board, they generally
only focus on a subset of the board at one time. Neuroevolution algorithms par-
ticularly struggle with scalable Go because they are often directly encoded (i.e. a
single gene maps to a single connection in the network). Thus this paper applies
an indirect encoding to the problem of scalable Go that can evolve a solution to
5 x5 Go and then extrapolate that solution to 7 x 7 Go and continue evolution.
The scalable method is demonstrated to learn faster and ultimately discover better
strategies than the same method trained on 7 x 7 Go directly from the start.

1 Introduction

The game of Go has proven challenging for artificial intelligence because the branching
factor and state space in Go render traditional approaches intractable [1]. Go demands
new search techniques to reduce the branching factor, and abstract representations that
can consolidate the state space. One promising such approach is machine learning,
wherein techniques such as temporal difference learning or neuroevolution learn a value
function from an abstract representation [2—4].

Yet even with such innovations, experienced human Go players can still consistently
defeat the strongest of computer players without a handicap [5]. One notable difference
between human players and most machine learning-based approaches to Go is that the
human player begins to learn Go on a small board [6]. Humans can then extrapolate in-
formation learned on the smaller board to a larger board, thereby bootstrapping from it.
Such extrapolation is challenging for machine learning algorithms, which often cannot
transfer knowledge from one board size to another.

However, several notable exceptions exist that typically fall into one of two cate-
gories: (1) The first convert the Go board into a set of local features that are indepen-
dent of the board size [2]; (2) the second class of methods scan sections of the board
and remember notable positions and information [3, 4]. In both cases, the key is to view
a small section of the Go board at one time. As a result, it is potentially difficult to learn
tactics (e.g. ladders) that depend on a holistic view of the board.

In this paper, a new method of scaling is presented that breaks from the afore-
mentioned techniques, yet can still scale the board to new sizes and continue learning.



The method is based on Hypercube-based NeuroEvolution of Augmenting Topologies
(HyperNEAT), which evolves artificial neural networks (ANNs) that are aware of and
parametrized by the geometry of the board. As a result, these ANNs are able to make
holistic decisions based on seeing the entire Go board at once. HyperNEAT encodes
ANNSs through an indirect representation that has the ability to scale the Go board to
new sizes without changing the representation and continue evolution. The result is that
candidates evolved on 5 x 5 Go and then scaled and evolved further at 7 x 7 Go outper-
form candidates evolved solely on 7 x 7 Go without scaling. Thus the main contribution
is to show that indirect encoding is a viable foundation for training scalable learners,
and offers the unique potential to represent holistic solutions at variable sizes.

2 Background

In Go, two players take turns placing stones on an n x n grid. The standard board size
is 19 x 19; however, common board sizes also include 5 x 5 and 9 x 9. The objective
is to possess more stones on the board than the opponent at the end of the game. If a
player is able to form a complete border around a group of the opponent’s stones, the
surrounded stones are removed from the board. The player with the most stones at the
end is declared the winner. A complete description of Go can be found in Botermans
[5] and Shotwell [6].

Go is designed for play at several board sizes. However, few machine learning meth-
ods can modify the board size in the middle of training and continue learning. This
section discusses several exceptions and reviews the NEAT and HyperNEAT methods.

2.1 Reinforcement Learning and Scalable Go

Because the strategies for 19 x 19 boards are very different than those for e.g. 9 x 9,
players transitioning from small to large boards must continue to learn and refine their
strategy and tactics [6]. Ideally, machine learning algorithms should also learn to play
Go at varying board sizes without discarding tactics learned on smaller boards and
starting from scratch.

Reinforcement learning has been applied to scalable Go through several approaches
[2—4]. Silver et al. [2] introduce the idea of assigning a weight to each shape in a shape
set. The key idea is that all shapes learned on a smaller board are analogous on a larger
one. New shapes that exist only at the higher scale are introduced after scaling by ini-
tializing them with a weight of 0. Silver et al. [7], Enzenberger [8], and Schraudolph
et al. [9] follow a similar approach.

In a different approach, Stanley and Miikkulainen [4] evolved a neural network that
controls a robot eye that has a small field of vision. The robot is able to move across
the board and place pieces. Because the field of vision for the robot is smaller than the
size of the Go board, the robot can learn local concepts independently of location. As a
result, the roving eye can learn to play Go at any resolution.

