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Abstract

The aim of this paper is to introduce a lightweight two-
dimensional domain for evolving diverse and interesting arti-
ficial creatures. The hope is that this domain will fill a need
for such an easily-accessible option for researchers who wish
to focus more on the evolutionary dynamics of artificial life
scenarios than on building simulators and creature encodings.
The proposed domain is inspired by Sodarace, a construc-
tion set for two-dimensional creatures made of masses and
springs. However, unlike the original Sodarace, the indi-
rectly encoded Sodarace (IESoR) system introduced in this
paper allows evolution to discover a wide range of com-
plex and regular ambulating creature morphologies by en-
coding them with compositional pattern producing networks
(CPPNs), which are an established indirect encoding orig-
inally introduced for encoding large-scale neural networks.
The result, demonstrated through a technique called novelty
search with local competition (which are combined through
multiobjective search), is that IESoR can discover a wide
breadth of interesting and functional creatures, suggesting its
potential utility for future experiments in artificial life.

Introduction
An important aim of artificial life is to uncover the condi-
tions that yield interesting discoveries in evolutionary do-
mains. For example, researchers studying open-ended evo-
lution (Channon, 2001a,b; Maley, 1999; Ray, 1992; Stan-
dish, 2003; Yaeger, 1994) seek to produce dynamics that
yield a continual stream of novel and potentially more com-
plex phenotypes. Other approaches to evolving lifelike crea-
tures focus less on the evolutionary dynamics than on a par-
ticular property like morphology (Joachimczak and Wrobel,
2012), locomotion (Clune et al., 2011; Lehman and Stan-
ley, 2011a), or both (Auerbach and Bongard, 2012; Bongard
and Paul, 2000; Hornby and Pollack, 2002; Krcah, 2007;
Lehman and Stanley, 2011b; Sims, 1994). The promise of
such investigations is that they can potentially reveal key
conditions that lead to the most compelling or natural re-
sults.

However, a significant obstacle to entering this research
area is the lack of standardized artificial creature domains
and genetic encodings. Indeed, in almost all such work
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Figure 1: Sodarace Examples. Human-designed racers (a)
exhibit diverse strategies and morphologies for ambulation
while those produced through the evolutionary optimizer (b)
share an amoeba-like morphology and similar ambulation.

researchers design their own domains and encodings from
scratch, creating a high barrier to entry. In effect there is
no out of the box domain that is easy to integrate quickly
into a larger experimental framework. For example, an ex-
periment aiming to research the impact of different evolu-
tionary dynamics or selection pressures on open-ended dis-
covery presently requires not only formulating a hypothesis,
but also an entire domain and genetic encoding, which may
not be the main motivation for the investigation in the first
place. While of course sometimes researchers will prefer to
build such experiments from the ground up, the availability
of an easy, lightweight option that makes it possible to focus
quickly on broader evolutionary questions would neverthe-
less be beneficial to the field overall.

The aim of this paper is to highlight such a lightweight
option for a broad creature-space with low barrier to entry.
The key concept is to introduce an encoding that opens a
Sodarace-like domain of two-dimensional ambulatory crea-
tures (McOwan and Burton, 2013, 2005) to broad and di-
verse evolutionary exploration and discovery. Sodarace is
a simulation engine for two-dimensional creatures made of
masses, springs, and muscles that ambulate based on the
construction of their body morphology. It was originally in-
troduced with human designers in mind, allowing them to
construct their own Sodaracers by hand and then race them
competitively, yielding a collection of diverse and interest-



ing human-designed morphologies reminiscent of the out-
put of a successful artificial life world (figure 1a). In fact,
one version of Sodarace even included an evolutionary opti-
mizer, but because of the simplicity of its genetic encoding,
the evolved morphologies only represent a small corner of
the possibilities suggested by the human designs (figure 1b).

To open up such a domain to more interesting evolu-
tion, a Sodarace-inspired domain and encoding called indi-
rectly encoded SodaRace (IESoR) is introduced in this pa-
per that is designed explicitly for evolutionary exploration.
In particular, the possibility of evolving a range of natural
yet diverse morphologies exhibiting regularities across their
structure is created by compositional pattern producing net-
works (CPPNs) (Stanley, 2007) evolved by the HyperNEAT
algorithm (Gauci and Stanley, 2010; Stanley et al., 2009).
While HyperNEAT and CPPNs were originally introduced
to evolve large-scale neural networks, because the creatures
in IESoR are also defined fundamentally by nodes and con-
nections, HyperNEAT can in effect also evolve creature bod-
ies with the same regularities and symmetries seen in CPPN-
encoded neural networks (Clune et al., 2011).

