
Steps Toward a Modular Library for Turning Any Evolutionary Domain into an
Online Interactive Platform

To appear in: Proc. of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE 14).
Cambridge, MA: MIT Press, 2014.

Paul Szerlip and Kenneth O. Stanley

Dept. of EECS (Computer Science Division), University of Central Florida, Orlando, FL 32816

pszerlip@eecs.ucf.edu, kstanley@eecs.ucf.edu

Abstract

Natural evolution inspires the fields of evolutionary compu-
tation (EC) and artificial life (ALife). A prominent feature of
natural evolution is that it effectively never ends. However,
most EC and ALife experiments are only run for several days
or weeks at a time. Once an experiment concludes, reproduc-
ing, observing, or extending the results often requires consid-
erable effort. In contrast, some Collaborative Interactive Evo-
lution (CIE) systems, e.g. Picbreeder, were designed to pre-
serve results as potential stepping stones to build upon later
while taking advantage of human insight to solve challenging
problems. Traditionally, building long-running and open ex-
periments similar to Picbreeder presents a complex and time-
consuming software challenge. To reduce this challenge and
thereby remove the barrier to situating almost any experiment
within an interactive online framework, this paper presents
the initial prototype for Worldwide Infrastructure for Neu-
roevolution (WIN). Built in the model of Picbreeder, WIN is
a modular library for significantly reducing the complexity
of creating fully persistent, online, and interactive evolution-
ary platforms for any new or existing domain. WIN Online,
the public interface for WIN, provides an online collection
of domains built with WIN that lets novice and expert users
browse and meaningfully contribute to ongoing experiments.
Two example experiments in this paper demonstrate WIN’s
potential to quickly bootstrap any evolutionary domain with
online and interactive capabilities.

Introduction

The fields of evolutionary computation (EC) and artificial

life (ALife) are inspired by the products of natural evo-

lution. As researchers in these areas, we hope to repro-

duce or one day exceed natural evolution’s most inspir-

ing qualities, for example through open-ended evolution

(Channon, 2001; Maley, 1999) or evolving a diverse collec-

tion of virtual morphologies (Auerbach and Bongard, 2012;

Hornby and Pollack, 2002; Lehman and Stanley, 2011;

Sims, 1994; Szerlip and Stanley, 2013). However, almost

all EC and ALife experiments fall short on one very salient

feature of natural evolution: that it effectively never ends.

Natural evolution perpetually branches from previous dis-

coveries in a complex and never-ending process.

In stark contrast, presently, a research group that evolves

e.g. a controller for a biped walking robot (Hein et al., 2007;

Reil and Husbands, 2002) typically will report the result,

publish a version of the code, retire the experiment, and

move on to new domains. Although the experimental re-

sults are indeed published, the ability to reproduce, observe,

or extend those results generally requires considerable effort

outside of the originating group. Yet in natural evolution

the stepping stones that lead to the greatest discoveries al-

most never foreshadow the circuitous and dramatic discov-

eries that follow them. For instance, who could predict that

a flatworm would one day evolve to become a human being

(Raff, 1996)? Every experimental artifact left behind is a

potential stepping stone lost forever.

Interestingly, there are unique experimental systems that

attempt to collect such potential stepping stones. Collabo-

rate Interactive Evolution (CIE) systems are designed to al-

low contributions from multiple users over the course of the

experiment (Szumlanski et al., 2005). One such CIE sys-

tem, Picbreeder, a genetic art program for breeding pictures,

was explicitly designed to allow users to branch collabora-

tively from previously discovered results in the space of pic-

tures (Secretan et al., 2011). That is, every picture evolved

in Picbreeder is either a descendant of another picture inside

the system, or started from a simple random starting point.

Additionally, the system is still active after seven years, and

every picture discovered is available online to continue ex-

tending at http://picbreeder.org/.

In this way, while Picbreeder can only evolve pictures,

it provides precedent for evolutionary systems capable not

only of preserving stepping stones accessible to the com-

munity, but also taking advantage of of human insight to

search the space of all artifacts for the most meaningful.

Yet the benefit of human intuition does not only apply to

search spaces with hard to define or subjective optimiza-

tion metrics. In fact, recent experiments suggest that hu-

mans are capable of interleaving their own intuition with

automated algorithms, yielding better results than the au-

tomated algorithms can alone (Bongard and Hornby, 2013;

Woolley and Stanley, 2014). In an ideal world, any experi-

ment would have the ability to leverage human intelligence

to aid the search while also allowing discovered results to

http://picbreeder.org/

remain accessible to the community in perpetuity for future

extension by humans, or by some clever algorithm.