Schaul and Schmidhuber [3] introduced a neuroevolution-based action-value ap-
proximator for Go that evolves a Multi-Dimensional Recurrent Neural Network
(MDRNN) [10]. The MDRNN performs swipes across the Go board. To perform a
swipe, the same neural network is evaluated at every position of the Go board. In this



way, information is carried across the board through the output values. MDRNNS are
inherently scalable because the network is only concerned with relative information.

While these methods have learned effective Go players, each of them relies on inte-
grating a set of small, local views that are processed independently over time or space.
The danger is that less holistic heuristics that are significantly simpler become attractive
local optima. In general, an interesting question is whether it is possible to scale the Go
board to new resolutions while also processing the entire Go board without relying on
subsquares. HyperNEAT, reviewed next, creates such a capability.

2.2 Indirect Encodings and HyperNEAT

The first methods to evolve both network structure and connection weights encoded
networks directly, which means that a single gene in the genotype maps to a single
connection in the phenotype [11]. NeuroEvolution of Augmenting Topologies (NEAT)
is one such method [12]. In addition to evolving weights of connections, NEAT can
build structure and add complexity. NEAT is a leading neuroevolution approach that
has shown promise in board games and other challenging control and decision mak-
ing tasks [4, 12, 13]. While this approach is straightforward, it requires learning each
connection weight individually. Human engineering is one approach to overcoming this
limitation. For example, Fogel [14] applies ANNs to checkers by dividing the board into
subsquares and architecting the ANN to process them at different resolutions. However,
ideally, evolution would capture patterns and regularities on its own.

Indirect encodings give evolution the opportunity to explore patterns and regular-
ities by encoding the genotype as a description that maps indirectly to the phenotype
[15-19]. That way, the genotype can be much smaller than the phenotype, which re-
sults in fewer variables to optimize for the evolutionary algorithm. Compositional pat-
tern producing networks (CPPNs) are one such indirect encoding that draws inspiration
from biology [20]. The idea behind CPPNSs is that patterns such as those seen in nature
can be described at a high level as a composition of functions that are chosen to rep-
resent several common motifs in patterns. The appeal of this encoding is that it allows
patterns with regularities such as symmetry (e.g. with Gaussians), repetition (e.g. with
periodic functions such as sine), and repetition with variation (e.g. by summing peri-
odic and aperiodic functions) to be represented as networks of simple functions, which
means that NEAT can evolve CPPNs just as it evolves ANNS.

Hypercube-based NEAT (HyperNEAT) is an algorithm that extends CPPNs, which
encode two-dimensional spatial patterns, to also represent connectivity patterns [15,
21-25]. That way, NEAT can evolve CPPNs that encode ANNs with symmetries and
regularities that are computed directly from the geometry of the task inputs. The key
insight is that 2n-dimensional spatial patterns are isomorphic to connectivity patterns in
n dimensions, i.e. in which the coordinate of each endpoint is specified by n parameters.
To apply HyperNEAT to checkers, for example, the substrate (which is the name for the
set of ANN nodes and their geometry in HyperNEAT) input layer is arranged in two
dimensions to match the geometry of the checkers board (figure 1a). To compute the
weight of a connection, the CPPN encoding works by inputting the coordinates of its
endpoints (i.e. x1, ¥1, X2, and y;) and outputting the connection weight. All connections
are computed in this way, in effect painting a pattern across the network connectivity.
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Fig. 1. Substrates for Board Games. Substrate (a) contains a two-dimensional input
layer labelled A that corresponds to the geometry of a game board, an analogous two-
dimensional hidden layer B, and a single-node output layer C that returns a board eval-
uation. The two CPPNss to the right of the board are depictions of the same CPPN being
queried to determine the weights of two different substrate connections. In this way, a
four-input CPPN can specify the connection weights of a two-layer network structure
as a function of the positions, and hence the geometry, of each node. An action selector
substrate (utilized in this paper) with an output for every possible move is shown in (b).

