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Abstract. While traditional approaches to machine learning are sensitive to high-
dimensional state and action spaces, this paper demonstrates how an indirectly
encoded neurocontroller for a simulated octopus arm leverages regularities and
domain geometry to capture underlying motion principles and sidestep the super-
ficial trap of dimensionality. In particular, controllers are evolved for arms with
8, 10, 12, 14, and 16 segments in equivalent time. Furthermore, when transferred
without further training, solutions evolved on smaller arms retain the fundamental
motion model because they simply extend the general kinematic concepts discov-
ered at the original size. Thus this work demonstrates that dimensionality can be a
false measure of domain complexity and that indirect encoding makes it possible
to shift the focus to the underlying conceptual challenge.

1 Introduction

Whether tackled through neuroevolution or temporal difference-based approaches, in
reinforcement learning problems, the number of dimensions in the state and action
space is often associated with problem difficulty [6, 11,18, 19]. Yet the complexity
of problems should not be determined by the dimensionality of such representations,
which are a superficial proxy for the underlying conceptual problem. Instead, the prob-
lem complexity should correlate to the underlying complexity of the principle to be
discovered. The argument in this paper is that indirect encoding, which means describ-
ing the solution as a pattern through a compressed representation [1,9, 14, 16], is the
essential ingredient that will allow reinforcement learning to transcend the superficial
aspects of problem dimensionality.

To make this point, the problem domain in this paper is an octopus arm, which is
approximated as a structure of interconnected muscles that must act together to create a
coordinated behavior. Thus it induces a high-dimensional state space and action space
(i.e. because each muscle in each segment can be articulated independently). In fact, the
high dimensionality of the 10-segment arm provoked previous researchers to dramat-
ically prune the action space by allowing only a small discrete set of pre-coordinated
actions [5].

The octopus arm problem is thus an ideal departure for a study on the ability of
indirect encoding to transcend such dimensionality. After all, the underlying kinematic
control principle is similar regardless of the precise number of segments, muscles and
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Fig. 1: Octopus arm actions. While there are theoretically many other combinations of mus-
cle contractions possible, Engel et al. [5] limited their model to these six to make the domain
tractable. Line thickness indicates the strength of the contractive force applied.

sensory inputs, suggesting that an approach that is sensitive to its particular dimension-
ality is missing something fundamental. Thus, to demonstrate this point in this paper,
an indirect encoding called hypercube-based neuroevolution of augmenting topologies
(HyperNEAT) evolves a description of how the weights of a neurocontroller relate to
each other across the domain geometry irrespective of the arm’s precise physical di-
mensionality [3, 8, 14]. This approach means that the HyperNEAT controller can actu-
ally learn to articulate all the muscles independently without the need to partition the
action space up front. Furthermore, as should be the case in learning such problems,
the indirect encoding learns equivalently across arms with a variable number of seg-
ments. Finally, neurocontrollers trained on arms with eight segments are scaled to a
larger number of segments without further training and still work because they encode
general control principles for the arm.

Thus the major contribution of this work is to demonstrate that indirect encoding is
a potentially critical ingredient in reinforcement learning and control problems if they
are to focus on the true problem complexity rather than the superficial dimensionality
of the state or action space.

2 Background

This section reviews prior work in training multi-segment arms and in indirect encoding
of neural networks.

2.1 Reinforcement Learning for Arm Controllers

An interesting study that provides inspiration for this paper demonstrated the ability
of Gaussian Process Temporal Differencing (GPTD) [4] to learn value functions in a
high-dimensional domain [5]. In it, a control policy is trained for an arm with many
degrees-of-freedom (i.e. the octopus arm [20]). GPTD produced value functions for
motion trajectories that touch targets at unknown locations within 20 trials.