Unfortunately, building experiments capable of interac-

tion across the Internet is complex and time consuming. In

fact, Picbreeder took over a year to build the online infras-

tructure (Secretan et al., 2011). Though web technologies

have progressed in the years since Picbreeder was built, it

would still take considerable effort to build such an infras-

tructure around any arbitrary experiment.

To begin to address this gap, this paper presents the initial

prototype for Worldwide Infrastructure for Neuroevolution

(WIN), a library that significantly reduces the complexity

of creating fully persistent, online, and interactive (or au-

tomated) evolutionary platforms around any domain. The

main outcome is to demonstrate that WIN can quickly ramp

up CIE domains as well as effectively extend experimental

domains that were not originally designed to be persistent or

part of a CIE application. Yet the ambitions of WIN go be-

yond these example domains. At present, most researchers

operate within isolated groups. The long term aim of WIN

is to make it trivial to connect any individual or lab platform

to the world, providing both a stream of online users, and

archives of data and discoveries for later continuation. In

short, the goal is to be able to continue where someone, or

perhaps some algorithm, left off.

Background

In the fields of ALife and EC, many tools exist to assist re-

searchers in constructing new experimental domains. Soft-

ware packages like the Java-based ECJ suite (Luke, 2010)

provide a collection of classes and data structures to solve

common problems typically encountered when constructing

new experiments (e.g. building a user interface and visualiz-

ing results). Other efforts in the community aim to enhance

a communal pool of resources for collecting and sharing re-

sults. For example, the ALife Zoo aims to take advantage of

cloud computing to host a shared platform for running ALife

simulations (Hickinbotham et al., 2013). The Virtual Com-

plexity Lab (VLab) is an online resource that aggregates a

variety of ALife simulations to stimulate interest in the field

(Green, 2007).

Together, these platforms represent a significant contribu-

tion to the community, helping to proliferate new domains

and advanced simulations and to share improved results.

However, there remains an open opportunity in ALife for

additional platforms geared towards enhancing the contribu-

tions of laymen as well as academics.

The idea that casual human users can aid serious scien-

tific endeavors has gained credibility in recent years with a

number of online citizen science (Crowston and Prestopnik,

2013; Newman et al., 2012) projects in which users who of-

ten are not scientific experts are crowd-sourced to yield re-

sults that in some cases would be impossible to achieve in

another way. Within evolutionary robotics, Bongard (2013)

created a simulator that sets precedent for harnessing ama-

teur users for crowd-sourcing intricate robot controllers. Yet

the benefits of crowd-sourcing can apply to more than any

one domain.

There is thus a need for software that goes beyond or-

ganizing domains, simulations, or resources in the commu-

nity. Such software could reconfigure scientific experiments

to explicitly accumulate the results of the past in a publicly

accessible format where they can be reproduced, observed,

and extended with minimal effort.

WIN Architecture

To fully address the needs of the community, WIN serves

as an active collaborative tool that not only stores past re-

sults, but presents them immediately for further exploration

and extension. By design, WIN is conceived as both a plat-

form and a service. The platform is a set of libraries and

tools to assist in enabling any domain to allow access to its

data online by algorithms or users, while the service aggre-

gates a growing collection of ongoing experiments built with

the WIN platform. To aid development, the platform is de-

signed to significantly reduce the programming burden of

making experimental data available, and provides methods

for attaching any domain to the worldwide repository of ex-

periments. On the other hand, the service is the public inter-

face to all the collected domains, allowing interested users to

freely browse available experiments linked by the WIN plat-

form. Together, the WIN platform and service aim to am-

plify the collective effort of the community by reducing the

work required to open any search space to both academics

and laymen alike.

In more detail, the WIN platform is built in the model of

Picbreeder but with an eye towards more general applica-

tions. Recall that one of WIN’s goals is to integrate easily

with any domain. As such, to prevent being too unwieldy

to gracefully integrate existing domains, WIN’s architecture

is highly modular. Built on top of the JavaScript library

Node.js (Dahl, 2009), WIN is a lightweight and expandable

collection of Node.js packages that are optionally included

for any domain. Keeping the core WIN library minimal but

extensible, WIN avoids becoming a one-size-fits-all pack-

age. Overall, the WIN platform is a small set of libraries

for handling storage, retrieval, and cataloging of complex

chains of research artifacts similar to how genotypes are

stored by the Picbreeder web service.