Gauci and Stanley [21, 25] originally introduced the type of representation in figure
1a for applying HyperNEAT to the game of Checkers. To distinguish the flow of infor-
mation through the policy network from the geometry of the game, a third dimension
in the substrate represents information flow from one layer to the next. Along this third
dimension, the two-dimensional input layer connects to an analogous two-dimensional
hidden layer so that the hidden layer can learn to process localized geometric features.
The hidden layer then connects to a single output node, whose role is to evaluate board
positions. The CPPN distinguishes the set of connections between the inputs and the
hidden layer from those between the hidden layer and the output node by querying the
weights of each set of connections from a separate output on the CPPN (note the two
outputs in the CPPN depiction in figure 1a). That way, the x and y positions of each
node are sufficient to identify the queried connection and the outputs differentiate one
connection layer from the next. Because the CPPN can effectively compute connection
weights as a function of the difference in positions of two nodes, it can easily map a
repeating concept across the whole board.

This approach allows HyperNEAT to discover geometric regularities on the board
by expressing connection weights as a function of geometry. For a full description of
HyperNEAT see Stanley et al. [15] or Gauci and Stanley [25].

3 Approach: HyperNEAT in Go

Because of the large branching factor in Go [1], board evaluation functions such as the
HyperNEAT approach to checkers discussed above may not be tractable in practice. In
the case of Go, there can be hundreds of boards to evaluate in a single move, even at the
lowest ply. Thus an appealing alternative would be an action selector that evaluates the
current state and suggests where to move, rather than a board evaluation function that



must view many boards in the future to decide on a move. The next section explores
this idea in more detail.

3.1 Evolving an Action Selector

Because HyperNEAT can evolve high-dimensional structure as an indirect encoding,
it opens up the possibility to evolve an action selector. This type of ANN contains an
output for each possible action (figure 1b). In this case, an output exists for each square
on the Go board. By activating the substrate, HyperNEAT populates each output with
a value indicating the desirability of putting a piece in that position on the Go board.
Thus no forward search through the game tree is needed, thereby saving significant
computation. Once the substrate has been activated, the output with the highest activa-
tion is chosen and the corresponding square on the Go board undergoes a sanity check
that prevents the network from making invalid moves in the game. As a result of this
new architecture, the output, hidden, and input layers of the Go substrate all contain
n X n nodes, where n denotes the size of the board. Given a board size of 7 x 7, the sub-
strate thus contains 147 nodes and 4,802 connections. Indirect encoding can produce
the smooth patterns of weights necessary to begin evolution with so many connections
and still learn effectively. The next section explores the substrate extrapolation method
that allows solutions to scale in this paper.

3.2 Substrate Extrapolation

A major problem for traditional neuroevolution is that the number of evaluations to
solve a problem is related to the number of connections in the network being evolved
[12]. Training a network with ten million connections can require significantly more
evaluations than training one with one hundred. However, Stanley et al. [15] showed
that it is possible to query the same CPPN at varying substrate resolutions to create
larger ANNSs. Thus a promising potential approach to expanding the action selector size
is to learn basic concepts on a small substrate, increase the substrate resolution, and
then continue learning more advanced concepts at the higher resolution. This approach
is designed to allow early, rapid learning of fundamental concepts.

There are two ways in HyperNEAT to scale a substrate input layer that represents
a geometric space. The first is to sample the inputs at a higher resolution. This form
of scaling, called continuous substrate extrapolation, preserves the geometric relation-
ships between locations on the input signal (figure 2a). The two images, while different
resolutions, exist within the same geometric area. That is, a specific location in the im-
age does not change its meaning even if the resolution of the image changes. Thus the
scaling changes only the distance between two adjacent pixels. Because CPPN inputs
are by convention limited to a domain of [—1,1], the CPPN effectively normalizes the
width and height of the image regardless of resolution, and can thereby extrapolate the
ANN to handle this form of scaling naturally. Stanley et al. [15] demonstrated such
continuous substrate extrapolation with HyperNEAT in a simple visual recognition do-
main.

