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ABSTRACT
An important goal for the generative and developmental sys-
tems (GDS) community is to show that GDS approaches
can compete with more mainstream approaches in machine
learning (ML). One popular ML domain is RoboCup and its
subtasks (e.g. Keepaway). This paper shows how a GDS ap-
proach called HyperNEAT competes with the best results to
date in Keepaway. Furthermore, a significant advantage of
GDS is shown to be in transfer learning. For example, play-
ing Keepaway should contribute to learning the full game
of soccer. Previous approaches to transfer have focused on
transforming the original representation to fit the new task.
In contrast, this paper explores transfer with a representa-
tion designed to be the same even across different tasks. A
bird’s eye view (BEV) representation is introduced that can
represent different tasks on the same two-dimensional map.
Yet the problem is that a raw two-dimensional map is high-
dimensional and unstructured. The problem is addressed
naturally by indirect encoding, which compresses the repre-
sentation in HyperNEAT by exploiting its geometry. The re-
sult is that the BEV learns a Keepaway policy that transfers
from two different training domains without further learning
or manipulation. The results in this paper thus show the
power of GDS versus other ML methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
As generative and developmental systems (GDS) matures

as a field, the question of where it provides a practical ad-
vantage comes into greater focus. The ability to evolve large
structures and regularities should prove advantageous in the
right context. The idea in this paper is that these capa-
bilities can be exploited in task transfer, i.e. bootstrapping
learning on one task to facilitate learning another task [3,
26, 28]. To demonstrate the unique potential of GDS in
transfer, a static state representation is introduced called a
bird’s eye view (BEV), which is a two-dimensional depiction
of objects on the ground from above. Its advantage is that
its dimensionality is constant no matter how many objects
are in the environment. Thus even if the task is transferred
to a version with more objects, the representation remains
the same (i.e. static), simplifying task transfer.

The challenge for the BEV is that representing a high-
resolution planar field requires a high-dimensional state space.
For example, for an artificial neural network (ANN) to pro-
cess such a representation at high resolution would require a
high number of inputs. The resultant “curse of dimensional-
ity” means a large state space must be learned from a small
proportion of examples [1, 2]. While this problem might
have prohibited such a representation in the past, indirect
encodings, which compress the solution representation by
reusing information, significantly expand the scope of pos-
sible representations. The indirect encoding in this paper,
called a compositional pattern producing network (CPPN;
[15]), represents ANN mappings between high-dimensional
spaces by exploiting regularities in their geometry, which is
well-suited to the BEV. An evolutionary algorithm called
Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT; [8, 9, 16]) that is designed to evolve
CPPNs is therefore able to learn effectively from the BEV.

The HyperNEAT BEV is tested in variants of the popular
Robocup Keepaway soccer benchmark [20]. One interesting
result is the longest holding time in the 3 vs. 2 Keepaway
variant yet recorded, demonstrating the ability of GDS to
compete with other ML methods on this task. Additionally,
unlike any method so far, HyperNEAT can transfer from 3
vs. 2 to 4 vs. 3 Keepaway with no change in representation
and no further learning. Finally, transfer from the signifi-
cantly simpler benchmark task Knight Joust [28] to Keep-
away results in enhanced learning, both instantaneously and
upon further training. These results demonstrate the critical
role of representation and the power of GDS in transfer.



2. BACKGROUND
The geometry-based methods that underlie the static rep-

resentation are introduced first in this paper and task trans-
fer is then discussed.

2.1 NeuroEvolution of Augmenting Topologies
(NEAT)

This section briefly reviews the NEAT evolutionary algo-
rithm [17, 19], a popular policy search method that evolves
ANNs. NEAT evolves connection weights as well as adds
new nodes and connections over generations, thereby in-
creasing solution complexity. It has been proven to be ef-
fective in challenging control and decision making tasks [19,
29, 32, 33]. NEAT starts with a population of small, sim-
ple ANNs that increase their complexity over generations by
adding new nodes and connections through mutation. That
way, the topology of the network does not need to be known
a priori; NEAT searches through increasingly complex net-
works as it evolves their connection weights to find a suitable
level of complexity. The techniques that facilitate evolving a
population of diverse and increasingly complex networks are
described in detail in Stanley and Miikkulainen [17]; Stan-
ley and Miikkulainen [19]; the important concept for the ap-
proach in this paper is that NEAT is a policy search method
that discovers the right topology and weights of a network to
maximize performance on a task. The next section reviews
the extension of NEAT called HyperNEAT that allows it to
exploit geometry through representation.