Modules

It is important to note that WIN is not confined only to orga-

nizing research data. To enable more functionality, a driving

concept of the platform is the ability to create WIN mod-

ules, which are event-driven Node.js packages that plug in to

the WIN framework. For example, the two domains demon-

strated later in this paper extend WIN to include modules for

user interface elements and for managing automated evolu-

tionary searches. A benefit of these modules is that they can

be reused.

Borrowing from the event-driven design paradigm of

Node.js, each WIN module specifies the events to which it

responds as well as any events required from other modules.

The overall WIN framework handles passing these generic

messages and events between modules, and routing the re-

sponses to the appropriate places. While the exact techni-

cal details of how WIN handles message passing is avail-

able in the open-source repository https://github.com/

OptimusLime/win-backbone , it is important to under-

stand the implications of constructing the framework as a

generic message passer.

There are two significant advantages to building WIN as

a collection of event-driven modules. Primarily, any re-

searcher in the community can bootstrap their own exper-

imental work by extending any relevant WIN modules. Be-

cause each module only responds to a select set of events,

augmenting a module does not require understanding the im-

plementation details, but rather a higher level understanding

of how to combine those events to add new functionality.

Second, the design enables the concept of module swap-

ping. Due to the structure of Node.js, modules may request

an event response without knowing a priori what module

will respond. Researchers can take advantage of this feature

by building modules that perform the same overall function

powered by entirely different algorithms.

Saving Data in WIN

However, simply making WIN modular and event-driven is

not a panacea for integrating WIN with any domain. Each

evolutionary experiment can have distinct genetic encodings

with custom algorithms to mutate and cross over genotypes,

or special methods for exploring the search space.

To directly address these software challenges, the key in-

sight behind WIN’s architecture is to be agnostic to the pro-

cesses generating the data, and instead focus on the form

the experiment’s data will take. In effect, WIN inverts the

typical relationship between experiments and the data pro-

duced. As researchers, the primary focus often revolves

around what algorithms and encodings produce the collected

data. In contrast, WIN is primarily concerned with how the

data is structured, which is defined a priori by the researcher

for each experiment.

Formally, to maintain data with varying attributes and

sizes, WIN enlists the JSON format (Crockford, 2006), as

well as the JSON Schema specification for data validation

(Galiegue and Zyp, 2013). JSON describes a data format

for building complex data objects as the composition of a

smaller set of universal data structures (e.g. strings, num-

bers, arrays and dictionaries). Similarly, the JSON Schema

definition specifies a template language to describe the struc-

ture of JSON data for facilitating data validation. Essen-

tially, each JSON schema outlines a contract describing the

format that data can take, which enables an application to

validate that incoming data objects match the same format.

Inside WIN, the JSON schema defined by the researcher dic-

tates the internal structure of the data being stored. Before

permanent storage, all data being saved by WIN is validated

against the expected format. Currently, WIN employs the

NoSQL document-database MongoDB for long term stor-

age and retrieval, which is a natural fit for storing JSON data

(Plugge et al., 2010).

Note that because WIN utilizes Node.js and JavaScript

for its underlying functionality, it is more convenient to se-

lect JSON for data formatting over other storage types, e.g.

XML. Regardless of the specific storage format, the key re-

quired property is the ability to represent a wide variety of

data configurations, which enhances the ease of use when

integrating new domains onto the platform. Importantly,

WIN can store research artifacts while remaining encoding-

agnostic. Figure 1 shows how different genetic encodings

can be represented as simple JSON schema, all of which

can be saved by WIN. By default, a JSON schema is re-

quired for saving objects in WIN, but the schema specifica-

tion is a simple and extensible template for saving any type

of data. Interestingly, by design of the JSON format, data

with almost any conceivable form can be stored by WIN,

potentially opening the platform to support most genetic en-

codings actively researched by the community.

Phylogenies

Ultimately, when collecting research artifacts from evolu-

tionary domains, the relationships among the data can tell

an important story about how a domain solution was discov-

ered. In evolutionary computation, experimental data com-

monly has a parent-child relationship, wherein one object

is considered the direct descendant of another. By chaining

a collection of objects and their relatives, an artificial phy-

logeny can be constructed. Previously, Woolley and Stanley

(2011) investigated the Picbreeder phylogeny to understand

why fitness-based automated evolution was having signifi-

cant difficulty attempting to recreate images already evolved

through interactive evolution by the users of Picbreeder.

Crucially, the Picbreeder phylogeny is likely not the only

phylogeny capable of informing scientific research, but it is

the only phylogeny available online. Of all the previous evo-

lutionary experiments conducted, representing thousands of

published papers, the lost phylogenies of those experiments

may have contained potential treasure troves of information.