The details of the original octopus arm experiment are interesting because they set
a new standard for high-dimensional control that this paper pushes even further. The
10-segment arm had a state space with 88 dimensions (i.e. position and velocity for
each vertex) that map to the six discrete actions shown in figure 1. Engel et al. [5] chose



these six actions to reduce the otherwise prohibitively large action space created by so
many muscles.

The next section introduces the indirect encoding in HyperNEAT, which will make
it possible to evolve such high-dimensional controllers without the need to shield the
learner from the true dimensionality of the space.

2.2 Indirect Encoding and HyperNEAT

Neuroevolution, i.e. evolving ANNs, can produce solutions for a broad array of control
tasks [6, 15,17, 19]. Many such methods are based on direct encodings, which means
each piece of structure in the phenotype is encoded by a single gene, making the dis-
covery of repeating motifs expensive and improbable. Therefore, indirect encodings [1,
9, 14, 16] have become a growing area of interest in evolutionary computation.

One such indirect encoding designed explicitly for neural networks is the Hypercube-
based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach [14], which
is an indirect extension of the directly-encoded NEAT approach [15, 17]. Rather than
expressing link weights as distinct and independent parameters in the genome, Hy-
perNEAT allows them to vary across the phenotype in a regular pattern through an
encoding called a compositional pattern producing network (CPPN) [13].

The idea behind CPPNss is that geometric patterns can be encoded by a composition
of functions that are chosen to represent common regularities. For example, the Gaus-
sian function is symmetric, so when it is composed with any other function alone, the
result is a symmetric pattern. The internal structure of a CPPN is a weighted network,
similar to an ANN, that denotes which functions are composed and in what order, which
means that instead of evolving ANNs as it normally does, NEAT [15, 17] can evolve
CPPNs that generate connectivity patterns across an ANN.

Formally, CPPNs are functions of geometry (i.e. locations in space) that output con-
nectivity patterns whose nodes are situated in n dimensions, where n is the number of
dimensions in a Cartesian space. Consider a CPPN that takes four inputs labeled z1,
Y1, T2 and yo; this point in four-dimensional space also denotes the connection between
the two-dimensional points (21, y;1) and (z2, y2). The output of the CPPN for that input
thereby represents the weight of that connection (figure 2). By querying every pair of
points in the space, the CPPN can produce an ANN, wherein each queried point is a
neuron position. While CPPNs are themselves networks, the distinction in terminology
between CPPN and ANN is important for explicative purposes because in HyperNEAT,
CPPNs encode ANNs. Because the connection weights are produced as a function of
their endpoints, the final structure is produced with knowledge of the domain geometry,
which is literally depicted geometrically within the constellation of nodes.

As arule of thumb, nodes are placed in a geometric space called the substrate to re-
flect the geometry of the domain (i.e. the state) [2, 8, 14]. For example, a visual field can
be laid out in two dimensions such that nodes that receive input from adjacent locations
in the image are literally adjacent in the network geometry. This way, knowledge of the
domain geometry is preserved and exploited by HyperNEAT where regularities (e.g.
adjacency, or symmetry, which the CPPN sees) are invisible to traditional encodings.
This capability is exploited in the octopus arm substrate introduced next.
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Fig. 2: Encoding the connectivity pattern. The four-dimensional CPPN encodes the connec-
tivity pattern of the substrate through an evolved network of geometric functions. The substrate
ANN is generated by querying the CPPN for the value of each potential connection from (z1, y1)
to (z2, y2). In this way, CPPNs capture patterns and regularities in domain geometry.

3 Scalable Neurocontroller for an Octopus Arm

The octopus arm domain formalized in this section is particularly challenging because
its state space and action space are both high-dimensional. Although Engel et al. [5]
reduced dimensionally by choosing only six canonical actions, the aim in this paper is
to learn from the full unprocessed action space. Furthermore, unlike any system before,
the learned controller will be asked to scale to even larger arms without further learning.

