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Abstract

This paper demonstrates that compositional pattern producing networks (CPPNs) can produce phenotypic

patterns that exhibitfracture(i.e. discontinuities in patterns) and that when neural networks are evolved with

CPPNs, as in the Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach, the

algorithm effectively incorporates hidden nodes to improve performance. These findings contradict those of

a recent paper by van den Berg and Whiteson [51], to which this paper is in part a response. In particular,

while van den Berg and Whiteson [51] report difficulty for HyperNEAT in several experimental domains,

this paper provides counter-evidence suggesting that HyperNEAT in fact performs well in these domains. It

also examines the reasons for the discrepancy, which is largely a result of implementation details. Building

on this foundation of counter-evidence in the domains from van den Berg and Whiteson [51], the paper then

shifts to refuting their central hypothesis, which is that patterns with fracture are problematic for CPPNs.

This hypothesis is contradicted through the presentation of a wide variety of detailed examples of fracture
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in CPPNs, suggesting that fracture in CPPNs may be the norm rather than the exception. In this way,

this paper goes beyond examining particular experimental domains by highlighting the largely unexplored

opportunity to study fracture in CPPN-based patterns, which can potentially initiate exciting future research

into representation.

1 Introduction

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) [22, 49, 52] is a recent method

for evolving large-scale, regular artificial neural networks that has been applied in a wide variety of domains

[2, 3, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 25, 29, 52]. Some highlights include multiagent robot

control [17], checkers [21, 22], quadruped locomotion [15, 41, 43], Robocup Keepaway [52], and simulated

driving in traffic [19]. A recent paper by van den Berg and Whiteson [51] suggests that HyperNEAT strug-

gles in domains in which it would be expected to perform well, raising an important question about its capa-

bilities. In direct contradiction to these results, reproductions in this paper of two of the three experiments

in van den Berg and Whiteson [51] (with source code provided at http://eplex.cs.ucf.edu/cfresponse13.html)

demonstrate that HyperNEAT in factcansucceed effectively in the domains in question, suggesting that the

conclusions drawn from the original experiments may be misleading. The third domain, the walking gait

task, is not reimplemented but positive results in a similar domain are reviewed. This paper also provides

evidence for the ability of compositional pattern producing networks (CPPNs) (which are the encoding in

HyperNEAT) to encode a property calledfracture, which van den Berg and Whiteson [51] hypothesize poses

a problem for CPPNs.

In particular, the hypothesis advanced by van den Berg and Whiteson [51] to explain the apparent un-

derperformance by HyperNEAT in three key domains is that “fracture can be highly problematic for Hy-

perNEAT.” Thus the concept of fracture, which van den Berg and Whiteson [51] define as “discontinuous

variation of patterns,” is central to the main hypothesis. Fracture was originally defined by Kohl and Miikku-

lainen [30] as a “highly discontinuous mapping between states and optimal actions” within a neural network,

but van den Berg and Whiteson [51] generalize its definition to make it applicable to HyperNEAT because

HyperNEAT evolves a CPPN [48] that indirectly maps to a final neural network controller. That is, rather

than producing a mapping between states and actions, in HyperNEAT the CPPN outputs a connectivity pat-

tern, which is why “discontinuous variation of patterns” captures the idea of fracture better for HyperNEAT.

Both Kohl and Miikkulainen [30] and van den Berg and Whiteson [51] provide visualizations of fractured

patterns, which are reproduced here to help to illustrate the idea (figure 1).
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(a) A fractured pattern [30] (b) Increasingly fractured patterns [51]

Figure 1:Illustrations of Fracture. These images, reproduced from Kohl and Miikkulainen [30] and van den Berg
and Whiteson [51], give an intuitive view of fractured patterns. The blue dots and red dot in (a) represent potential
agent positions in a keepaway soccer control problem in which the right decision depends on which fractured regions
contain the agents. The sequence in (b) suggests increasing fracture accumulating over generations.

The main approach of van den Berg and Whiteson [51] is first to show that HyperNEAT fails to perform

effectively on three tasks that are slightly harder variants of easier tasks (which do not require evolving a

complex CPPN) on which HyperNEAT previously succeeded. These failures are then attributed to the hy-

pothesized problem with evolving fracture. To explain why fracture in particular might account for these

failures, van den Berg and Whiteson [51] connect the failures to the idea that fractured problems might

require more than a trivial number of nodes: “The reason we hypothesize that fracture is difficult for Hy-

perNEAT is that it seems that many nodes are needed to divide the substrate into such regions.” Thus the

underlying implication is that it may be difficult to evolve patterns with CPPNs that require many nodes to

represent, and that the domains in which HyperNEAT appears to falter may require evolving such patterns.

Contrary to these claims, this paper begins by showing first that HyperNEAT actually does not fail in two

reimplemented domains introduced by van den Berg and Whiteson [51], thereby suggesting a more nuanced

story. The difference in results is likely attributable to implementation details, which are pointed out in

this paper, but the more important point is that there is no fundamental problem for HyperNEAT in these

domains. After demonstrating HyperNEAT succeeding in these domains, the focus will then turn to showing

a variety of evidence for effective evolution of fracture through CPPNs, thereby raising further doubt on the

hypothesized problem with fracture. The paper then concludes with a discussion of the interpretation of

negative results in the field of generative and developmental systems.
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2 Experimental Reproductions

This section reexamines the three domains that van den Berg and Whiteson [51] claim to show are difficult

for HyperNEAT: (1) visual discrimination with triangles, (2) line following with vertical gray bands, and

(3) top-heavy quadruped locomotion. For the first two domains, the experiments are reproduced in their

entirety. For the quadruped domain, other published results from HyperNEAT with similar quadrupeds are

reviewed.

The main idea behind these three domains is that each is slightly harder than a variant that HyperNEAT

can solve with no hidden nodes in the CPPN. Thus when van den Berg and Whiteson [51] show HyperNEAT

failing in these harder variants, it implies that when hidden nodes become necessary, HyperNEAT begins to

exhibit problems. In contrast, this section will show that HyperNEAT has no fundamental difficulties with

these harder domains.