To account for this potential, WIN not only stores artifacts

created by evolution, but simultaneously tracks the relation-

ships among the data as well. Practically, tracking relation-

ships in the data thereby requires a minimal amount of ad-

ditional work by the researcher. By default, WIN attaches a

unique identifier to each object saved internally. Therefore,

to enable tracking connections in the data, each research

https://github.com/OptimusLime/win-backbone
https://github.com/OptimusLime/win-backbone

+

3 *

x x

ID 0

ID 1
ID 2

ID 4ID 3

f(x) = 3 + x2

{ nodes: { type: “array”,

 parent : {type: “string”},

 nodeID: {type: “string”},

 content: {type: “string”}

 }

}

{ nodes: [

 { parent: “ ”, nodeID: “0”, content: “+” },

 { parent: “0”, nodeID: “1”, content: “3” },

 { parent: “0”, nodeID: “2”, content: “*” },

 { parent: “2”, nodeID: “3”, content: “x” },

 { parent: “2”, nodeID: “4”, content: “x” }

]

}

GP Tree SchemaGP Tree JSON Example

NEAT Genotype

3

0 1

2
1.4

0.5

 -1.1

Inputs

Output

Hidden

{ nodes: { type: “array”,

 nodeID: { type: “number”},

 nodeType: { type: “string”}

 },

 connections: { type: “array”,

 sourceID: {type: “number”},

 targetID: {type: “number”},

 weight: {type: “number”}

 }

}

NEAT Schema

{ nodes: [

 {nodeID: 0, nodeType: “Input”},

 {nodeID: 1, nodeType: “Input”},

 {nodeID: 2, nodeType: “Hidden”},

 {nodeID: 3, nodeType: “Ouput”}

],

 connections: [

 {sourceID: 0, targetID: 2, weight: -1.1},

 {sourceID: 1, targetID: 2, weight: 1.4},

 {sourceID: 2, targetID: 3, weight: 0.5},

] }

JSON Example

Figure 1: Example Schema in WIN Shown here are examples of two potential encodings and the corresponding JSON format

for saving inside WIN. At top, a NEAT Genotype describes a compositional pattern producing network (CPPN) with four nodes

and three connections (Stanley, 2007). Below, a GP-Tree (Koza, 1998) representing the function f(x) = 3 + x2 is shown. For

both figures, the middle column describes the expected composition of the data sent to WIN for the purpose of validation.

artifact being saved must provide an accompanying list of

identifiers representing the object’s parents. This additional

parental list is enough to create a map of the ancestry across

all artifacts.

As an experiment accumulates data, each object stored

by WIN represents a potential branching point for future re-

search with a traceable history of where the data originated.

In this way, WIN aims to be a stepping stone accumulator

for any evolutionary domain, allowing previously-finite ex-

periments to exploit the possibilities of never-ending search.

WIN Online

While the WIN platform is designed to be minimally intru-

sive, WIN as a service, or WIN Online, aims for a larger role

in the ALife and EC community. Accordingly, WIN Online

is the public face to a worldwide repository of ongoing ex-

periments for any evolutionary or artificial life domain inte-

grated with the WIN platform. Recall that the data saved by

WIN represents potential starting points for new interactive

or automated searches. Thus WIN Online becomes a place

where users who are interested in the ALife and EC com-

munities can participate in academic domains without pre-

requisite domain knowledge and immediately start a fresh

evolutionary branch from existing results.

Incoming users are first presented with an active list of

domains hosted by WIN Online. A small text description

is included for each domain allowing the user to choose the

most relevant to their interests. For domains that run en-

tirely in the browser users of WIN Online may seamlessly

transition from browsing all domains to browsing the cur-

rent collection of artifacts contained within the selected do-

main. Depending on the programming language of the do-

main, the user may need to download a desktop client to

access the experiment. The two examples demonstrated in

the next section provide an example of what the WIN Online

user experience is like for domains that operate both in and

out of the browser.

For researchers, WIN Online acts as a potential resource

for attracting users and crowd-sourcing new domain solu-

tions. Note that researchers who prefer not to allow WIN

Online to host their research data may host data on their own

servers and supply an external link for WIN Online. To as-

sist in creating an online collection of experiments, any do-

main built with WIN can integrate into the online repository

with minimal additional effort. As discussed in Saving Data

in WIN, internally, WIN utilizes the MongoDB database for

storage. Taking advantage of a MongoDB feature, domains

linked to WIN Online are given a separate database within

the global MongoDB database hosted by WIN Online. Ad-

ditionally, WIN Online handles configuration of the REST

API required to access the newly created domain database

and its contents.