The simulation domain in this paper, based on Yekutieli et al. [20], models the kine-
matics and dynamics of a two-dimensional muscular hydrostat (which is the mechanism
of the octopus arm [12]) as a chain of quadrilateral polygons with fixed area connected
to a fixed base. The model constructs arms based on length (1), width (w), taper (t),
mass (m), and number of segments (n). At the vertex of each quadrilateral is a point
mass shared by adjacent segments. The dorsal, or upper, and ventral, or lower, edges of
each segment represent longitudinal muscles while the vertical edges between sections
represent transverse muscles. The muscles, modeled as spring-joints, are contracted by
increasing the spring constant and relaxed by reducing the spring constant.

The fixed size and incompressible nature of the arm are the key features that enable
the dynamic motion of the muscular hydrostat. These attributes are modeled by adjust-
ing each segment’s internal pressure: as external forces act to compress a segment, pres-
sure increases; conversely, as forces stretch and expand the segment, internal pressure
decreases. Thus segments change shape to restore the equilibrium between surface ten-
sion and internal pressure. Figure 1 shows the six basic actions utilized in Engel et al. [5]
as examples of the model’s motion effects. However, in this paper, the ANN will have
independent control of all 3n muscles in the arm, creating a high-dimensional action
space.

Because experiments in this paper involve moving towards a perceived object (un-
like Engel et al. [5]), the arm state is defined by sensor inputs that allow the controller
to infer the position of each segment relative to the target. Range sensors along the
arm provide cues about target position. Each sensor at each segment produces 36 ra-
dial distance measurements across the range [— ... 7] (figure 3a), allowing the target
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Fig. 3: Target perception and placement. The arm controller perceives the target through range
sensors (a) placed at each segment along the arm; the combined effect is shown (b) with non-
detecting beams removed for clarity. The training targets in this paper (c) are positioned beyond
the reach of the simple actions in figure 1.

to be seen by multiple beams simultaneously, especially as the sensor approaches the
target or as sensor resolution is increased. Thus the 36n total beams also create a high-
dimensional input space. Figure 3b illustrates the arm’s view of the target with the
non-detecting beams removed for clarity.

3.1 Substrate Architecture

The octopus arm substrate (figure 4) closely couples sensing to acting. The input layer
accepts sensor data directly and the output layer provides the contractive response for
each muscle. Finally, a hidden layer is provided to support nonlinear operation required
by the gravity and buoyancy effects acting on the arm.

To represent the sensor array described above, the controller must interpret 36
rangefinder inputs per segment. The arm model is composed of segments that have
a necessary order and relationship to the other segments in the arm, i.e. segment 1 con-
nects to segment 2, segment 2 connects to segment 3, etc. Thus, the perception layer is
constructed as a two-dimensional sheet with 6 as one axis and the arm’s proximal-distal
(PD) geometry as the other (figure 4, layer A).

To represent the action space, the substrate provides an output for each of the 3n
muscles in the arm. To take advantage of HyperNEAT’s ability to leverage domain ge-
ometry, the proximal-distal axis of the sensor layer is mirrored by the output (contrac-
tive) layer. Furthermore, note in figure 1 how the dorsal and ventral muscles act together
to form coordinated reaching behaviors. This configuration suggests aligning the dorsal,
transverse, and ventral muscles along the proximal-distal axis (figure 4, layer C).

By viewing the substrate architecture as a feedforward network spanning from the
sensor input layer (A), to the hidden layer (B), to the contractive output layer (C),
a CPPN with inputs (x1, y1, 2, y2) and outputs (AB, BC') provides a complete
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Fig. 4: Scalable neurocontroller architecture. The eight-segment substrate (a) can be scaled
to a 16-segment substrate (b) without further training. The substrate at any resolution contains
a two-dimensional input layer A that corresponds to the arm’s sensory input, a two-dimensional
hidden layer B, and a two-dimensional output layer C' that controls the musculature. To query
connections between A and B, the proximal-distal (PD) axis is the x; input and 6 is the y; input.
To query connections between B and C, the x1 input is also PD, and DTV (Dorsal-Transverse-
Ventral) is the y2 input. Because the CPPN encodes kinematic principles, resampling with the
node positions in (b) can produce a similar contractive pattern and arm pose (shown above).

encoding of the phenotype. Figure 4a illustrates how each of the 7,488 link weights in
an eight-segment controller (left) are set by a single CPPN.