2.1 Visual Discrimination with Triangles

This task is a variation of the original “boxes” visual discrimination task that was used to demonstrate

the scalability of HyperNEAT to very large substrate resolutions [49]. The substrate in the boxes version

includes an11 × 11 input layer that is a two-dimensional visual field and an output layer of the same size.

Two boxes (size3 × 3 and1 × 1) are placed on the input layer at arbitrary locations. The objective of the

domain is that the output layer should activate the node at the same(x, y) location as the center of the bigger

box with highest activation (figure 2a). In this way, the domain tests the ability of the evolved substrate to

discriminatebetween the big and the small box.

The main difference in the “triangles” variant from van den Berg and Whiteson [51] is that instead of

discriminating a big box from a small box, the substrate must discriminate the location of a target triangle

with a certain orientation from the location of a distractor triangle of the same size but with a different

orientation (figure 2b). The triangle pairs must be discriminated by each candidate neural network at 75

different relative locations that are determined randomly during each training evaluation. This variant of

the task is harder than the boxes variant because the substrate cannot simply correlate activation level to

the number of active pixels nearby (which would work in boxes). Instead it must learn to focus only on

orientation. Solution quality is measured in this task as thedistancebetween the point of highest activation

and the center of the target triangle.

The triangles variant is interesting because van den Berg and Whiteson [51] hypothesize that this in-
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(a) Boxes domain solution (b) Triangles domain masks

Figure 2:Boxes and Triangles Domains.Depictions of the boxes domain (a) and the masks for the triangles variant
(b) are shown (reproduced from van den Berg and Whiteson [51]).

creased difficulty requires hidden nodes, an idea that their results support. They show this by comparing

normal HyperNEAT, in which the number of hidden nodes increases over evolutionary time, to a version of

HyperNEAT restricted to have no CPPN hidden nodes. HyperNEAT is shown to perform only marginally

better when the number of hidden nodes is not restricted, suggesting that allowing it to evolve more hidden

nodes provides no advantage. The experiments by van den Berg and Whiteson [51] with HyperNEAT in the

triangles domain are run with their own implementation of HyperNEAT calledPEAS-NEAT.

Additionally, van den Berg and Whiteson [51] introduce a simpleWavelet Encodingto provide a perfor-

mance baseline to compare to HyperNEAT. This Wavelet approach sums a number of wavelet basis functions

with genetically-specified parameters to determine the connectivity pattern (as opposed to specifying con-

nectivity via a CPPN as in HyperNEAT). In effect, the Wavelet Encoding is similar to a direct encoding

because it places weighted independent oscillating patterns that are confined to a limited area at explicitly

enumerated locations within a pattern; in other words, it cannot compose patterns hierarchically to create

higher-level patterns the way CPPNs do. However, it shares some properties with indirect encoding because

the area of each wavelet can encompass multiple connections in the substrate and thus correlations between

connections may result. A similar method of encoding networks through the frequency domain (using a

discrete cosine transform) was previously introduced by Gomez et al. [23]. In any case, the main purpose

of the Wavelet Encoding is not to promote a new encoding but rather to make the point that because it is

reported to perform better than HyperNEAT in the triangles domain, HyperNEAT should have been able

to perform similarly well if it could make effective use of hidden nodes. Specifically, van den Berg and

Whiteson [51] report that the PEAS-NEAT version of HyperNEAT on average achieves a distance of about

2.5, while Wavelets perform better at about 1.3 on average.

Thus the main questions raised by this experiment are (1) whether HyperNEAT cannot perform well

in this domain and (2) whether HyperNEAT cannot make effective use of hidden nodes in this domain.
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To examine these questions, two new experiments are implemented here. The first experiment aims to

show that it is difficult to conclude broad incapacities for a method (or even a particular implementation)

from only a single setup. This first experiment thus simply re-runs the PEAS-NEAT setup with higher

structure-adding mutation rates. In particular, the triangles task is attempted again with PEAS-NEAT with

three different structural mutation rates; 10 runs are completed at each rate. Thelow rate is the original

rate used by van den Berg and Whiteson [51] (0.1 probability for adding a connection and 0.03 of adding

a node), which yields poor results. Themediumrate is instead 0.15 and 0.06, and thehigh rate is 0.3

and 0.1. The theory behind trying higher rates is that if the hypothesis is that HyperNEAT has trouble

adding structure, then perhaps the problem is simply that too little structure is being added (as opposed

to any deeper problem with the algorithm). Because PEAS-NEAT may be updated occasionally by its

authors at https://github.com/noio/peas, the exact implementation used for this experiment is included at

http://eplex.cs.ucf.edu/cfresponse13.html so that it can be reproduced.

The main result is that indeed increasing the mutation rate boosts the average performance of PEAS-

NEAT to about 1.75, which is indeed a better performance than the 2.5 reported for HyperNEAT by van

den Berg and Whiteson [51] (figure 3). Thus much of the reported performance difficulty may simply be a

result of mutation rates that are too low. This result suggests a useful lesson: If HyperNEAT appears to be

experiencing difficulty adding structure, simply increasing the structural mutation rate may help to rectify

the problem.