2.2 CPPNs and HyperNEAT
NEAT is a vehicle to study alternate representations be-

cause it easily extends to an indirect encoding, which means
a compressed description of the solution network. Such com-
pression makes the policy search practical even if the state
space is high-dimensional. One effective indirect encoding is
to compute the network structure as a function of geometry.
This section describes such an extension of NEAT, called
Hypercube-based NEAT (HyperNEAT; [8, 9, 16]), which
enables high-dimensional static representations. The effec-
tiveness of the geometry-based learning in HyperNEAT has
been demonstrated in multiple domains and representations,
such as checkers [8, 9], multi-agent predator prey [5, 6], vi-
sual discrimination [16], and quadruped locomotion [4]. A
full description of HyperNEAT is in Gauci and Stanley [8,
9]; Stanley et al. [16].

The main idea in HyperNEAT is that geometric relation-
ships are learned though an indirect encoding that describes
how the connectivity of the ANN can be generated as a func-
tion of geometry. Unlike a direct representation, wherein ev-
ery connection in the ANN is described individually, an indi-
rect representation describes a pattern of parameters with-
out explicitly enumerating each such parameter. That is,
information is reused in such an encoding, which is a major
focus in the field of GDS from which HyperNEAT originates
[18, 31]. Such information reuse allows indirect encoding to
search a compressed space. HyperNEAT discovers the regu-
larities in the geometry and learns a policy based on them.

The indirect encoding in HyperNEAT is called a com-
positional pattern producing network (CPPN; [15]), which
encodes the connectivity pattern of an ANN [8, 16]. The
idea behind CPPNs is that geometric patterns can be en-

Figure 1: A CPPN Describes Connectivity. A grid
of nodes, called the ANN substrate, is assigned coor-
dinates. (1) Every connection between layers in the
substrate is queried by the CPPN to determine its
weight; the line connecting layers in the substrate
represents a sample such connection. (2) For each
such query, the CPPN inputs the coordinates of the
two endpoints, which are highlighted on the input
and output layers of the substrate. (3) The weight
between them is output by the CPPN. Thus, CPPNs
can generate regular patterns of connections.

coded by a composition of functions that are chosen to rep-
resent common regularities. Given a function f and a func-
tion g, a composition is defined as f ◦ g(x) = f(g(x))).
Thus, a set of simple functions can be composed into more
elaborate functions through hierarchical composition (e.g.
f ◦ g(f(x) + g(x))). For example, the Gaussian function is
symmetric, so when it is composed with any other function,
the result is a symmetric pattern. The internal structure of
a CPPN is a weighted network, similar to an ANN, that de-
notes which functions are composed and in what order. The
appeal of this encoding is that it can represent a pattern
of connectivity, with regularities such as symmetry, repeti-
tion, and repetition with variation, through a network of
simple functions (i.e. the CPPN), which means that instead
of evolving ANNs, NEAT can evolve CPPNs that generate
ANN connectivity patterns.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes are
situated in n dimensions, where n is the number of dimen-
sions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space can also denote the connection between
the two-dimensional points (x1, y1) and (x2, y2). The output
of the CPPN for that input thereby represents the weight of
that connection (figure 1). By querying every pair of points
in the space, the CPPN can produce an ANN, wherein each
queried point is the position of a neuron. While CPPNs are
themselves networks, the distinction in terminology between
CPPN and ANN is important for explicative purposes be-
cause in HyperNEAT, CPPNs encode ANNs. Because the
connection weights are produced as a function of their end-
points, the final structure is produced with knowledge of the
domain geometry, which is literally depicted geometrically
within the constellation of nodes.