Utilizing these features, WIN Online can provide a cata-

log of cutting edge ALife research with the potential to pro-

vide a steady stream of users to new research domains. A

prototype for WIN Online that includes links to the two do-

mains described next is accessible at http://winark.

org/.

Example Domains

The key to enticing a community to develop for a platform

like WIN is to show that new domains can be added eas-

ily and systematically. By demonstrating this point through

two domains that would otherwise be highly challenging to

put online without WIN, this section (and its corresponding

demonstrations online) not only shows the posssibilities that

WIN creates but also provides a reference for future devel-

opers aiming to extend WIN with more domains.

The first is an HTML/JavaScript clone of Picbreeder

(Secretan et al., 2011). The second is IESoR, a Sodarace-

inspired (McOwan and Burton, 2005) domain for evolv-

ing two-dimensional morphologies capable of ambulation

(Szerlip and Stanley, 2013). Some resulting phenotypes

from both Picbreeder and IESoR are shown in figure 2. To

avoid confusion, the version of Picbreeder integrated with

WIN will be called win-Picbreeder, and the IESoR variant

will be called win-IESoR. Both examples are currently ac-

cessible through WIN Online at http://winark.org/.

Together, the Picbreeder and IESoR domains aim to cover

a broad range of interests inside the ALife community.

Picbreeder is a proxy for domains that are more suited to-

wards Interactive Evolutionary Computation (IEC) (Takagi,

2001) and difficult to optimize. In contrast, IESoR is a

control-based domain that runs multiobjective search to dis-

cover new ambulatory creatures, i.e. it is designed for auto-

mated optimization.

Notably, IESoR was originally coded and simulated in

JavaScript. For this demonstration, the IESoR simulation

was rewritten in C++, and wrapped by a JavaScript WIN

module. Writing the IESoR simulation in a non-scripting

language demonstrates that even though the WIN system is

written in JavaScript, WIN modules can be written in a na-

tive programming language like C++. Supporting native and

scripting languages allows WIN modules to enjoy the per-

formance benefits of native code when required while taking

advantage of the ease of scripting when optimal performance

(a) Picbreeder (b) IESoR

Figure 2: Products of Evolution. Picbreeder artifacts (a)

are n x n pixel images where the RGB values are constructed

from the outputs of a CPPN (Stanley, 2007). (b) A pair of

two-dimensional ambulating creatures are shown from the

IESoR domain (Szerlip and Stanley, 2013).

is not necessary.

To accommodate the two example domains, several new

WIN modules were built to augment the features de-

scribed in the WIN Architecture section. Importantly, both

Picbreeder and IESoR depend on two new modules, win-

home and win-gen. Win-home is a user interface (UI) mod-

ule that mimics the web portion of Picbreeder, which is in-

tended to provide a simple user interface for domains hosted

on WIN. The module includes a homepage template similar

to Picbreeder for displaying new or interesting artifacts pub-

lished by users. The win-gen module aids in creating new

objects matching a predefined data format and in particu-

lar for generating the underlying indirect encoding (CPPNs)

powering both domains (Stanley, 2007). An exhaustive list

of modules created so far is available online at http://

winark.org/modules, and the exact programming de-

tails of these modules are all accessible and open-source.

Developers who are new to WIN will have the benefit of

the already-included domains and modules built for both

demonstrations that thereby serve as templates for new ex-

periments in WIN.

Picbreeder

Originally, the Picbreeder website was written in PHP, while

the Picbreeder evolution client responsible for generating

the images was written in Java. For a more modern ap-

proach, win-Picbreeder is written in HTML5 and JavaScript,

which has the added benefit of running in any browser with-

out plugins. Because WIN in conceived in the mold of

Picbreeder, it follows that win-Picbreeder is among the eas-

iest projects to integrate with WIN.

To match the major features of the original Picbreeder,

win-Picbreeder needs a homepage, an IEC user interface,

and the ability to store, retrieve, and generate image arti-

facts. As described in Saving Data in WIN, WIN offers

an encoding-agnostic method to store, retrieve, and gener-

ate custom schema. In the case of Picbreeder, the schema

simply contains a NEAT genotype, i.e. the CPPN, conform-

ing to the structure depicted in figure 1a, along with user

tags describing the final phenotype image in a few keywords.

http://winark.org/
http://winark.org/
http://winark.org/
http://winark.org/modules
http://winark.org/modules

Therefore, the main issue for creating win-Picbreeder is how

to connect the IEC user interface to the existing WIN frame-

work for saving artifacts.