Nevertheless, these results do notprove that HyperNEAT makes effective use of hidden nodes in this

task because it is still possible that hidden nodes are not actually needed. Also, it would be interest-

ing if performance can be raised even to a point better than the Wavelet implementation. To investigate

these issues further, the triangles domain was reimplemented with the SharpNEAT 2.0-based version of

HyperNEAT [24]. Reimplementing the task in this other version of HyperNEAT makes it possible to ex-

amine HyperNEAT’s performance in a well-tested and widely-used implementation that is popular with

many users of NEAT and HyperNEAT.1 The full source code for the reimplementation is available at

http://eplex.cs.ucf.edu/cfresponse13.html. The only known difference between these implementations is

that in the SharpNEAT-based implementation, triangles are never placed directly adjacent when they are

placed at random locations during training (which conforms to the original convention in the boxes do-

main), although in PEAS-NEAT they sometimes are. The motivation for avoiding such touching is that two

triangles touching each other yields an ambiguous configuration (because it is no longer shaped like a trian-

1Colin Green maintains a list of published research based on SharpNEAT at http://sharpneat.sourceforge.net/.
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Figure 3:Performance on Triangles in PEAS-NEAT with Different Structural Mutation Rates (lower is better).
The low (upper) line reproduces the poor performance of PEAS-NEAT reported with its original low structural mu-
tation rate. However, the two lower lines (which are close), representingmediumandhigh structural mutation rates,
both exhibit good performance.

gle) that can therefore in effect reduce training performance. This experiment also uses structural mutation

rates that worked well in previous SharpNEAT-based experiments: 0.05 probability for adding both nodes

and connections (full parameters are given at http://eplex.cs.ucf.edu/cfresponse13.html).

Other considerations that can potentially alter results are the length of the run and the size of the popu-

lation (the larger the population, the more HyperNEAT can take advantage of the speciation mechanism in

NEAT to explore diverse CPPN topologies). That is, results might be different if the experiment is run for

more generations or with a larger population. For example, the danger with the hypothesis that HyperNEAT

has trouble effectively incorporating CPPN hidden nodes is that longer runs might exhibit the opposite re-

sult. Therefore, ten runs with the SharpNEAT-based implementation with populations of both 100 (which

is the size used by van den Berg and Whiteson [51]) and 200 are given 1,000 generations instead of the 250

generations allowed by van den Berg and Whiteson [51]. That way, genuine long-term dynamics can be

observed. After all, incorporating structure requires building up enough parts to solve the problem, which

can take time even when the algorithm is working effectively.

As shown in figure 4, the main result is indeed that HyperNEAT without restrictions on the number

of hidden nodes increasingly outcompetes the variant restricted to zero hidden nodes. At the end of 1,000

generations, the difference is highly significant (p < 0.001 from Student’s t-test) for both population sizes.

While the zero-hidden-node variant stagnates above 2.5 regardless of population size, with hidden nodes
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(a) Population size 100 (b) Population size 200

Figure 4: Performance Comparison on Triangles in SharpNEAT-based HyperNEAT (lower is better). The
AverageandBestlines in both graphs (which appear at bottom because their performance is superior) give the per-
formance of regular HyperNEAT (with no node restrictions) over generations. The0HN-Averageand0HN-Bestshow
the performance when HyperNEAT is restricted to zero hidden nodes. Both population sizes were run ten times. For
both sizes, HyperNEAT without the node restriction ultimately performs significantly better than when restricted to
zero hidden nodes (p < 0.001 at both sizes 100 and 200). In fact, the best networks from HyperNEAT without node
restrictions sometimes exhibitperfectperformance, while 0HN networks never come close to a perfect evaluation,
demonstrating the critical importance of hidden nodes in this problem and HyperNEAT’s success at utilizing them
effectively.3

HyperNEAT achieves an average performance of 1.4 with the smaller population and 0.6 with the larger.

(The final average Wavelet baseline reported by van den Berg and Whiteson [51] is about 1.3, which is about

twice as inaccurate as the average HyperNEAT with the larger population. Of course, as with HyperNEAT,

it is possible that Wavelets could improve given a larger population or more generations.) These results

establish definitively in contrast to the hypothesis of van den Berg and Whiteson [51] that HyperNEATcan

gain a significant edge by evolving CPPN hidden nodes.

Furthermore, interestingly, some runs of the unrestricted variant of HyperNEAT eventually evolve solu-

tions that exhibitperfectperformance across their 75 evaluation trials (in particular three runs of ten exhibit

perfect performance at size 100 and five runs of ten at size 200). It is not reported in van den Berg and

Whiteson [51] whether perfect performance is ever achieved during training by any approaches. The av-

erage number of hidden nodes in such perfectly-performing solutions is 20.6 (stdev = 8.0). Given that

3The performance of the 0HN variant in these experiments is slightly worse than in van den Berg and Whiteson [51], which may

be because van den Berg and Whiteson [51] provided their CPPN output nodes access to activation functions other than sigmoids,

while traditional HyperNEAT implementations restrict outputs only to sigmoids so that output is always guaranteed to be signed.

However, of course, the important result in any case is the success of the unrestricted variant.

8



Figure 5:Line Following Domain (reprinted from van den Berg and Whiteson [51]). The sensor configuration
(left) for the driver is shown next to the track from the easier version of the problem (middle) and the more challenging
one (right) with gray distractor bands running vertically across the track.

none of the zero-hidden-node runs find such a solution, adding at least one hidden node appearsessential

in this domain to achieving perfect training performance. That HyperNEAT evolves such essential structure

suggests that HyperNEAT can evolve hidden nodes when they are necessary.

Overall the results of this reexamination of the triangles domain show that (1) HyperNEAT can perform

well in this domain, even sometimes performing perfectly during training, and that (2) HyperNEAT makes

effective use of CPPN hidden nodes to increase its performance. Rather than suggesting a fundamental

problem with evolving hidden nodes or fracture in HyperNEAT, these results suggest that higher structural

mutation rates, longer runs, and increased population sizes all can help to yield success for HyperNEAT in

this domain. Thus this domain actually turns out to be an effective platform for validating HyperNEAT’s

ability to evolve and take advantage of CPPN hidden nodes.

2.2 Line Following with Vertical Gray Bands

The line following domain variant is inspired by experiments originally by Buk et al. [8] and Drchal et al.

[19] in which an agent must evolve to drive a simulated vehicle along a track while avoiding straying off

the track, where driving is significantly slowed (figure 5 middle). The idea in the version with gray bands

(figure 5 right) is that the agent sensors (figure 5 left) cannot rely on a constant shade of white in the area

outside the track, making the problem harder.