In effect, the CPPN paints a pattern within a n-dimensional
hypercube that is interpreted as an isomorphic connectivity
pattern. Connectivity patterns produced by a CPPN in this
way are called substrates so that they can be verbally distin-



Input: Substrate Configuration
Output: Solution CPPN
Initialize population of minimal CPPNs with random
weights;
while Stopping criteria is not met do

foreach CPPN in the population do
foreach Possible connection in the substrate do

Query the CPPN for weight w of connection;
if Abs(w) >Threshold then

Create connection with a weight scaled
proportionally to w (figure 1);

end

end
Run the substrate as an ANN in the task
domain to ascertain fitness;

end
Reproduce CPPNs according to the NEAT method
to produce the next generation;

end
Output the Champion CPPN;

Algorithm 1: Basic HyperNEAT Algorithm

guished from the CPPN itself. It is important to note that
the structure of the substrate is independent of the struc-
ture of the CPPN. The substrate is an ANN whose nodes
are situated in a coordinate system, while the CPPN defines
the connectivity among the nodes of the ANN. The experi-
menter defines both the location and role (i.e. hidden, input,
or output) of each node in the substrate.

As a rule of thumb, nodes are placed on the substrate
to reflect the geometry of the domain (i.e. the state), mak-
ing setup straightforward [4, 9, 16]. For example, a visual
field can be laid out in two dimensions such that nodes that
receive input from adjacent locations in the image are liter-
ally adjacent in the network geometry. This way, the con-
nectivity becomes a direct function of the domain geome-
try, which means that knowledge about the problem can be
injected into the search and HyperNEAT can exploit the
regularities (e.g. adjacency, or symmetry, which the CPPN
sees) of a problem that are invisible to traditional encod-
ings. For example, geometric knowledge can be imparted
e.g. by including a hidden node in the CPPN that com-
putes Gauss(x2−x1), which encodes the concept of locality
and symmetry on the x-axis, an idea employed in the im-
plementation in this paper. This idea can be illustrated by
considering three source points with x positions −1, 0, 1 and
one target point at x = 0.

w1 = Gauss(0 + 1) = 0.37

w2 = Gauss(0− 0) = 1

w3 = Gauss(0− 1) = 0.37

Thus, the output of this function is both symmetric about
the x-axis and decreasing with distance from the target.

In summary, instead of evolving the ANN directly, Hy-
perNEAT evolves the internal topology and weights of the
CPPN that encodes it, which is significantly more compact.
The process is shown in Algorithm 1. Next, task transfer is
discussed.

2.3 Task Transfer
Task transfer means applying knowledge learned in one

task to a new, related task [3, 26, 28]. This capability is
becoming increasingly important as the tasks studied in-
crease in complexity and learning must be applied to novel
situations. Transfer via inter-task mapping for policy search
methods (TVITM-PS; [28]) is one such leading transfer method
and the only for which results are reported in Keepaway,
which is also the benchmark domain in this paper.

In TVITM-PS, a transfer functional ρ is defined to trans-
form the policy π for a source task into the policy for a target
task, such that ρ(πsource) = πtarget. This functional is often
hand-coded based on domain knowledge, though learning it
is possible. When there are novel state variables or actions,
an incomplete mapping is defined from the source to the tar-
get. TVITM-PS can be adapted to multiple representations.
For example, in an ANN, input or output nodes whose con-
nections are not defined in the mapping (i.e. it is incomplete)
are made fully connected to the existing hidden nodes with
random weights. This incomplete mapping implies that fur-
ther training is needed to optimize the policies with respect
to the new state variables and actions. However, it makes it
possible to begin in the target domain from a better starting
point than from scratch. TVITM-PS is a milestone in task
transfer because it introduced a formal approach to moving
from one domain to another that defined how ambiguous
variables in the target domain should be treated.

This paper adds to our understanding of task transfer by
focusing on the role of representation. The next section
explains how indirect encoding makes it possible to learn
from a bird’s eye view.

3. APPROACH: BIRD’S EYE VIEW
A challenge for state representation in reinforcement learn-

ing tasks is that specific state variables are often tied to in-
dividual objects, which makes it difficult to add more such
objects without expanding the space [28]. This section pro-
poses the bird’s eye view (BEV) perspective, which scales
to higher complexity states without altering the representa-
tion. The BEV representation is explained first, followed by
its implementation, which is an ANN whose connectivity is
trained by HyperNEAT.