In WIN, the solution is fairly simple. Recall that WIN’s

main architecture is event-driven. As the user explores the

domain through the IEC interface, whenever an artifact must

be displayed, an event is passed to WIN to generate a new

artifact from the currently selected parents. WIN routes

this message to the win-gen module described above that

is responsible for creating new artifacts, and a new win-

NEAT module creates NEAT genotypes and the correspond-

ing CPPNs by combining the provided parent genotypes.

After the IEC interface receives the new artifact object(s),

domain-specific Picbreeder code converts the NEAT geno-

type in the artifact to the displayed picture in the interface

through WebGL.

The majority of complexity in Picbreeder is in the stor-

age and retrieval of evolutionary data. Because WIN is de-

signed specifically to handle the data management task, the

rest of the win-Picbreeder application is lightweight com-

pared to the original Picbreeder’s code. Altogether, win-

Picbreeder effectively demonstrates a simple WIN appli-

cation; the code is available online at https://github.

com/OptimusLime/win-Picbreeder .

The exciting point about adding this domain is that nu-

merous IEC-based domains can easily be constructed and

put online simply by deriving them from the win-Picbreeder

code. That is, with minimal effort researchers can create

services like Genetic-Programming-Picbreeder, L-Systems-

Picbreeder, or any such conceivable variant.

IESoR

In the original IESoR, an automated NSGA-II multiob-

jective search (Deb et al., 2002) evolved functional two-

dimensional ambulating morphologies similar to the crea-

tures depicted in figure 2b. In the win-IESoR application,

the same multiobjective search algorithm operates with one

important difference: the human user is included in the loop.

Instead of running an automated algorithm for a fixed period

of time and collecting the results, win-IESoR interleaves oc-

casional choices by the user with shortened multiobjective

searches and returns the most promising individuals from

which the user can further evolve. Woolley and Stanley

(2014) demonstrated recently the ability of human choices

interleaved with search to outperform even automated algo-

rithms. WIN is uniquely positioned to make this kind of

interleaved search easy to integrate into any domain.

Because interactive evolution was not part of the origi-

nal IESoR domain, it was not necessary to build win-IESoR

with user interaction. However, explicitly including user in-

teraction with win-IESoR helps to highlight a deeper pur-

pose behind the infrastructure of WIN. If humans have the

ability to add insight and utility to search and WIN makes

the process of including a human in the loop relatively pain-

less, then the hope is that researchers in the future will not

need to hesitate to take advantage of human insight when-

ever it is appropriate.

To enable user interaction with an automated search, a

new WIN module named win-NSGA was created to handle

the complexity of this interleaving search. Following prece-

dent in Woolley and Stanley (2014), after a certain number

of viable candidates are found through automated evolu-

tion, the search returns the results to the user interface for

human selection. The main takeaway is that win-IESoR

demonstrates that the WIN platform is capable of executing

a search process that involves both an automated algorithm

and a human.

In win-IESoR, the data saved by WIN includes additional

components beyond those saved by win-Picbreeder. The

data contains both a NEAT genotype to define the crea-

ture morphology as well as the parameters and objects in-

side of the two-dimensional physics engine (e.g. the ground,

gravity, and friction). Along with the win-home user in-

terface templates, a new UI module for interleaving search

was created inspired by the user interface elements from

Woolley and Stanley (2014).

Altogether, the final program is a collection of HTML5

user interfaces connected through Node.js to the IESoR sim-

ulations being run in C++. While the interface for interac-

tive evolution in win-IESoR is still under construction, the

results of an initial set of evolutionary experiments within

win-IESoR are browsable through the WIN Online service.

A major benefit of WIN is that there is no need to write

and re-write the same code when someone in the community

has already written it. Thus all the infrastructure written for

win-IESoR that allows integrating multiobjective searches

with interleaved human selection can now be applied to any

other ALife domain, which should help to accelerate re-

search in such systems significantly.

WIN Phylogenies

An important element of win-Picbreeder and win-IESoR is

the ability for the user to decide when an artifact should be

saved for the public record, i.e. published. To save discov-

ered artifacts, the user clicks a publish button on the user

interface that dispatches an event to WIN to store the chosen

object in the WIN database. On the path to the published

artifact, the user has likely made multiple selection choices

or run several evolutionary searches before choosing to pub-

lish. WIN allows the researcher to configure how much from

these intermediate choices and associated meta-information

is stored in WIN.

Recall that regardless of configuration, WIN always

tracks parent-child relationships among the published arti-

facts. As users interact with a domain, each published ob-

ject adds a single branch to the tree of artifacts inside the

database. At any point during the ongoing experiment, re-

searchers may compile part or all of the published objects

https://github.com/OptimusLime/win-Picbreeder
https://github.com/OptimusLime/win-Picbreeder

into an artificial phylogeny. WIN assists in constructing

phylogenies by providing methods for retrieving the full par-

ent and children objects for any artifact within the database.