The hypothesis in van den Berg and Whiteson [51] is that this lack of consistency in the background

necessitates hidden nodes in the CPPN to solve the problem effectively. Their experimental results with

PEAS-NEAT suggest accordingly that HyperNEAT indeed does not perform as well as the Wavelet baseline

approach (explained in the previous section) and performs no better than a version of HyperNEAT restricted

to only one hidden node. Fitness is measured (and reported) as averagespeed.

A potentially confounding factor with the speed statistic used by van den Berg and Whiteson [51]
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(which comes from the original line following experiments [8, 19]) is that it does not explicitly reward

covering the whole track.4 For example, although the track is a figure-eight, it is possible in this do-

main to achieve a high speed simply by remaining withinoneof the two loops in figure 5. In fact, test-

ing the PEAS-NEAT software indeed confirms that Wavelet solutions sometimes remain on only one side

of the figure-eight (videos from the final generation PEAS-NEAT showing this behavior are available at

http://eplex.cs.ucf.edu/cfresponse13.html), which can score highly with the speed statistic even thought it is

not a behavior that would be expected to correlate to high fitness. Thus an interesting question not discussed

in van den Berg and Whiteson [51] is whether HyperNEAT drivers are able to cover the whole figure-eight.

On the other hand, whether or not the drivers remain on only one side, the reported result is still that

HyperNEAT evolves slower drivers. However, the problem identified toexplain the apparent slowness,

which is that HyperNEAT-evolved drivers often veer off the track, is the most important issue. As explained

by van den Berg and Whiteson [51], “Examination of the resulting controllers shows that those generated by

HyperNEAT frequently adjust their trajectory only when they are already off-road.” Thus the key question

is whether HyperNEAT can evolve drivers that stay within the lines consistently despite the distractor bands.

To test whether staying within the lines is indeed problematic for HyperNEAT in general (or whether the

reported performance may be an artifact of the particular combination of PEAS-NEAT and its line-following

domain implementation), the line-following domain was reimplemented to run with SharpNEAT [24]. Full

source code for the reimplementation, including all parameter settings, is available at

http://eplex.cs.ucf.edu/cfresponse13.html. Given the advantage seen with a larger (200) population in the

triangles experiment, a population of 200 is also used for this experiment. Ten runs of HyperNEAT were

attempted without any restriction on hidden nodes and ten were attempted with CPPNs restricted to zero

hidden nodes. As in van den Berg and Whiteson [51], speed is measured as the total distance covered divided

by the simulation time. However, it is important to note that speed values cannot be compared directly

between experiments because the physics behind the simulators is likely slightly different. Nevertheless the

problem of navigating through regions with different background shades remains the pivotal challenge in

both experiments.

The main result is that HyperNEAT solves the problem of evolving a competent driver in the hard

version of the task (i.e. with vertical distractor bands) with ease (figure 6), usually within 20 generations.

In fact, drivers evolved by HyperNEAT shown in videos at http://eplex.cs.ucf.edu/cfresponse13.html appear

4It is important to note that this difference was pointed out to us in personal correspondence from the authors on May 27th,

2013.
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Figure 6:Performance in Hard Line Following by SharpNEAT-based HyperNEAT. SharpNEAT-based Hyper-
NEAT achieves near-perfect performance in this domain on average whether or not it is restricted to zero hidden nodes.
(Avg. and Bestdenote average and best performance in runs in which hidden nodes are not restricted while the number
of hidden nodes is restricted to zero inZero-Hiddenruns.) Ten runs of each treatment are averaged. The task is usually
solved within 20 generations.

smoother than typical Wavelet drivers from PEAS-NEAT (also shown in videos at the website), although of

course the domains are implemented differently.

While a direct comparison of speed results with van den Berg and Whiteson [51] is not possible because

of the potential simulator differences, thequalitative results are the important issue in this domain. In

particular, it is clear that HyperNEAT-based drivers in the reimplementation donot “frequently adjust their

trajectory only when they are already off-road” because they almost never go off-road. In fact, in nine of

ten runs with hidden nodes (and nine of ten runs without hidden nodes) the championsnevergo off road,

exhibiting perfect continuity across both white and gray patches (figure 7). The conclusion is that the PEAS-

NEAT implementation of HyperNEAT may not be representative of the performance of other HyperNEAT

implementations on this problem; in fact, in the SharpNEAT implementation the problem appears trivial for

HyperNEAT to solve.

Also interestingly, recall that the speed-based fitness measure used by van den Berg and Whiteson [51]

and reused here does not explicitly reward covering the whole track. In fact, Wavelet-based champions

evolved in PEAS-NEAT confirm that speed-based fitness does not ensure the whole track is covered (see

videos). However, in seven out of ten runs with hidden nodes and eight out of ten runs without hidden
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Figure 7: Typical Path Followed by Evolved HyperNEAT Driver. In the depicted path, the driver never strays
outside the path. Such perfect navigation is exhibited by HyperNEAT in the reimplemented domain in 90% of runs.
It also usually covers the entire figure-eight, which was achieved in 70% of runs with hidden nodes and 80% of runs
without hidden nodes, even though coverage was not explicitly rewarded.

nodes in the SharpNEAT-based reimplementation, HyperNEAT-evolved drivers cover the whole figure-eight

perfectly anyway. This result shows that evolving drivers that cover the track, stay within the lines, and avoid

confusion from the distractors is not difficult for HyperNEAT.

However, these results also expose that a good solution is so easy to obtain in this problem that it does

not require CPPN hidden nodes. That is, runs without hidden nodes perform as well as those that are allowed

to evolve hidden nodes. Therefore, the fact that it ultimately does not require such nodes means it is not

a suitable test for answering the question of whether HyperNEAT can evolve hidden nodes when needed.