With this new Sodarace-inspired implementation and an
established indirect encoding behind it, the potential for the
system to evolve both far more variety and quality than the
original Sodarace evolver is demonstrated through a novelty
search with local competition (Lehman and Stanley, 2011b),
which is a recent method for efficiently surveying the range
of possibilities that exist within a particular design space.
The main outcome is that IESoR indeed introduces a rich
and easily accessible platform for exploring a wide variety
of interesting creatures with low simulation cost and con-
crete visual payoff.

Background
This section contains an overview of Sodarace and MINS,
the online projects that serve as the inspiration for IESoR, as
well as a brief review of the NEAT and HyperNEAT meth-
ods used to encode creature morphology in IESoR.

Sodarace
The Sodarace project is a simple two-dimensional physics
world consisting entirely of masses, springs, and basic os-
cillatory muscles (McOwan and Burton, 2013, 2005). The
goal in Sodarace is to create virtual robots and race them
in different environments. Both the robots and the environ-
ments are usually hand-crafted by users. However, to aid
in creating robots, a construction kit is provided to allow
discovery and exploration by the community (McOwan and
Burton, 2013, 2005).

The Sodarace project was originally conceived as a type
of online Olympics meant to test humans against machine
intelligence at the task of designing robot racers. In fact,
one redesign of the software includes an evolutionary algo-
rithm that optimizes morphologies for racing. Reflecting the

software’s educational aspirations, an online repository of
creatures and all relevant software packages are accessible
in a centralized location (McOwan and Burton, 2013). At
the peak of popularity, Sodaconstructor, the tool for creat-
ing the creatures, was played by about a million active users
(McOwan and Burton, 2005), suggesting its potential as a
platform for exploration and discovery.

MINS
While Sodarace was a beacon for user creativity, the project
itself was created over a decade ago and the community has
declined since then. Nevertheless, the peak popularity of the
project suggests the domain has wide appeal, though some
aspects of the original software make Sodarace inaccessible
to academic research. For example, as a closed source Java
applet, certain parameters of the races cannot be modified
because the Sodaconstructor user interface does not provide
user access.

To address the obstacle to research, Stefan Westen created
Mins Is Not Sodarace (MINS), an open source replica of the
Sodarace environment (Westen, 2013). MINS is fully com-
patible with Sodarace, allowing the user to import design
and environments from Sodaconstructor. By creating an al-
ternative open-source environment, MINS allows adjusting
parameters that are hardcoded inside the Sodarace domain.
In an effort to curb cheating by Sodarace creatures, MINS
alters the environment ceiling size, starting velocities, and
maximum movement speeds.

MINS is an inspiration for the work in this paper in part
because the variety of creature types found with the Soda-
constructor suggests the space of creatures is rich. MINS
also shows that replicating the Sodarace environment is fea-
sible and lightweight, while maintaining backwards compat-
ibility. The primary principle extracted from Sodarace and
MINS is the use of masses, springs, and muscles to construct
varied creatures inside a customizable physics environment
(Westen, 2013).

NEAT and HyperNEAT
Evolving morphology and control is familiar to artificial life
(Auerbach and Bongard, 2012; Bongard and Paul, 2000;
Hornby and Pollack, 2002; Krcah, 2007; Lehman and Stan-
ley, 2011b; Sims, 1994). In this spirit, recent additions to
Sodarace include a utility with an evolutionary algorithm
for creating and optimizing racers inside of the software
(McOwan and Burton, 2005). In particular, inside of the So-
darace “Kiosk,” users are presented with a limited interface
for designing a creature. The user can adjust the number
of virtual nodes and muscles along with the amplitude and
frequency at which the muscles oscillate. The evolution-
ary algorithm then searches constrained by those parameters
through selection and mutation to find the fastest racer pos-
sible. Inside of the Sodarace Kiosk, by default creatures ap-
pear to be circular in nature with criss-crossed inner connec-



tions. With gravity, the resulting creatures take on the shape
of a semi-circular blob (figure 1b). The Sodarace commu-
nity refers to this creature morphology as being “amoeba-
like.” There is a Sodarace utility called the Amoebamatic
that aids users in constructing these amoeba racers.