3.1 Bird’s Eye View
Humans often visualize data from a BEV. Examples in-

clude maps for navigation, construction blue prints, and
sports play books. Key to these representations is that they
remain the same (i.e. they are static) no matter how many
objects are represented on them. For example, a city map
does not change size or format when new buildings are con-
structed or new roads are created. Additionally, the physical
geometry of such representations allow agents to understand
spatial relationships among objects in the environment by
placing them in the context of physical space. The BEV also
implicitly represents its borders by excluding space outside
them from its field of view. As suggested in Kuipers’ Spatial
Semantic Hierarchy, such metrical representation of the ge-
ometry of large-scale space is a critical component of human
spatial reasoning [10].



A distinctive feature of the proposed representation is that
the agent also requests actions within the same BEV per-
spective. For example, to request a pass the agent can indi-
cate its target by simply highlighting it on a two-dimensional
output array. That way, instead of making decisions blind to
the geometry of physical space, it can be taken into account.

Egocentric data (figure 2a) can be mapped to an equiva-
lent BEV by translating from local (relative) coordinates to
global coordinates established by static points of reference
(i.e. fiducials). The global coordinates mark the location
of objects in the BEV (figure 2b). This translation allows
the mapping of any number of objects into the static repre-
sentation of the BEV. Importantly, the continuous coordi-
nate system must be discretized so that each variable in the
state representation corresponds to a single discrete loca-
tion. This discretization allows the two-dimensional field to
be represented with a finite set of parameters. The values of
these parameters denote objects in their regions. However,
because the solution is indirectly encoded, the discretization
resolution can be arbitrarily increased. Interestingly, while
the traditional egocentric Keepaway representation (figure
2a) is designed specifically to include the relationships that
people believe are important for Keepaway, the BEV is en-
tirely generic, i.e. it is just a two-dimensional field, and
therefore could be applied to any domain that takes place
in two dimensions.

Note that while the division of the field in figure 2b ap-
pears reminiscent of tile coding [25], that appearance is su-
perficial because (1) a tile coding of the state variables in fig-
ure 2a would still be egocentric whereas the BEV is not, and
(2) tile coding breaks the state representation into chunks
that can be optimized separately whereas the HyperNEAT
CPPN derives the connectivity of the policy network directly
from the geometric relationships among the squares in figure
2b, as explained next.

3.2 HyperNEAT: Learning from the BEV
To understand the impact of learning from the true geome-

try of the domain, consider a two-dimensional field converted
to a traditional vector of parameters, which removes the ge-
ometry (figure 2c). In contrast, HyperNEAT sees the task
geometry, thereby exploiting geometric regularities and re-
lationships, such as locality, which the BEV makes explicit.

For HyperNEAT to exploit patterns in a two-dimensional
BEV (e.g. in soccer), the geometry of the input layer of
the substrate is made two-dimensional, as in figure 3, which
comes naturally from the domain. That way, CPPNs can
compute the connectivity of the substrate as a function of
that geometry. The x and y coordinates of each input unit
are in the range [−1, 1]. Furthermore, the output layer of
the substrate matches the dimensions of the BEV so that
the CPPN can exploit the geometric relationship between
the input space and output space as well (figure 3). That the
outputs are themselves a discretized two-dimensional plane
is another significant difference from tile coding. Each co-
ordinate in this substrate represents a discretized region of
the overhead view of physical space. A four-dimensional
CPPN with inputs x1, y1, x2, and y2 determines the weights
between coordinates in the two-dimensional input layer and
the two-dimensional output layer, creating a pattern of con-

nections between regions in the physical space. Thus, the
internal connectivity of the ANN is completely defined by
the pattern produced by the evolved CPPN. Connectivity
may range from fully connected to sparsely connected and
can include regularities based on properties such as locality.
To represent world state, objects and agents are literally
“drawn” onto the input substrate, like marking a map. The
generated network then can make decisions based on the re-
lationships of such features in physical space.

In this way, the BEV makes it possible to add new features
(e.g. a new player) to the state space without the need to
add new inputs. Instead, they can now simply be drawn
onto the existing representation. That way, task transfer
to different numbers of players is made simple. The next
section introduces the experiment designed to demonstrate
the benefits of this approach.