Nevertheless, at least the results show it is easy for HyperNEAT to evolve drivers that never go off the road

and cover the full track. These successful drivers (as shown in the videos) also spend most of their time

at maximal or near-maximal speed. Furthermore, the average number of hidden nodes evolved to solve

the task perfectly when hidden nodes are allowed to evolve is only 1.75 (stdev = 0.97), suggesting that

HyperNEAT does not add an excessive number of hidden nodes when they are not needed, as is claimed in

van den Berg and Whiteson [51]. (Recall that the average number of hidden nodes for perfect solutions in

the triangles problem, whichdoesrequire hidden nodes to solve perfectly, is 20.6. It is not clear whether

all of those nodes are necessary, but the difference between the number of nodes in the respective domains

suggests that HyperNEAT does tailor the number of hidden CPPN nodes to the problem, and does not add

nodes when they are unnecessary.)

It is not entirely clear why HyperNEAT in PEAS-NEAT appears worse on the line following task than

SharpNEAT’s HyperNEAT. There are many implementation differences between the two software packages

that could account for the performance gap. It is also possible that PEAS-NEAT would perform better in

the version of the domain used with SharpNEAT. Finally, it is possible that the larger population size or
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different mutation rates could help PEAS-NEAT (as in the triangles domain).

So far reexaminations of triangles and line following have shown that HyperNEAT indeed solves tri-

angles effectively by incorporating hidden nodes (contrary to the outcome in van den Berg and Whiteson

[51]), and that it also solves the line following task without difficulty (also contrary to the originally reported

results). Together these results suggest HyperNEAT is well-suited to these domains and furthermore that it

can summon the appropriate hidden nodes for the task.

2.3 Top-heavy Quadruped Locomotion

The objective in the quadruped task (also called thewalking gait task) is to evolve a controller for a

quadruped robot that allows it to walk. The controller directs the motion of two hips joints and one knee joint

in each of the four legs (12 degrees of freedom). The ability of HyperNEAT to succeed in this domain was

first demonstrated by Clune et al. [15], but van den Berg and Whiteson [51] report that when they rerun the

experiment with Clune’s source code, the predominant solution synchronizes all joints to match each other,

yielding a simplehoppingbehavior. In fact, the hopping behavior is so simple that the authors find it can

be evolved easily with zero CPPN hidden nodes. The implication is that HyperNEAT does not evolve more

sophisticated gaits because it cannot effectively optimize the multiple hidden nodes that would be needed

to do so. It should be noted, though, that in Clune et al. [14] additional variants also evolved, including

left-right and front-back symmetry.

To validate the hypothesis that HyperNEAT cannot evolve hidden nodes to produce complex gaits, van

den Berg and Whiteson [51] modify the task by increasing the weight of the quadruped torso by a factor

of ten, creating a top-heavy quadruped. The idea is that hopping with such a body should be significantly

less effective and less stable, requiring a different kind of gait for good performance. Results with the

modified robot seem to confirm this intuition, showing that HyperNEAT performs suboptimally in the new

body because it cannot seem to find any non-hopping gaits. It also performs no better than a version of

HyperNEAT restricted to zero hidden nodes, also adding weight to the hypothesis.

However, the revisited results in the previous two experiments in this paper hint that once again the ap-

parent problem in this domain is potentially not as fundamental as a problem evolving CPPN hidden nodes.

Rather, it is reasonable to hypothesize (given the results in the previous two domains) that the tendency

towards hopping observed by van den Berg and Whiteson [51] is once again an artifact of the particular

implementation or the parameter settings not being tuned for the specific problem. Lending significant sup-

port to this hypothesis are recent publications showing HyperNEAT consistently evolving nontrivial gaits
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Figure 8: Multiple Quadruped Morphologies (reproduced from Risi et al. [43]). Not only does HyperNEAT
evolve a single quadruped controller in Risi et al. [43], but it evolves a single CPPN that can generate controllers for a
range of morphologies, including those shown here.

in similar top-heavy quadrupeds [41, 43]. In fact, Risi et al. [43] evolves quadruped gaits in a significantly

more difficult context: Not only must the CPPN encode the substrate for a single quadruped morphology,

but it must be able to generate working controllers formultiple morphologies (figure 8). Furthermore, it

must generate weights for a more complicated continuous-time recurrent neural network (CTRNN) archi-

tecture, as opposed to the simpler sine-fed architecture of Clune et al. [15]. In other words, the controller in

Risi et al. [43] must generate its own oscillations internally. Nevertheless, with all these obstacles, it con-

sistently generates fluid and nontrivial gaits (i.e. with alternating leg motions) for quadrupeds of multiple

sizes. Videos of these results can be seen at http://youtu.be/oLSSt5GyHNk.

Thus although time constraints prevented us from implementing this third domain, especially in light

of the fact that such a reimplementation has been done in two similar, but arguably harder variants of the

top-heavy quadruped problem, the problem reported by van den Berg and Whiteson [51] with the top-heavy

quadruped may not be representative of a general issue with HyperNEAT (like with the first two domains).

Of course, further experimentation is necessary to establish whether this hypothesis is correct.

3 Fracture in CPPNs

While van den Berg and Whiteson [51] report difficulty for HyperNEAT in three domains, the reexamined

experiments in the preceding section show why it can be challenging to draw general inferences from neg-

ative results. Instead of a deep underlying pathology, a mutation rate may simply be too low, or runs may

be terminated too early. Slight changes to the fitness function might help to reduce deception in the domain,

or other aspects of experimental setup could inadvertently make a difference. Each of these possibilities

is interesting in its own right. For example, sensitivity to parameters is a legitimate and important issue.

However, drawing fundamental inferences about the method itself can be tricky as a result.

Nevertheless, van den Berg and Whiteson [51] are inspired by the weak performance they observe
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to hypothesize a fundamental problem for HyperNEAT with encoding fracture (figure 1) when fracture

is needed. Because CPPNs encode the patterns of connectivity in HyperNEAT, this hypothesis in effect

entails the inability of CPPNs to evolve a representation of fractured patterns (which would also mean that

HyperNEAT-encoded neural networks would struggle to exhibit behavioral fracture, i.e. performing different

behaviors in different regions of the state space). The authors discuss this hypothesized problem with CPPNs

at some length, concluding that it is probably because representing fracture requires many nodes:

The reason we hypothesize that fracture is difficult for HyperNEAT is that it seems that many

nodes are needed to divide the substrate into such regions.