The hope is that the principle that underlies moving a hydrostat is regular across the
segments of the arm and therefore can be captured by the CPPN.

3.2 Scaling

By constructing the substrate to reflect the domain geometry (figure 4a), larger arm
controllers are generated without further evolution by requerying the same CPPN at
higher-resolutions (figure 4b). This approach works because adding segments to the arm
is analogous to increasing the resolution of the hydrostat model. The CPPN provides a
nonlinear interpolation of the behavior policy for each of the 3n muscles.

4 Experiment

The first aim of the experiment is to investigate the ability of indirect encoding to facili-
tate learning to control a hydrostat with dozens of degrees of freedom that are not a pri-
ori restricted or pruned in any way. The second aim is to test the ability of an evolved
CPPN to generate controllers for higher resolution arms without further training. Both



tests can validate that HyperNEAT learns general principles of hydrostat control rather
than a single solution at a particular dimensionality.

The fitness function is designed to select controller behaviors that approach targets
quickly. The simulator records the distance between the tip of the arm and the target at
each timestep and calculates the average distance over a trial with a single target as:

tmax dt
davg = Z n ) (1)
=g !maz

where d; is the distance from the tip of the arm to the target center at time ¢ and ¢,,,4,
is the maximum number of timesteps in the trial. Individuals in the population are eval-
uated in six trials against six training targets (figure 3c) that are beyond the reach of
the simple movements shown in figure 1. Because the goal is to reduce the average dis-
tance, fitness for a single trial can be expressed as fi.iq1 = do — d2,, 4> Where dj is the
initial distance and squaring d,,, emphasizes early innovations that move towards the
target by providing larger rewards for small improvements. Negative fitness values are
set to zero and arms that succeed in touching the target with the tip earn a 25% bonus.

Because HyperNEAT differs from original NEAT only in its set of activation func-
tions, it uses the same parameters [15]. All experiments were run with a version of the
public domain ANJI package [10] augmented to implement HyperNEAT. The popula-
tion size was 100 and each run lasted 500 generations. The speciation threshold, §;, was
0.2 and the compatibility modifier was 0.3. Available CPPN activation functions were
sigmoid, Gaussian, sine, and linear functions. Recurrent connections within the CPPN
were not enabled. Signed activation was enforced in the CPPN, but the substrate was
unsigned, resulting in a node output range of [—1, 1]. By convention, a connection was
not expressed if the magnitude of its weight is below a minimal threshold of 0.2 [7].
These parameters were found to be robust to moderate variation.

To validate that eight-segment solutions can scale, their evolved CPPNs are re-
queried to generate controllers for arms with 10, 12, 14, 16, 18, and 20 segments with
no further training. It is important to note that these dimensionalities are indeed high be-
cause they impact the necessary dimensionality of the corresponding neurocontroller,
(i.e. an eight-segment controller must set 7,488 connection weights while a 20-segment
controller must set 46,800). Also, results cannot be compared directly to controllers
trained by Engel et al. [5] because they seek a single target blindly while those in this
paper can actively touch targets at multiple locations based on sensory inputs.

5 Results

Figure 5 shows training performance over generations when controllers are separately
evolved (i.e. not scaled) for arms with 8, 10, 12, 14, and 16 segments. 20 runs were com-
pleted at each resolution. Remarkably, the number of degrees-of-freedom has no signif-
icant effect on the training curve, suggesting that indirect encoding really is making it
possible to focus on learning the underlying principle independently of dimensionality.