4. EXPERIMENTAL SETUP
The experiments in this paper are designed to investigate

the benefit of indirect encoding in task transfer. This pa-
per focuses on the idea that an effective representation for
transfer is one that does not need to change from one task
to the next. Indirect encoding facilitates such static rep-
resentation by making possible high-dimensional geometric
depictions of state. Because the representation is consistent,
it has the potential to exhibit improved performance in the
target domain immediately after transfer, without further
learning. This section explains the domain, the methods
that are compared, and the experiments.

The Robocup simulated soccer Keepaway domain [22] is
suited to such an investigation because it is a popular RL
benchmark and can be scaled to different numbers of agents
to create new versions of the same task. Experiments are
run on the Keepaway 0.6 player benchmark [20] and the
Robocup Simulator Soccer Server v. 12.1.1 [13]. Robocup
Keepaway is challenging because it includes a large state
space, partially observable state, and noisy sensors and ac-
tuators. In Keepaway, keepers try to maintain possession of
the ball within a fixed region and takers attempt to take it
away. The number of agents and field size can be varied to
make the task more or less difficult: The smaller the field
and the more players in the game, the harder it becomes.

Each learning method in this paper is trained in the stan-
dard benchmark setup [23] of the three keepers versus two
takers task on a 20m×20m field. In this setup, agents’ sen-
sors are noisy and their actions are nondeterministic. Takers
follow static policies, wherein the first two takers go towards
the ball and additional takers (i.e. when scaled to 4 vs. 3) at-
tempt to block open keepers. The learner only controls the
keeper who possesses the ball; its choices are to hold the ball
or pass to a specific teammate. The keepers’ reward is the
length of time they hold ball. In the 3 vs. 2 task, 13 variables
traditionally represent the agent’s state [23]. These include
each player’s distance to the center of the field, the distance
from the keeper with the ball to each other player, the dis-
tance from each other keeper to the closest taker, and the
minimum angle between the other keepers and the takers.
The three possible actions are holding the ball or passing
to one of the other two keepers. The keeper with the ball
remains stationary, while the other keepers follow a fixed



(a) Egocentric view (b) BEV (c) Losing Geometry

Figure 2: Alternative Representations of a Soccer Field and the Importance of Preserving Geometry. Several
parameters (a) represent the agent’s relationship with other agents on a soccer field (taken from a standard
Robocup representation [13]). Each distance and angle pair represents a specific relationship of the agent to
another agent. The BEV (b) represents the same relationships as paths in the geometric space. A square
depicts the agent, circles depicts its teammates, and triangles its opponents. The overhead perspective also
makes it possible to represent any number of agents without changing the representation. Interestingly, if
a two-dimensional field is transformed into a traditional vector of parameters, it forfeits knowledge of the
geometry of the domain (c).

Figure 3: BEV Implemented in the Substrate. Each
dimension ranges between [−1, 1] and the input and
output planes of the substrate are equivalently con-
structed to take advantage of geometric regularities
between states and actions. Because CPPNs are
an indirect encoding, the high dimensionality of the
weights does not affect performance. (The CPPN is
the search space.)

policy of moving toward the least congested position on the
field, where congestion is defined as the number of players
near that position.

To test the ability of the HyperNEAT BEV to learn this
task, it is compared to both static policies [20] and the learn-
ing algorithms Sarsa [14], NEAT [19], and EANT [12]. The
static benchmarks are Always-Hold, Random, and a Hand-
Coded policy, which holds the ball if no takers are within
10m [21]. State Action Reward State Action (Sarsa; [14]) is
an on-policy temporal difference RL method that learns the
action-value function Q(s, a). Each keeper separately learns
which action to take in a given state to maximize the reward
it receives [29]. Regular NEAT [17] evolves directly-encoded
ANNs to maximize a fitness function. The ANNs receive 13
state inputs (like Sarsa) to define the state of the system and
produce three outputs to select an action. EANT [12] is an
additional directly-encoded neuroevolution algorithm based
on NEAT that learned Keepaway. Though similar to NEAT,
it distinguishes itself by more explicitly controlling the ratio
of exploration to exploitation during evolution. The fitness
in Robocup Keepaway is the average length of time that
keepers can hold the ball over a number of trials [29].