In contrast to this hypothesis, given that the two reimplemented experiments in this paper show that

HyperNEATcansolve the problems posed by van den Berg and Whiteson [51] without significant difficulty,

it is possible therefore that encoding fracture isnot problematic for CPPNs. For example, if the problems

with performance are remedied with simple changes implementation details (as they now appear to be), then

it is plausible that there is no fundamental problem after all.

In fact, separately from the experiments in van den Berg and Whiteson [51], a wide range of evidence

for fracture in CPPN-encoded patterns already exists. Accordingly, this section surveys this evidence, which

provides further counterevidence to the hypothesis that CPPNs have a problem with fracture.

3.1 Fractured Patterns in HyperNEAT Networks

Fracture can be visualized in neural networks encoded by CPPNs by displaying connection weights within

the geometry of the network. For example, Coleman [16] evolves HyperNEAT networks that can identify

the locations of various shapes in a visual field (a domain similar to the triangles domain in this paper). Visu-

alizations of the connectivity of these networks from Coleman [16] (figure 9) exhibit explicit fracture: Each

visual field (depicted as incoming weights to individual neurons in the hidden layer) exhibits two distinct

weight gradients that fracture in the middle of the field. In fact, this fracture is reminiscent of the visual-

ization provided by van den Berg and Whiteson [51] of patterns that are hypothesized to be problematic for

CPPNs to encode.

The weight patterns of three-dimensional neural network substrates encoded by evolved CPPNs can

also be visualized. Clune et al. [15] shows several such three-dimensional weight patterns evolved by Hy-

perNEAT with evident fracture (figure 10).
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Figure 9:Fracture in Evolved CPPN-Encoded Visual Fields. This visualization, reproduced including the figure
caption from Coleman [16], exhibits fracture in every visual field. This fracture is similar to the pattern hypothesized
problematic for CPPNs in van den Berg and Whiteson [51].

3.2 Fracture in Two-Dimensional Spatial Patterns

A convenient source for studying the kinds of patterns encoded by evolved CPPNs is Picbreeder [45,

46], an online service (http://picbreeder.org) where users have interactively evolved CPPN-encoded two-

dimensional patterns for the last six years. Over 9,000 such patterns have been published on the site, all of

which are publicly available for observation and analysis through the Picbreeder DNA tool. The existence

of this large public repository of CPPN-encoded patterns presents an ideal opportunity for learning the prop-

erties of patterns encoded by CPPNs. A sampling of patterns from Picbreeder (figure 11) gives a sense of

the widespread presence of fracture in CPPN-generated patterns.

While the visual appearance of fracture in output patterns provides evidence for its routine presence, its

underlying representation within the CPPN further elucidates how it originates. It turns out that fractured

regions originate deeply within the multilayer CPPNs that encode them, where it is possible to identify

individual nodes responsible for different regions. For example, observe theApple pattern in figure 12.

The Apple is a good example of fracture because it includes both a fractured asymmetric stem region and a

symmetric body region. Thus somehow the encoding must separate the asymmetric area from the symmetric

area. The CPPN that encodes the Apple has 83 hidden nodes and 264 connections; it is the result of 320

generations of interactive evolution.

Because van den Berg and Whiteson [51] hypothesize that the number of nodes necessary to represent
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(a) Simple Fractures

(b) More Complex Fracture

Figure 10:Fracture in Evolved CPPN-Encoded Three-Dimensional Networks (reproduced from Clune et al.
[15]). Three-dimensional weight patterns in (a) exhibit non-periodicexceptionsof different types. The fracture in the
network in (b), which is shown from front and back, is more complex; a periodic pattern in the front is fractured from
an entirely different pattern in the back. Note that this example demonstratesperiodic fracture, which is a complex
kind of fracture discussed by van den Berg and Whiteson [51].
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Figure 11: Fractured Patterns Generated by CPPNs from Picbreeder. Fracture is predominant among two-
dimensional CPPN-encoded patterns evolved on Picbreeder.

Figure 12:Fracture in the Apple. The stem and the body are two separately-represented fractured regions in this
CPPN-encoded pattern.

fracture presents a challenge, it is informative to investigate the internal representation of fracture in patterns

like the Apple. In Picbreeder the CPPN for any pattern on the site can be observed by pressing the “DNA”

button under that image, which opens the visualization interface shown in figure 13. Because the Apple

CPPN is very large, it is difficult to view all at once. Figure 14 gives a sense of its size.

Notice that in the Picbreeder DNA tool it shows the pattern output byevery nodewithin the CPPN.
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Figure 13:Visualizing the Apple CPPN. Picbreeder allows the user to visualize the underlying CPPN representation
of any image on the site by pressing the DNA button.

That way, it becomes possible to determine the precise locations within the network where specific shapes

and regions originate. In effect, the visualization shows how the final pattern is composed hierarchically

within the representation from bottom (inputs) to top (outputs). Using this capability, the origins of both

the fractured Apple body region and the asymmetric stem region can be identified deep within the network

(figure 15). This visualization is important because it shows why CPPNs are naturally suited to representing

fracture: The independent region that will encompass the main apple body (shown at left in figure 15) is

seen encoded by a separate node than the one that encodes the asymmetric stem region (upper right).

The node identified as the “main source of asymmetry in apple stem” in figure 15 is interesting because

its asymmetric gradient provides the asymmetry that ultimately structures the stem region. That is, the stem

is a function of this deeper gradient within the CPPN, while the body region is not a function of (i.e. is

not connected from) this asymmetric region. In fact, the contribution of the asymmetric gradient can be

proven byknocking outthe node that encodes it, similarly to a gene knockout experiment in biology (e.g.

Baba et al. [4]). Figure 16 shows the effect on the final output pattern when the asymmetry node is deleted

from the CPPN (including deleting all its incoming and outgoing connections). Interestingly,only the stem
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Figure 14:Apple CPPN from Inputs to Outputs. This visualization gives a sense of the size and structure of the
83- hidden- node and 264-connection Apple CPPN. Note that some structure is omitted (at the location of the dotted
line) to save space.

is affected, which loses most of its asymmetry, demonstrating the depth of fracture in the CPPN. It is also

interesting that the CPPN divides the Apple into these two regions (stem and body) when those are also

intuitively the two regions that humans would identify in the image as well.