Researchers can repeatedly query these methods to unravel

a chain of research artifacts and construct a phylogeny.

To highlight this WIN feature, phylogenies for win-

Picbreeder and win-IESoR are shown in figure 3a and 3b, re-

spectively. For both applications, the data represent a cross-

section of artifacts generated by a single researcher. It is

important to note that these artificial phylogenies do not rep-

resent static aggregated results, but rather collections of po-

tential stepping stones that are all available to branch from

currently in the ongoing experiments. Both win-Picbreeder

and win-IESoR are open for browsing artifacts through WIN

Online at http://winark.org/. Win-Picbreeder al-

ready supports contributing new artifacts, while win-IESoR

is a prototype that allows browsing artifacts generated dur-

ing initial experiments. A complete win-IESoR interface for

new public contributions is under construction.

In contrast to traditional experimental results, the results

in this section do not embody the conclusion of an exper-

iment. Instead, these two domains help to exemplify the

promise of WIN to aid researchers in creating experiments

that may potentially never end. The resulting phylogenies

are an important step towards validating that the WIN plat-

form can deliver on this promise.

Discussion and Future Work

WIN is currently a prototype that will be brought to eventual

maturity through more documentation, complete illustrated

examples, and a sophisticated WIN module manager. As the

WIN library matures, the documentation will be updated to

reflect the nature of the library. Similarly, an increasing col-

lection of coding examples will provide a consistently im-

proving reference to developers working with the platform.

Building a tool that can organize and unlock the data

within any arbitrary evolutionary domain is ambitious, but

the WIN prototype hints at how it could be possible. The

lightweight design of WIN aspires to create a new type of

research collection full of open domains assembled together

for easy and perpetual access through WIN Online. More-

over, WIN opens the door to new and expansive research

questions. WIN empowers us to start imagining what it

would be like one day to have a living archive of research

where every object from every evolutionary experiment in

progress is actively preserved with the full context of its an-

cestry known and its future open to exploration. What phe-

nomena might emerge from the data when evolution is no

longer run by labs in isolation for days or weeks, but by

many labs in parallel across the world for years?

Conclusion

This paper represents a milestone on the path towards build-

ing an infrastructure to give researchers from evolutionary

computation and artificial life the ability to quickly make

their research available to users online, who can then gen-

uinely contribute. Similarly, WIN Online aggregates do-

mains built with the WIN platform into a single source for

new and exciting research that allows users to browse and

participate. The WIN library demonstrates that it is in-

deed possible to construct an online and interactive platform

around almost any evolutionary domain, which may help to

proliferate the availability of experiments that continually

collect potential stepping stones for extension and thereby

effectively never end.

Acknowledgments

This work was supported by the National Science Founda-

tion under grant no. IIS-1002507. Any opinion, findings,

and conclusions or recommendations expressed in this mate-

rial are those of the authors(s) and do not necessarily reflect

the views of the National Science Foundation.

References

Auerbach, J. E. and Bongard, J. C. (2012). On the relation-
ship between environmental and morphological complexity
in evolved robots. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2012), pages
521–528, New York, NY. ACM Press.

Bongard, J. C. (2013). Ludobots website. The Ludobots software
is publicly available at http://www.uvm.edu/ ludobots/.

Bongard, J. C. and Hornby, G. S. (2013). Combining fitness-based
search and user modeling in evolutionary robotics. In Pro-
ceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference, GECCO ’13, pages
159–166, New York, NY, USA. ACM.

Channon, A. (2001). Evolutionary Emergence: The Struggle
for Existence in Artificial Biota. PhD thesis, University of
Southampton.

Crockford, D. (2006). RFC 4627 - The application/json Media
Type for JavaScript Object Notation (JSON). Technical re-
port.

Crowston, K. and Prestopnik, N. R. (2013). Motivation and data
quality in a citizen science game: A design science evalua-
tion. In 2013 46th Hawaii International Conference on Sys-
tem Sciences (HICSS), pages 450–459. IEEE Press.

Dahl, R. L. (2009). Node.js software package. The Node.js soft-
ware package is publicly available at http://nodejs.org/.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197.

Galiegue, F. and Zyp, K. (2013). Json schema: core definitions and
terminology draft-zyp-json-schema-04. Working Draft.

Green, D. (2007). Vlab website. The VLAB website is is publicly
available at http://vlab.infotech.monash.edu.au/.