Input: Substrate ANN, KeeperWithBall Position,
KeeperWithoutBall Positions, Taker Positions

Reset all ANN input values to 0;
Set ANN inputs at coordinate of Keeper Positions to 1;
Set ANN inputs at coordinate of Taker Positions to -1;
foreach KeeperWithoutBall Position do

Create Line from Keeper to KeeperWithBall;
foreach ANN input coordinate within Threshold
distance of Line AND Between Keeper and
KeeperWithBall do

Increment ANN input by 0.3;
end

end
foreach Taker Position do

Determine Line from Taker to KeeperWithBall;
foreach ANN input coordinate within Threshold
distance of Line AND Between Taker and
KeeperWithBall do

Decrement ANN input by 0.3;
end

end

Algorithm 2: Drawing World State on the Substrate.

As described in Section 3, the HyperNEAT BEV trans-
forms the traditional state representation to explicitly cap-
ture the geometry. The substrate is a 20 × 20 input layer
connected to a 20 × 20 output layer and thus encompasses
160,000 potential connections. It is important to note that
this dimensionality is far beyond the point after which di-
rect encodings have been shown to struggle [16]. As with
Sarsa in Stone and Sutton [21], this policy representation
does not include a hidden layer. However, the CPPN that
encodes its weights does evolve internal nodes. Thus the
pattern of weights across the connections is itself potentially
nonlinear. Each node in a substrate layer represents a 1m2

discrete chunk of Keepaway field. Each keeper’s position
is marked on the input layer with a positive value of 1.0
in its containing node and takers are similarly denoted by
−1.0. Paths are literally drawn from the keeper with the
ball to the other players (as in figure 2b and Algorithm 2).
Positive values of 0.3 depict paths to other keepers and val-
ues of −0.3 depict paths to takers. These values for agents
and paths are experimentally determined and robust to mi-
nor variation. Actions are selected from among the output



nodes (top layer of figure 3) that correspond to where the
keepers are located: If the highest output is the node where
the keeper with the ball is located, it holds the ball. Oth-
erwise, it passes to the teammate with the highest output
at its node. These action selections thus correspond exactly
with the three actions available to Sarsa, NEAT, and EANT.

The population size in HyperNEAT is 100. Available
CPPN activation functions are absolute value, bipolar sig-
moid, Gaussian, linear, sine, and step. Signed activation is
used, resulting in a node output range of [−1, 1]. By conven-
tion, a connection is not expressed if the magnitude of the
corresponding CPPN output is below a minimal threshold
of 0.2 [16]. The probability of adding a node to the CPPN
is 0.05 and the probability of adding a connection is 0.18.
These parameters were found to be robust to moderate vari-
ation in preliminary experimentation. Fitness is assigned
according to the generated ANN’s average ball possession
time over at least 30 trials and up to 100 trials assigned to
those above the mean, following Taylor et al. [29].

Task transfer is first evaluated by training a HyperNEAT
BEV on the 3 vs. 2 task on a 25m×25m field (instead of
the standard 20m×20m) and testing the trained BEVs on
the 4 vs. 3 version of the task on the same field without any
further training. The larger field accommodates the larger
version of the task [30]. To switch from 3 vs. 2 to 4 vs. 3, the
additional players and paths are simply drawn on the input
layer as usual, with no transformation of the representation
or further training. The resulting performance on 4 vs. 3
is compared to TVITM-PS ([30]; described in Section 2.3),
which is the leading transfer method for this task. TVITM-
PS results, which were obtained by Taylor et al. [30], are
from policies represented by an ANN trained by NEAT [30].
Unlike the HyperNEAT BEV, TVITM-PS requires further
training after transfer because ρ expands the ANN by adding
new state variables.