While this method can be effective in visual tasks, some domains do not lend them-
selves to this form of scaling. For example, if the resolution of the Go board in figure 2b
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Fig. 2. Continuous Versus Discrete Extrapolation. In continuous substrate extrapola-
tion (a), the bounds of the geometry do not change as the scale increases. In discrete
extrapolation (b), the relative area of a single square stays the same, but the overall
geometry is expanded outward. In this case, special care is needed to ensure that the
network scales appropriately with the domain.

is increased, the size of the domain itself increases, as opposed to in the prior example,
wherein it simply becomes more detailed. In such discrete substrate extrapolation, the
size of a meaningful unit of information does not change as the resolution increases. As
a result, a new method must be designed to handle this form of scaling.

3.3 Discrete Substrate Extrapolation Implementation

The problem in discrete extrapolation is that the range of the input domain changes as
the scale increases. To address this phenomenon, it is necessary to first decide on the
maximum resolution of the system. In Go, this maximum resolution is 19 x 19, the size
of the largest tournament Go board. The next step is to calculate the distance between
two adjacent cells at this resolution. Because each input to the CPPN ranges from —1
to 1, the Go board must be rescaled to fit this new range. Thus the Go board position at
index 0 maps to —1 and the position at index 18 maps to 1, and the distance between
two adjacent cells in the Go board is therefore % Interestingly, if the system is trained
first at a lower resolution, e.g. 5 x 5, the smaller domain can be situated in the very same
coordinate system (figure 2b). Increasing the resolution of each substrate layer during
evolution is then an effective method to allow holistic complexification.

4 Experiment

The experiment in this paper aims to determine the effects of scaling HyperNEAT sub-
strates on evolved Go action selectors. The player begins by playing ten games of Go
against a fixed policy on a 5 x 5 board for 500 generations. The fixed policy player is
Liberty Player from the SimplePlayers package of Fuego [26], who “tries to capture and
escape with low liberty stones.” A liberty stone is surrounded on three of the four sides
with stones, and only has one empty adjacent space (i.e. one liberty). Liberty Player
can be applied to boards of any size. Because Liberty Player places stones adjacent to
stones with few liberties, it escapes captures and also quickly captures given the oppor-
tunity. When two or more potential moves are equally viable, Liberty Player picks one
at random. These factors make Liberty Player a nontrivial opponent that provides suffi-
cient challenge to demonstrate the utility of scaling. After training on a 5 X 5 Go board,



the domain switches to playing Go against the same policy on a 7 x 7 board. Like the
evolved player, Liberty Player is an action selector, that is, it only evaluates the current
board and returns a location on which to place a stone.

During evolution, each candidate plays ten games of Go against the Liberty Player.
After each game has ended, the candidate receives a reward based on the final score and
the size of the board.

ey

8b? if the evolved player wins
fitness = ) ]
max (07 s+2b ) if the evolved player loses,

where s denotes the final score and b denotes the size (i.e.length) of the board. This
fitness function guarantees that all individuals will receive a positive fitness (as Hyper-
NEAT requires), and that negative Go scores will still result in a positive reward. This
convention puts additional emphasis on winning and also avoids rewarding individuals
who win by a large margin in a single game, but lose the remaining games.

4.1 Experimental Parameters

Parameter settings in the experiment follow precedent in applying HyperNEAT to
checkers [21, 25]. The population size was 100 and each run lasted 500 generations.
The disjoint and excess node coefficients were both 2.0 and the weight difference coef-
ficient was 1.0. The compatibility threshold was 6.0 and the compatibility modifier was
0.3. The target number of species was eight and the drop-off age was 15. The survival
threshold within a species was 20%. Offspring had a 3% chance of adding a node and
a 5% chance of adding a link, and every link of a new offspring had an 80% chance of
being mutated. Available CPPN activation functions were sigmoid, Gaussian, sine, and
linear functions. Recurrent connections within the CPPN were not enabled. Signed ac-
tivation was used in the CPPN and substrate, resulting in a node output range of [—1, 1].
By convention, a connection is not expressed if the magnitude of its weight is below a
minimal threshold of 0.2 [22]; otherwise, it is scaled proportionally to the CPPN output.
These parameters were found to be robust to variation in preliminary experimentation.

5 Results

To determine the effect of scaling, substrate extrapolation is compared to an unscaled
approach that plays only 7 x 7 Go. Although fitness drives evolution, fitness cannot be
a benchmark for scaling performance because it is derived from the Go score, which
varies with the size of the board. Therefore, the win rate is recorded during evolution
and determines the effective skill of the player for the purpose of comparing the scaled
to non-scaled methods.