Hein, D., Hild, M., and Berger, R. (2007). Evolution of biped
walking using neural oscillators and physical simulation. In
RoboCup 2007: Proceedings of the International Sympo-
sium, LNAI. Springer.

Hickinbotham, S., Weeks, M., and Austin, J. (2013). The alife
zoo: cross-browser, platform-agnostic hosting of artificial life
simulations. In Proceedings of the European Conference on
Artificial Life (ECAL-2013).

http://winark.org/

(a) win-Picbreeder (b) win-IESoR

Figure 3: WIN Phylogenies. The tree of artifacts in (a) and (b) represent artificial phylogenies resulting from the efforts of a

single researcher. In (a), each square represents a published image inside win-Picbreeder, while each connection represents a

direct relationship between the images. Each image in (b) illustrates the starting morphology of a two-dimensional ambulat-

ing creature evolved by win-IESoR. Though images are linked by a single connection, there may have been multiple human

selections and potentially hundreds or thousands of automated evaluations in each branch of the tree. Both phylogenies con-

tain artifacts that are currently available for browsing in win-Picbreeder and win-IESoR by visiting WIN Online at http://

winark.org/.

Hornby, G. S. and Pollack, J. B. (2002). Creating high-level com-
ponents with a generative representation for body-brain evo-
lution. Artificial Life, 8(3).

Koza, J. R. (1998). Genetic Programming II: Automatic Discovery
of Reusable Programs. MIT Press, Cambridge, MA.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives:
Evolution through the search for novelty alone. Evolution-
ary Computation, 19(2):189–223.

Luke, S. (2010). The ECJ Owner’s Manual – A User Manual for
the ECJ Evolutionary Computation Library, zeroth edition,
online version 0.2 edition.

Maley, C. C. (1999). Four steps toward open-ended evolution. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999), pages 1336–1343.

McOwan, P. W. and Burton, E. J. (2005). Sodarace: Adventures
in artificial life. In Artificial Life Models in Software, pages
97–111. Springer.

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., and
Crowston, K. (2012). The future of citizen science: emerging
technologies and shifting paradigms. Frontiers in Ecology
and the Environment, 10(6):298–304.

Plugge, E., Hawkins, T., and Membrey, P. (2010). The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and
Desktop Computing. Apress, Berkely, CA, USA, 1st edition.

Raff, R. A. (1996). The Shape of Life: Genes, Development, and
the Evolution of Animal Form. The University of Chicago
Press, Chicago.

Reil, T. and Husbands, P. (2002). Evolution of central pattern
generators for bipedal walking in a real-time physics envi-
ronment. IEEE Transactions on Evolutionary Computation,
6(2):159–168.

Secretan, J., Beato, N., D.Ambrosio, D. B., Rodriguez, A.,
Campbell, A., Folsom-Kovarik, J. T., and Stanley, K. O.
(2011). Picbreeder: A case study in collaborative evolution-
ary exploration of design space. Evolutionary Computation,
19(3):345–371.

Sims, K. (1994). Evolving 3D morphology and behavior by com-
petition. pages 28–39. MIT Press, Cambridge, MA.

Stanley, K. O. (2007). Compositional pattern producing networks:
A novel abstraction of development. Genetic Programming
and Evolvable Machines Special Issue on Developmental
Systems, 8(2):131–162.

Szerlip, P. and Stanley, K. O. (2013). Indirectly encoded sodarace
for artificial life. In Proceedings of the European Conference
on Artificial Life (ECAL-2013).

Szumlanski, S. R., Wu, A. S., and Hughes, C. E. (2005). Collab-
orative interactive evolution. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) Poster
Session, New York, NY. ACM Press.

Takagi, H. (2001). Interactive evolutionary computation: Fusion
of the capacities of EC optimization and human evaluation.
Proceedings of the IEEE, 89(9):1275–1296.

Woolley, B. G. and Stanley, K. O. (2011). On the deleterious ef-
fects of a priori objectives on evolution and representation.
In GECCO ’11: Proceedings of the 13th annual conference
on Genetic and evolutionary computation, pages 957–964,
Dublin, Ireland. ACM.

Woolley, B. G. and Stanley, K. O. (2014). Novel human-computer
collaboration: Combining novelty search with interactive
evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2014), New York, NY,
USA. ACM. To appear.

http://winark.org/
http://winark.org/

	Introduction
	Background
	WIN Architecture
	Modules
	Saving Data in WIN
	Phylogenies

	WIN Online
	Example Domains
	Picbreeder
	IESoR

	WIN Phylogenies
	Discussion and Future Work
	Conclusion