However, the most interesting handcrafted creatures from
Sodarace generally do not exhibit amoeba-like properties.
That is, the included genetic encoding is highly constrained
to a small subset of all the interesting possibilities. Ideally,
the encoding and evolutionary algorithm for evolving such
racers would be able to search a wide breadth of possible
creatures, which would make this kind of domain relevant to
artificial life. Yet to efficiently search such a space requires
a principled encoding capable of searching variable levels of
complexity.

The first step towards this end in IESoR is the NeuroEvo-
lution of Augmenting Topologies algorithm (NEAT) (Stan-
ley and Miikkulainen, 2002, 2004). Although NEAT was
originally introduced as a method for evolving artificial neu-
ral networks (ANNs), a major appeal of NEAT is its ability
to evolve increasingly complex structures of any type, so
that evolutionary search is not limited to a fixed space of
possibilities.

Conveniently for IESoR, a method called Hypercube-
based NEAT (HyperNEAT) (Gauci and Stanley, 2010; Stan-
ley et al., 2009) builds on NEAT to help it encode large
connectivity patterns with natural regularities like symme-
try and repetition of structure. While such regularities are
useful for neural networks, they can also in principle benefit
bodies made of connections and joints in a similar way.

The key ingredient behind HyperNEAT is an indirect en-
coding called a compositional pattern producing network
(CPPN) (Stanley, 2007). The idea behind CPPNs is that ge-
ometric patterns can be encoded by a composition of func-
tions that are chosen to represent common regularities. The
internal structure of a CPPN is a weighted network, similar
to an ANN, that denotes which functions are composed and
in what order, which means that instead of evolving ANNs
as it normally does, NEAT can evolve CPPNs that generate
a connectivity pattern across a network.

The difference in this paper is that the pattern encoded
by CPPNs is interpreted as a body plan for a Sodarace-like
creature instead of a neural network. In fact, in a signifi-
cantly different domain, Auerbach and Bongard (2012) en-
coded the bodies of three-dimensional ambulating creatures
with CPPNs. The indirect CPPN encoding can compactly
represent patterns with regularities such as symmetry, rep-
etition, and repetition with variation (Secretan et al., 2011;
Stanley, 2007), which are also exhibited by many natural
organism morphologies on Earth. In fact, part of the inspira-
tion for CPPNs derives from observations of natural bodies
(Stanley, 2007).

To understand how a composition of functions could rep-
resent these regularities, simply by including a Gaussian
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Figure 2: Creating a Sodarace-like body using a Hy-
perNEAT CPPN. In regular HyperNEAT, the CPPN (left)
would query the substrate (right) to determine the weights
and presence (determined by the LEO output; Verbancsics
and Stanley (2011)) of its connections. However, in IESoR
the CPPN outputs the muscle, amplitude, and phase param-
eters for each queried connection instead of a connection
weight. That way, the CPPN in effect describes the proper-
ties of a Sodarace body instead of a neural network, yet still
with the same benefits of HyperNEAT as usual. The resul-
tant creature is placed into a two-dimensional world where
it attempts to ambulate.

function, which is symmetric, the output pattern of a CPPN
can become symmetric. A periodic function such as sine
creates segmentation through repetition. Most importantly,
repetition with variation (e.g. such as the fingers of the hu-
man hand) is easily discovered by combining regular coordi-
nate frames (e.g. sine and Gaussian) with irregular ones (e.g.
the asymmetric x-axis). For example, a function that takes
as input the sum of a symmetric function and an asymmetric
function outputs a pattern with imperfect symmetry.

In this way, CPPNs produce regular patterns with subtle
variations. The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies (Secretan et al., 2011;
Stanley, 2007), and suggests such an encoding has potential
in the domain of two-dimensional creatures.