The kind of fundamental fracture seen deep within the representation of the Apple appears in many other

CPPN-encoded patterns on Picbreeder. For example, theCar CPPN (figure 17) includes separate masks for

the body, roof, and wheel orbits, which thereby constitute three intuitive fractured regions.

Another example of intuitive fracture is theSkull pattern. As shown in figure 18, the Skull contains

masks both for its mouth region and its overall head region. To illustrate once again how deep and intuitive

the fracture is within this pattern, observe the single connection highlighted in figure 18 with the label

“notice this connection.” That connection is important because it feeds directly into the node that defines the

fractured mouth region. In effect, it is like a gene representing the mouth. Consequently, theweightof that

single connection can be perturbed to observe the effect on the final output pattern (figure 19). Confirming
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Figure 15:Origin of Fractured Regions within the Apple. The origin of the main symmetric body region and the
asymmetric stem region are both identified. Another node is also highlighted that provides the primary asymmetry for
the stem region.

once again the depth of the fracture, changing the weight of this single connection impacts only the mouth

of the skull, which can be caused to open by slightly increasing the weight. Thus, surprisingly, this gene on

its own opens and closes the mouth of the Skull.

Another interesting aspect of these kinds of “mask” nodes that underlie fracture is that they are some-

times conserved throughout lineages. That is, even as a genetic lineage evolves, the underlying mask pattern

deep within the network is preserved with minor variation. For example, aproto-facemask can be observed

within every step of the lineage of faces shown in figure 20. Confirming its critical contribution to the

ultimate face patterns that are output, knocking it out completely removes any face-like details from the

resultant output (figure 20, bottom right).

CPPNs can also represent highly complex fractured regions; not only can the regions be separated,

but they can contain their own complex patterns. Fracture can also exhibit symmetry (such as when one

fractured region is a reflection of another), regularity, and embedding (which means a fractured region can

be embedded within a larger set of contours). Figure 21 shows several such kinds of complex fracture in

CPPN-encoded patterns.

The evidence presented in this section from two-dimension patterns encoded by CPPNs demonstrates

the prevalence of fracture in CPPN-encoded patterns. Thousands more examples are at http://picbreeder.org.
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Figure 16: Gene Knockout in the Apple. The main asymmetry node (left) contributing to the Apple stem is
knocked out (right), causing the stem to lose most of its asymmetry. Meanwhile, the rest of the Apply body remains
unchanged. The conclusion is that the stem is a genuine fractured region encoded largely independently from the body
region.

In fact, rather than posing a problem for CPPNs, fracture is ubiquitous. Almost every CPPN-encoded pattern

exhibits some form of fracture and much of it is encoded by individual masks for each fractured region deep

within the network. In this way, the Picbreeder collection offers a unique opportunity to learn about the

encoding of fracture within evolved patterns.

3.3 Fracture in CPPN-encoded Morphologies

Researchers in recent years have begun to encode the morphologies of robots and artificial creatures with

CPPNs [3, 9, 44]. These offer an additional opportunity to observe fracture in CPPN-encoded patterns.

Some examples are shown in figure 22.

Another rich source of examples of fracture in CPPN-encoded three-dimensional objects is Endless-

Forms.com [12], which is similar to Picbreeder but with three-dimensional objects instead of two-dimensional.
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Figure 17:Fracture in the Car CPPN. Masks from nodes within the CPPN for three of the fractured regions in this
pattern are shown at right.

Figure 18:Fracture in the Skull CPPN. Masks from nodes within the CPPN for the mouth and head regions are
shown at right.

Figure 23 shows examples of fracture in three-dimensional objects from EndlessForms generated by CPPNs.

Taken together, the visualizations of fracture within evolved HyperNEAT networks, two-dimensional

CPPN-encoded images, and CPPN-encoded three-dimensional robots and other objects highlight the ubiq-

uity of fracture across CPPN-encoded artifacts and the considerable nuance and subtlety achievable through

CPPNs. Studies of the internal nodes of such CPPNs further show that fracture is often encoded deeply

within evolved networks, separating surprisingly intuitive regions like stems and bodies and mouths and
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Figure 19:Opening and Closing the Skull’s Mouth with a Single Connection Weight. Changing the weight of
the single connection noted in figure 18 determines the degree to which the Skull’s mouth is open. In this way the
mouth is a genuine fractured region with its own independent parameters within the evolved CPPN.

Figure 20:Conserved Proto-Face Mask throughout the Face Lineage.The masks (top) are patterns encoded by
internal nodes from each of the faces in the lineage below. As the lineage evolves from left to right, the proto-face
mask is conserved. Knocking out the mask destroys the face (bottom right), confirming the importance of the mask to
ultimately forming the pattern of a face.
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(a) (b) (c)

(d)

Figure 21: Examples of Complex Fracture. In the pattern in (a), each region contains its own nontrivial color
pattern, some of which are reflections of others. The fractured region enclosed by the apple variant in (b) contains
a complex “brush-stroke” pattern that differs markedly from the pattern in the outer fractured region. The complex
fractured regions in (c), which contain their own periodic patterns, are layered upon a distorted surface contour, yield-
ing a three-dimensional effect. The CPPN-generated patterns in (d) (reproduced from Stanley [48]) exhibit repeated
fracture with nested fracture. The middle frame is a zoomed version of the left frame, with an arrow highlighting that
not only is the fractured pattern repeated, but it is repeated with variation.

(a) (b)

Figure 22:Examples of Fracture in CPPN-encoded Creature Morphologies.Fracture is visible in these repro-
duced images of the morphologies of soft robots evolved by Cheney et al. [9] and creatures evolved by Auerbach and
Bongard [3].
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Figure 23:Examples of Fracture from EndlessForms (from Clune and Lipson [12]). All objects at Endless-
Forms.com are evolved by online users with CPPNs. Examples of fracture above include eyes, noses, and the balls
within the lamp-stands.

heads. Overall, CPPNs emerge not only as a viable choice for encoding fracture, but as a promising plat-

form for studying and learning about fracture in general.