Across all variants, CPPNs with an average of only 10.1 connections (stdev = 2.3)
encode substrates with between 7,488 (8 segments) and 29,952 connections (16 seg-
ments), demonstrating the considerable compression of the indirect encoding.
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Fig. 5: Training at different arm resolutions. HyperNEAT evolves neurocontrollers for arms
with 8, 10, 12, 14 and 16 segments in equivalent time because the CPPN discovers the underlying
kinematic patterns. Measurements are averaged over 20 runs.
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Fig. 6: Scaling solutions to larger arm controllers. The distance from the target surface at
each time-step is shown, demonstrating that the ability to move towards the target is preserved as
controllers are scaled to support arms with additional segments. Measurements are averaged over
20 runs.

The main scaling result (figure 6) is that the evolved contractive patterns transfer
well from controllers trained on eight segments to arms with an increasing number of
segments with no additional training. In the figure, the distance from the arm tip to
the target surface is graphed over timesteps, demonstrating that controllers maintain
the ability to approach targets as the physical structure scales; on average, even the
20-segment (worst) case approaches within 0.084 (4-0.05 at 95% confidence) units of
the target surface. It is important to note that the qualitative behavior of the arm at all
scales in figure 6 is the same (i.e. they all still approach the target) although the speed
of movement slows gradually and emergent physical characteristics begin to render the
original solution less effective.

The sequence shown in figure 7 demonstrates a typical scaled reaching behavior.
The contractive pattern shown was evolved as an eight-segment arm and applied to
a 16-segment arm with no further training. Videos of evolved arms and scaling are
available at http://eplex.cs.ucf.edu/octopusArm.
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Fig. 7: Typical reaching motion of a scaled hydrostat. This 16-segment controller is scaled di-
rectly from an eight-segment arm solution and illustrates how contracting the transverse muscles
allows the arm to extend beyond its relaxed length.

6 Discussion and Future Work

Finding solutions to problems in control should be about discovering an underlying
principle and not about the number of dimensions in the action or state representa-
tion. Traditional approaches [15, 17, 18] map state information to effectors as if each
is an independent dimension when in fact they are related. This traditional view of the
problem domain ties complexity to the dimensionality of the physical domain and thus
obfuscates the underlying concept.

The ability to evolve controllers for arms with 8, 10, 12, 14, and 16 segments (which
contain 7,488, 11,700, 16,848, 22,932, and 29,952 connections, respectively) in equiv-
alent time demonstrates that this physical structure’s dimensionality is a false measure
of the domain complexity. By exploring the space of kinematic principles, the indi-
rect encoding approach bypasses the increasing dimensionality of the physical struc-
ture. Similarly, the scaling results demonstrate that solutions evolved specifically for
the eight-segment arm model encompass fundamental kinematic strategies that apply
directly to arms with additional segments.

Thus indirect encoding becomes an important consideration for any problem in
which state or action dimensionality may be misleading, or for learning scalable control
policies. Whether it is a multi-segment arm, a robot hand that can add more fingers, or
a centipede with a variable number of legs, indirect encoding shifts the problem away
from the precise configuration towards the underlying principle, thereby opening up
such problems to machine learning.

7 Conclusions

For many problems, complexity is independent of the number of dimensions. The chal-
lenge is to transcend the distraction of superficial dimensionality by preserving mean-
ingful relationships, e.g. geometric principles like order, orientation, and proximity. The
octopus arm model is a good platform to test this idea because it can include an increas-
ing number of segments. By discovering an underlying kinematic pattern, the Hyper-
NEAT approach is able to sidestep the increasing dimensionality of the physical struc-
ture. Experimental results demonstrate that this approach yields controllers for arms
with 8, 10, 12, 14, and 16 segments in equivalent time and that evolved solutions can
provide controllers for arms with up to twice as many segments without further train-
ing. Thus this paper provides a lesson on the important role of indirect encoding in
reinforcement learning.
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