Formally, CPPNs in HyperNEAT are functions of geom-
etry (i.e. locations in space) that output connectivity pat-
terns whose nodes are situated in n dimensions, where n is
the number of dimensions in a Cartesian space. Consider a
CPPN that takes four inputs labeled x1, y1, x2, and y2. This
point in four-dimensional space also denotes the connection
between the two-dimensional points (x1, y1) and (x2, y2),
and the output of the CPPN for that input thereby represents
the weight of that connection (figure 2). By querying ev-



ery possible connection among a pre-chosen set of points
in this manner, a CPPN can produce a connectivity pattern,
wherein each queried point is a node position. Because the
connections are produced by a function of their endpoints,
the final structure is produced with knowledge of its ge-
ometry. In effect, the CPPN paints a pattern on the inside
of a four-dimensional hypercube that is interpreted as the
isomorphic connectivity pattern, which is the origin of the
name hypercube-based NEAT (HyperNEAT). Connectivity
patterns produced by a CPPN in this way are called sub-
strates so that they can be verbally distinguished from the
CPPN itself, which has its own topology. While the sub-
strate in the original HyperNEAT is interpreted as an ANN,
in IESoR the substrate is a creature’s body, as explained
next.

Approach
This section describes the implementation details of IESoR,
and explains the variant of HyperNEAT that enables it to
create and evolve body plans.

IESoR
IESoR implements three primary properties derived from
Sodarace and MINS (figure 2):

1. The environment is two-dimensional and creatures consist
solely of masses, springs, physical joints, and muscles.

2. In creature bodies, masses are implemented by nodes and
springs are connections attached at the joints.

3. Muscles manipulate the length of connections, leading to
motion.

In contrast to more complicated three-dimensional do-
mains (Auerbach and Bongard, 2012; Krcah, 2007; Lehman
and Stanley, 2011b; Sims, 1994), to support robust alife
evolution IESoR is designed to be simple to modify and
inexpensive to simulate. In the spirit of accessibility and
extensibility of the Sodarace project, IESoR implements a
Sodarace-like simulator in javascript built on top of Box2D
(box2d.org), an open-source two-dimensional rigid body
physics engine. There is a small performance hit for pro-
gramming in a scripting language, but javascript allows the
domain to be accessible through the browser for most mod-
ern computing devices, from phones to tablets to more tradi-
tional PCs. In addition, Box2D physics enables rich environ-
ments for testing creature morphologies. Finally, Box2D has
been ported to most popular programming languages, which
means IESoR could be ported without significant effort.

Encoding Morphologies with HyperNEAT
Bodies inside of IESoR consist of masses with variable or
fixed length constraints. Each constraint, or connection, is
represented by a distance joint in Box2D (i.e. a constraint
on the length between two masses) and has three distinct
properties:

1. The joint is either variable or fixed length (i.e. a muscle
or a bone).

2. The change in distance during muscle contraction is the
muscle amplitude.

3. The phase shift of the sinusoidal function controlling
muscle length is the muscle phase.

Fixed length connections, or bones, do not receive a magni-
tude or phase from the CPPN.

Recall that HyperNEAT paints a four-dimensional pattern
across the weights of a network by querying a CPPN for
every pair of nodes in the substrate. The insight in this pa-
per is to take this concept of a substrate and extend it to
two-dimensional morphologies. Instead of painting a pat-
tern of weights across the substrate, the CPPN encodes both
what joint constraints should exist between masses on a
two-dimensional plane and their three virtual properties (i.e.
bone or muscle, amplitude, and phase). For this purpose, the
CPPN requires four outputs (as shown in figure 2).

Before clarifying how a HyperNEAT substrate can be
used to represent a morphology, it is important to consider
the placement of bones and muscles in natural body plans.
The skeletal system is crucial to mobility at a fundamental
level. Equally important to where bones are placed in a body
plan is the concept of where bones are not placed. If a rough
representation of the human body was drawn on a small grid
of dots, the principle of symmetry is as important as the fact
that there is no bone connecting the tip of the foot to the top
of the skull. Morphologies generated in IESoR ideally also
should usually respect this simple principle of locality.

Conveniently for this purpose, HyperNEAT can be ex-
panded with a special Link Expression Output (LEO) (Ver-
bancsics and Stanley, 2011) to generate an expression pat-
tern that controls whether connections are expressed at dif-
ferent locations independently of other CPPN outputs. In
Verbancsics and Stanley (2011), HyperNEAT with LEO was
seeded with a bias towards favoring locality although evolu-
tion could adjust this bias during search.