Second, transfer is further evaluated by first training the
HyperNEAT BEV on the simpler task of Knight Joust [27,
28]. In Knight Joust an agent and opponent are situated
on opposite ends of a 20 × 20 grid world. The objective
is that the agent reach the other side (i.e. the goal side)
of the world without touching its opponent. The agent is
allowed three types of moves: one square forward, one for-
ward and two left, and one forward and two right. The
opponent follows a static stochastic policy that attempts to
intercept the agent. While Knight Joust is significantly dif-
ferent from Keepaway, a common aspect between them is
that at each step the agent must make the decision that
best avoids the opponent. Also, Knight Joust is simpler,
eliminating such complexity as multiple agents, noise, and
kicking a ball, making it more tractable.

Similarly to the change in representation in Keepaway,
agent state is drawn onto the BEV as the equivalent paths.
These paths are from the agent to the opponent and from
the agent to the left and right corners of the goal side. Also,
as in Keepaway, actions are selected by querying specific
outputs: the square in front of the agent (move forward),
the right goal side corner (right knight jump), and the left
goal side corner (left knight jump). The best individuals

Method Average Hold Time
HyperNEAT BEV 15.4s

EANT 14.9s

NEAT 14.0s

Sarsa 12.5s

Hand-tuned Benchmark 8.3s

Always Hold Benchmark 7.5s

Random Benchmark 3.4s

Table 1: Performance Results on the Benchmark
Keepaway. Average best performance by method is
shown. The HyperNEAT BEV holds the ball longer
than previously reported best results for neuroevo-
lution and temporal difference learning methods.
Results are shown for Evolutionary Acquisition of
Neural Topologies (EANT) from Metzen et al. [12],
NeuroEvolution of Augmenting Topologies (NEAT)
from Taylor et al. [29], and State Action Reward
State Action (Sarsa) from Stone and Sutton [21].

from the end of such training seeds the beginning of training
for Keepaway.

5. RESULTS
In the Robocup Keepaway benchmark, performance is

measured by the number of seconds that the keepers main-
tain possession [20, 21, 30]. After training, the champion of
each epoch is tested over 1,000 trials. Performance results
are averaged over five runs, each consisting of 50 genera-
tions of evolution, which takes approximately 1,000 hours
of simulator time. In 3 vs. 2 Keepaway on the 20m×20m
field, the best keepers from each of the five runs controlled
by a BEV substrate trained by HyperNEAT maintain pos-
session of the ball on average for 15.4 seconds (sd = 1.31),
which significantly outperforms (p < 0.05) all static bench-
marks (Table 1). Furthermore, assuming similar variance,
this performance significantly exceeds (p < 0.05) the current
best reported average results [22, 29] on this task for both
temporal difference learning (12.5 seconds) and NEAT (14.0
seconds), and matches EANT (14.9 seconds; Table 1). This
result establishes that the HyperNEAT BEV, an indirect en-
coding, is competitive with the top learning algorithms on
a major benchmark task in machine learning.

In transfer learning the BEV is evaluated by testing indi-
viduals trained for 20 generations only on the 3 vs. 2 task
on a 25m×25m field on both the 3 vs. 2 and 4 vs. 3 tasks
for 1, 000 trials each. Note that this evaluation of transfer
differs from Taylor et al. [30], in which teams trained on the
smaller task are further trained on the larger task after the
transfer because new parameters are added. Performance is
averaged over five runs, following Taylor et al. [29]. Figure 4
shows the average test performance on both 3 vs. 2 (trained)
and 4 vs. 3 (untrained; immediately after transfer) of each
generation champion. Testing performance on the 3 vs. 2
task improves to 14.3 seconds on average over each run. At
the same time, the test performance of these same individ-
uals on the 4 vs. 3 task, which was not trained, improves
from 6.6 seconds to 8.1 seconds on average. In contrast, the
previous best approach to transfer learning in this domain
required executing a transfer functional and additional train-
ing for between 50 and 200 hours (depending on the chosen
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Figure 4: Transfer Results from 3 vs. 2 to 4 vs. 3
Keepaway. Transfer learning performance is shown.
As the performance (averaged over five runs) of the
champion on the 3 vs. 2 task improves, the transfer
performance on the 4 vs. 3 task also consequently
improves from 6.6 seconds to 8.1 seconds without
ever training for it. The improvement is positively
correlated (r = 0.87).

transfer function) beyond the initial bootstrap training in 3
vs. 2 to achieve 8.0 second episode duration [30]. Thus, with
the BEV, transfer is instantaneous and requires no special
adjustments to the representation to achieve the same result
as many hours of further training with TVITM-PS.