Figure 3a compares the performance of the non-scaled 7 x 7 method against the
scaled substrate, averaged over 25 runs. Note that the non-scaled results are shifted to
the right so that the reader can easily compare the effects of scaling to not scaling. The
scaling approach won significantly more games than the non-scaling approach in all
generations after 524 (i.e. 24 generations after scaling) (p < 0.05).

To give an idea how scaling works, figure 3b shows a single receptive field con-
necting to the center output from the hidden layer of a scalable substrate at the two
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Fig. 3. Scaling Comparison and Visualization. The average performance of the gen-
eration champions over 25 runs of each variant is shown in (a). The performance is
measured as the number of games won out of a possible 10 against Liberty Player. The
scaled method wins significantly more than the non-scaled method in every generation
beyond 524. A receptive field for the center output node on the substrate is shown in
(b). Note that when the substrate is scaled to 7 x 7, the pattern is extrapolated outwards.

resolutions. Each grayscale box represents a link weight from a node in the hidden
layer at that location to the center node of the output layer. White triangles in the corner
of an box denote negative weights. The individual from which this receptive map was
extracted is from generation 500, at which the domain is scaled to 7 x 7. Note that the
pattern of weights is extrapolated outward as the substrate is scaled from 5 x5to 7 x 7.
To understand this result, recall that the substrate is scaled with the discrete substrate
extrapolation method. As a result, when the substrate is created at s >< 5, the CPPN is
queried with all possible combinations of the numbers — 3 ,— 0,§ ,5 as inputs xi, xp,
v1, ¥2. The choice of inputs to the CPPN explicitly defines the particular connection
weight that the CPPN will output. The substrate is scaled to 7 x 7 by expandlng the
inputs to include all possible combinations of the numbers —1, — %, é, —0, 3 %, 1.
This expansion adds the additional cells shown in 3b. This new pattern is thereby an
effective bootstrap for learning more advanced concepts at the higher scale.

6 Discussion & Future Work

The key contribution of this paper is to show that indirect encoding makes possible a
new kind of holistic, scalable Go player. Interestingly, an evaluation at 7 x 7 takes fen
times longer than the same evaluation at 5 x 5 because the network size is larger and
the games take more turns to complete. A method that can learn fundamental concepts
at a low board size can thus more quickly progress to more advanced concepts at higher
sizes, and thereby learn them with less computational overhead.

The CPPN encoding allows the HyperNEAT substrate to input and output an entire
board of neurons. This method thus differs from other scalable approaches that either
divide the board into local segments [3] or local features [2]. Constructing a function
from the holistic board geometry is important for several reasons. First, it removes the
need for a human or external process to divide the search space into local features or



segments. Second, constructing functions directly from geometry allow long-distance
geometric relationships to be taken into account. For example, the decision to place a
piece in Go often hinges not only on the position in the local area, but also on the state
of conflicts elsewhere on the board and the geometric relationship of those conflicts
with the local positions.

Future work will focus on incrementing to higher board sizes, evolving general
Go players with HyperNEAT, and comparing them to other Go players. In addition,
it is possible to bootstrap a Monte Carlo Tree Search (MCTS) algorithm with an
action-evaluation function evolved by HyperNEAT. For example, the Upper Confidence
Bounds Applied to Trees (UCT) algorithm is enhanced by adding a default policy [27];
however, the authors note that, “in many domains it is difficult to construct a good de-
fault policy.” It is possible that HyperNEAT can evolve an effective default policy for
UCT or any search algorithm.

7 Conclusion

This paper focused on the effects of scaling and demonstrated that players evolved
incrementally through a scalable representation learn faster and more effectively than
players evolved solely at the large scale. This result implies that fundamental concepts
learned at a lower resolution facilitated further learning at the higher scale. The sub-
strate extrapolation method scaled the information learned on the 5 x 5 Go board to the
7 x 7 board and the HyperNEAT algorithm was able to continue evolution at this new
resolution. The main contribution is a step towards holistic neural strategies through
indirect encoding that can be scaled to higher resolution or size.
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