To generate a morphology using an n-by-n grid of nodes
as the substrate, for each node location in the substrate (fig-
ure 2), the CPPN queries all other node positions. The (x,
y) coordinate of nodes i and j are denoted as (xi, yi) and
(xj , yj), respectively. The input into the CPPN is thus xi,
yi, xj , yj , and there are four outputs. First, the LEO out-
put (which is a step function) is checked for a positive value.
If LEO is positive, a connection is placed between nodes
i and j from (xi, yi) to (xj , yj). Then the output that de-
termines whether the connection is a bone or a muscle is
queried. If the output value is below a pre-defined muscle
threshold, the connection becomes a fixed-length constraint.
Otherwise, the constraint is a muscle, and the amplitude and
phase of the muscle contraction are read from the remaining
two CPPN outputs. Finally, to further reduce complexity
in the resultant morphologies and keep computational costs



low, pairs of points greater than a third of the diagonal length
of the substrate are not queried while constructing the two-
dimensional creatures. An example of a fully constructed
morphology is shown in the lower right of figure 2.

After assembling the masses and joints, the bodies are
placed in a simple Box2D environment consisting of the
ground, gravity, and friction. As the world is simulated,
muscles oscillate according to the amplitude and phase val-
ues defined by the CPPN, while bones remain a fixed length.
Creatures occupy distinct Box2D environments, and nodes
cannot collide with each other.

Experiment
Though its creatures are mainly hand-crafted, Sodarace
shows that the space of possible two-dimensional body types
is likely filled with creatures capable of movement. As
noted in Section 2.3, the Sodarace Kiosk went on to create
an automated approach to generating creatures, but resulted
in a highly restricted space of bodies. The experiment de-
scribed in this section is designed to show that not only is an
automated approach capable of designing two-dimensional
walkers, but the method can also produce a wide variety of
different means for locomotion, thereby giving hope for fur-
ther application of Sodarace-like creatures in artificial life.

Novelty Search and Local Competition
To best demonstrate the morphological diversity possible in
IESoR, Pareto multiobjective search (based on NSGA II)
(Deb et al., 2002) including both novelty and local competi-
tion (Lehman and Stanley, 2011b) is implemented to explore
the space of body types. Lehman and Stanley (2011b) first
applied Pareto multi-objective search with novelty and local
competition to yield a diverse group of ambulating three-
dimensional morphologies all within a single run of evolu-
tion. Maintaining and exploiting diversity across evolution
is both an impressive and important part of validating the
potential for future artificial life research with IESoR.

The first of the three objectives that make up novelty
search plus local competition is novelty search, which was
introduced by Lehman and Stanley (2008, 2011a) to avoid
the common pitfall of evolution prematurely converging on
a deceptive objective. Novelty search aligns well with the
aim of this experiment because the hope is to find a diver-
sity of novel creatures. Joachimczak and Wrobel (2012)
have shown before that novelty search can be effective for
this purpose. The characterization of creature novelty for
the novelty search component can significantly impact evo-
lution and strongly bias the resulting creatures discovered.
In this experiment, novelty search characterizes creatures by
their width, height, and mass (as measured by the number
of nodes and the sum of the connection lengths) at the first
time-step of the simulation, which should lead to a visually
diverse population. The novelty metric is the squared Eu-
clidean distance separating two individuals in this charac-

terization space, and thus the novelty of a creature is pro-
portional to how different its starting morphology is from
that of other creatures currently in the population. Such a
characterization space especially encourages creatures with
varying widths, heights, and masses.

The second objective, local competition to walk farthest,
forces individuals to compete only with those who are char-
acterized as similar (Lehman and Stanley, 2011b). The idea
is that within novelty search it is possible to push individu-
als who are similar with respect to the behavior characteri-
zation to compete locally to be the best of their type. That
way, globally novelty search probes a wide variety of possi-
bilities, but locally individuals optimize to be the best they
can. In IESoR, creatures who are locally close share simi-
lar widths, heights, and masses, ideally indicating a similar
morphology. Local competition is the mechanism for pres-
suring individuals with related morphologies towards more
effective locomotion.