Transfer is also evaluated from the simpler task of Knight
Joust on a 20× 20 grid to 3 vs. 2 Keepaway on a 20m×20m
field. Evolution is run for 20 generations on the Knight Joust
task and then the champions seed the beginning runs of the
3 vs. 2 Keepaway. Further training is then performed over
ten additional generations of evolution. Performance of the
champion genomes from Knight Joust is 0.3 seconds above
the performance of initial random individuals. After one
generation of evolution, the best individuals from transfer
exceed the raw performance by 0.6 seconds. Finally, after
ten further generations the best individuals with transfer
hold the ball for 1.1 seconds longer than without transfer
(figure 5). The results are averaged over 30 runs and are
significant (p < 0.05). Thus even preliminary learning in a
significantly different domain proved beneficial to the BEV.
In contrast, previous transfer results from Knight Joust to
Keepaway from Taylor and Stone [27] demonstrated an ini-
tial performance advantage, but after training for five sim-
ulator hours there was no performance difference between
learning with transfer and without it.

6. DISCUSSION
TVITM-PS remains an important tool in task transfer for

domains in which the representation must change with the
task. However, the BEV shows that a carefully chosen repre-
sentation with an indirect encoding can sometimes eliminate
the need to change the representation. This property of the
BEV is good news because, as a two-dimensional field, it
is a highly generic representation that can apply to many
tasks. In fact, it is precisely because it is so generic that it
is able to remain static when transferring from one task to
another. The deeper lesson is the critical role of representa-
tion in transfer and the consequent need for algorithms that
can learn from relatively high-dimensional representations
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Figure 5: Transfer Results from Knight Joust to
Keepaway. Direct transfer and further training per-
formance averaged over 30 runs are shown. The
initial champion performance from Knight Joust on
Keepaway outperforms initial random individual by
0.3 seconds. After one generation, this advantage
from transfer increased to 0.6 seconds and at 10
generations the advantage is 1.1 seconds. Thus,
performance on Keepaway, both instantaneous and
with further training, benefits from transfer from
the Knight Joust domain with significance p < 0.05.

of task geometry and overcome the “curse of dimensionality”
[1, 2, 7, 11, 24]. Indeed, the human eye contains millions of
photoreceptors, which provide the same set of inputs to ev-
ery visual task tackled by humans. Thus this paper provides
initial evidence that the capabilities of GDS do indeed pro-
vide concrete advantages over more traditional approaches
in some domains.

An exciting implication of this work is that the power of
static transfer and indirect encoding can potentially boot-
strap learning the complete game of soccer. After all, the
key elements of soccer are present in Keepaway as well and
even the most basic of geometric concepts present in Knight
Joust contribute to learning Keepaway. RoboCup soccer is
among the hottest applications in ML and the idea of static
representation with indirect encoding in transfer can poten-
tially contribute to scaling up to the full game in the future.

7. CONCLUSION
This paper demonstrated that GDS is competitive with

leading methods in a popular benchmark domain, RoboCup,
and introduced the idea that static representation facilitates
transfer. With a static representation, no matter how many
objects are in the domain, the size of the state represen-
tation remains the same. In contrast, in traditional rep-
resentations, changing the number of players (e.g. in the
Robocup Keepaway task) forces changes in the representa-
tion by adding dimensions to the state space. Importantly,
the BEV, which is enabled by an indirect encoding, achieved
transfer learning from 3 vs. 2 to 4 vs. 3 Keepaway without
further training and demonstrated an advantage, both in-
stantaneously and upon further training, in transfer learning
from Knight Joust to Keepaway. These results highlight the
critical role that representation plays in learning and trans-
fer. Altering the representation simplifies transfer learning.
Yet high-dimensional static representations require indirect



encodings that take advantage of their expressive power,
such as in HyperNEAT. Such advanced representations in
conjunction with indirect encoding can contribute to the
transfer of learning to more challenging tasks, validating the
practical importance of GDS as a scientific pursuit.
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