As in Lehman and Stanley (2011b), the Pareto multi-
objective search has three objectives: novelty, local fitness,
and finally genotypic diversity. The genotypic diversity ob-
jective encourages exploring innovative genotypes by as-
signing higher values to more novel genotypes. That way,
new genotypes created by HyperNEAT are not initially pe-
nalized and thereby have a chance to optimize to reach their
potential. This genetic diversity objective is in effect a
multiobjective-compatible substitute for the usual speciation
mechanism in NEAT, which serves the same purpose. Ad-
ditionally, the genotypic diversity objective is also localized
within the characterization space; similar in motivation to
that of local competition, local genetic diversity ensures that
genotypic diversity is not only exploited in those character-
ization niches in which such diversity is incidentally most
easily expressed.

In all setups, the distribution of individuals in behavioral
space as well as their overall performance is recorded. The
idea is to quantify how much morphological diversity is dis-
covered and maintained and how well each behavioral niche
is being exploited overall throughout a run.

Experimental Parameters

The overarching multiobjective algorithm is based on NSGA
II (Deb et al., 2002). The population size is 120, and a
run consists of 1,200 generations, resulting in 144,000 total
genomes evaluated. The nearest-neighbor size for novelty
search and local competition is 20. The three morphology
dimensions used to characterize novelty (i.e. width, height,
and mass) are rescaled so that their values fill the range be-
tween zero and three. The selection method for NSGA II
was tournament selection (with tournament size two), and
other parameters followed precedent Lehman and Stanley
(2011b), which in turn used the parameters of Krcah (2007).



Results
The intention of the experiment is to demonstrate that a wide
variety of walkers exists in the encoding space defined by
IESoR, thereby establishing the viability of IESoR for fu-
ture alife research. Thus, as opposed to machine learning
experiments aimed at demonstrating optimality, the aim in
this experiment is to show both diversity and competence.
Recall also that novelty search plus local competition is de-
signed to return a significant coverage of possible solutions
from a single long run. There is precedent for demonstrat-
ing the diversity that results from such a search. For ex-
ample, Lehman and Stanley (2011b) measured the height
and mass of three-dimensional morphologies from novelty
search plus local competition to show the breadth of mor-
phologies discovered by evolution, while Joachimczak and
Wrobel (2012) used principal component analysis (PCA) to
demonstrate coverage across morphological space after nov-
elty search. Following this precedent, to quantify IESoR’s
ability to create diverse walkers, PCA is run across charac-
terizations all 144,000 creatures from 1,200 generations of
evolution to create a visualization of the resultant diversity.

In particular, to characterize morphological diversity
in IESoR for the purpose of visualization, three dimen-
sions that describe gross creature characteristics (i.e. width,
height, and mass) are projected into a two-dimensional space
by the PCA algorithm. However, while PCA with this in-
formation can reveal the diversity across the morphological
space, the goal of this analysis is also to give a sense of the
competence of such creatures as well. That way it becomes
possible to observe the diversity of competent creatures in-
stead of just diversity overall. Therefore, in the visualization
of the PCA output in figure 3, to ensure the graph shows the
diversity of only competent walkers, only points for walk-
ers that ambulate beyond 200 units (which is several times
a creature’s maximum body length) are displayed. Further-
more, the size of each point’s radius is proportional to the
absolute distance traveled by the creature beyond 200 units.

Because thousands of points result, the visualization is
further refined to reduce clutter and ensure that each point
represents a genuinely unique individual. For this purpose,
the plane is discretized into 40 × 40 equally sized “bins.”
Creatures are placed into bins according to the coordinate
assigned by the PCA process. Conceptually, each bin thus
represents a similar area in morphological space, and the
creature assigned to a bin that traveled the farthest among all
in that bin is chosen as the representative of that bin. That
way, the circles in figure 3 show the best performance for the
morphological class represented by its respective bin, and
each circle represents a distinct morphological class. Any
bin without a representative (shown as empty space in figure
3 lacks an individual who could ambulate at least 200 units.

Of the 1,600 possible bins, 450 are filled with individuals
who can ambulate the minimum distance, covering in total
28.1% of all possible bins. Furthermore, the visualization

in figure 3 exhibits the breadth of coverage of competent
morphologies. In effect, IESoR with novelty search plus lo-
cal competition uncovered hundreds of unique and effective
ambulation methods covering a significant breadth of con-
ceivable strategies.

Equally important as this quantitative perspective is a
qualitative analysis of the breadth of behaviors. It is impor-
tant to note that every behavior in figure 3 can be viewed at
http://eplex.cs.ucf.edu/ecal13/demo/PCA.html

through a special online interface where the user can click
on any point and see the corresponding creature behavior.
This fast interactive visualization of hundreds of creatures
is possible in part due to the lightweight, inexpensive nature
of Sodarace-like creatures, which is one of their potential
advantages for researchers in artificial life. Figure 3 also
shows a sampling of morphologies, while figure 4 shows a
subset of those at different stages of ambulation.

An additional important further qualitative observation
is the significantly broader diversity seen in IESoR com-
pared to the original Sodarace evolver’s amoeba-like crea-
tures shown in figure 1b. Among those that can be observed
are gaits based on loping (degrading into pushing) (figures
3a/4a), pogo-stick hopping (3b/4b), multiple cascading octo-
pus legs (3c/4c), dragging (3d/4d), complex galloping (3e),
sliding and pumping (3f), and bouncing into a long dive
(3g). Some strategies depend on an initial burst of propul-
sion, while others rely and stable and consistent ambulation.
Some of the very best gaits (largest circles in figure 3) in-
volve galloping or hopping, though even among the very
best the diversity of approaches is significant.

Discussion
The most important implication of the results is that
Sodarace-like domains do contain a diversity of viable walk-
ers that can be systematically discovered with the right en-
coding and selective pressures. Unlike with the early evolver
application built for Sodarace, morphologies evolved in
IESoR do not exhibit only a single stereotypical organiza-
tional motif. Instead, they ambulate in many different ways,
from legged-style locomotion to serpentine pulsation to pe-
riodic lunges, suggesting the potential for more elaborate ap-
plications of this kind of technology in the future.

For example, because the IESoR creatures are inexpen-
sive to simulate, they are amenable to web-based interaction.
In fact, the demonstration at the website actually simulates
evolved discoveries in real-time through javascript, obviat-
ing the need even for video. This ease of simulation means
that IESoR creatures can smoothly integrate into interactive
evolutionary applications, artificial life worlds, or even in-
teractive simulations allowing human intervention. Addi-
tionally, the framework can potentially be extended to three
dimensional creatures using current browser technologies.

Investigations relevant to artificial life on open-ended
evolution (Channon, 2001b; Maley, 1999; Ray, 1992;
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Figure 3: PCA-based Visualization of Morphological Diversity and Performance. The location of each point represents its
respective creature morphology, while the size indicates the absolute fitness. All points shown are for creatures able to walk
at least 200 units. A total of 28.1% of all 1,600 possible bins are filled with competent walkers, suggesting the diversity of
ambulation methods. Furthermore, several creatures are shown to give a sense of qualitative diversity. The creatures for every
point in this visualization can also be viewed in motion at http://eplex.cs.ucf.edu/ecal13/demo/PCA.html.

Standish, 2003; Yaeger, 1994) and diversity mainte-
nance (Lehman and Stanley, 2011b; Mouret and Don-
cieux, 2012) can thus be quickly set up and conducted
in the future with IESoR. Creatures can also potentially
move beyond forward ambulation to more complex in-
teractions such as foraging or predation. To facilitate
such future applications, code for IESoR is available at
https://github.com/OptimusLime/IESoR.

Conclusion

The paper demonstrated IESoR, a lightweight two-
dimensional platform for evolving ambulating creatures in-
spired by Sodarace (McOwan and Burton, 2013, 2005). The
aim is to provide an accessible platform to artificial life re-
searchers that is inexpensive to simulate. That way, artificial
life experiments that previously required significant up-front
design can become easier to ramp up and build quickly. Re-
sults from searching through the indirectly-encoded creature
space in IESoR with novelty search plus local competition
suggest that the space indeed contains a breadth of feasible
morphological discoveries with functional ambulatory capa-
bilities, suggesting that IESoR is potentially a viable plat-
form for artificial life research in the future.
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