Although fracture is evident in the target-driven domains shown in Sections 3.1 and 3.3, it is also inter-

esting that fracture is seen in such abundance in tools like Picbreeder and EndlessForms, in which there is

no explicit fitness-based target. The degree to which fracture emerges under strictly target-based conditions

versus more open-ended conditions is an interesting question for future research. Methods for preserving

behavioral diversity such as novelty search [31, 34] and others [33, 40, 42, 54] provide a potential path to

endowing practical domains with a more open-ended notion of fitness, which may increase the ability of

neuroevolution methods to respond with fractured solutions.

4 Discussion

This section first revisits the fracture hypothesis in light of the results reported in this paper and then dis-

cusses deeper issues in benchmark performance in the field of generative and development systems (GDS).
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4.1 Revisiting the Fracture Hypothesis

The results in the two reimplemented domains suggest that HyperNEAT indeedcan solve tasks that van

den Berg and Whiteson [51] found it could not. In particular, HyperNEAT does solve the triangles visual

discrimination problem by taking full advantage of hidden nodes and it does solve the line following prob-

lem with distractor bands. While van den Berg and Whiteson [51] hypothesize based on their results that

“fracture can be highly problematic for HyperNEAT,” these newer results suggest that the critical factor in

HyperNEAT is in factnot fracture. Given this discrepancy between the findings here and those of van den

Berg and Whiteson [51], several lessons can be learned from drawing implications from such experiments

about the real factors that impact performance:

• All the factors that enter into a complicated system like HyperNEAT may matter, including the im-

plementation of the algorithm, the parameters of the system, the setup of the task domain and reward

function, and resources (such as population size) given to the algorithm. Thus it can be difficult

sometimes to disentangle which factors are critical and which are not.

• Sometimes a change in a system parameter can make a significant difference in performance. For

example, raising the structural mutation rate in PEAS-NEAT was enough to show that adding CPPN

hidden nodes indeeddoesprovide an advantage over restricting their number to zero.

• It can take time for a system like HyperNEAT that allows increasing complexity to take advantage

of that increasing complexity. SharpNEAT-based results with HyperNEAT in this paper show that in

some runs the system can even eventually exhibitperfecttraining performance by taking advantage

of CPPN hidden nodes, which is impossible without them.

• Experimental setup can interact with behavior in subtle ways. For example, SharpNEAT-based Hyper-

NEAT easily solves the difficult line following task without hidden nodes, even achieving full cover-

age in most attempts even though it is not explicitly rewarded by the fitness function. Thus whether or

not an experimental domain actually tests a particular hypothesis may depend on the precise setup of

the domain. In the case of line following as described by van den Berg and Whiteson [51], the domain

does not appear ultimately to address the ability to add hidden nodes in the SharpNEAT setup.

Overall, the results in the reimplemented experimental domains suggest that (1) HyperNEATcan take

advantage of CPPN hidden nodes, including in a case (triangles) where it seems the only way to achieve

the best performance on the task is with hidden nodes. (2) HyperNEAT can effectively solve both triangles
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and line following. (3) HyperNEAT is also able to solve a complicated quadruped-walking task in separate

work [41, 43], though it is not exactly the same problem as attempted by van den Berg and Whiteson [51].

These outcomes diminish the motivation for the hypothesis that HyperNEAT has a problem with fracture

and also suggest it does not have a problem with taking advantage of hidden nodes. Positive evidence

that CPPNs can and do produce fracture is provided in the second half of this paper (Section 3), which

shows numerous examples of CPPN-encoded fracture in substrates, in two-dimensional output patterns,

and in robot morphologies. This survey of evidence suggests in fact that fracture with evolved CPPNs is

the norm rather than the exception, and furthermore that much remains to be learned from understanding

the representation of such fracture. In fact, few other extensive such demonstrations of fracture in evolved

patterns exist for any encoding other than CPPNs.

In conclusion, the factors contributing to the results of van den Berg and Whiteson [51] are likely not

fracture-related, and HyperNEAT can solve such problems without significant difficulty.

4.2 Interpreting Benchmark Performance in GDS

While HyperNEAT can solve the two reimplemented problems from van den Berg and Whiteson [51], of

course there will be other problems that various implementations of HyperNEAT will still struggle to solve.

What meaningful inferences can be drawn from such failures when they arise?

Interpreting the implications of failures is potentially more tricky than interpreting successes. When an

experiment succeeds, there is no ambiguity that the method in question can solve the tested problem. Of

course, it may notalwayssucceed at that problem, but at least it is accurate to conclude that itcansucceed.

However, the converse is not true for failures: If a method fails to solve a problem, it does not follow that

it cannotsolve the problem. It is possible that it actually can solve the problem, but under slightly different

conditions, or with a slightly different implementation. The problem is that proving a negative requires

substantially more evidence than proving a positive. Therefore, negative results merit significant caution in

their general interpretation.

A particularly relevant example of this danger is given in Woolley and Stanley [53], which investigates

the ability of the NEAT algorithm to evolve CPPNs that output patterns that match particular Picbreeder

images (such as those in figure 11). The result there is that NEAT fails to reproduce the target images in all

but the most trivial cases. Under normal circumstances, this result would be unremarkable, and many would

conclude simply that for whatever reason NEAT cannot evolve CPPNs that encode the target images. From

there it would be possible to attempt to infer a hypothesis to explain the failure. Perhaps even a problem
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with evolving fracture could be hypothesized (considering that so many Picbreeder images exhibit fracture).

However, the circumstances of the experiment in Woolley and Stanley [53] are not normal because of

one critical caveat: NEAT alreadydid evolve the images in Picbreeder. After all, NEAT is the algorithm that

evolves the CPPNs in Picbreeder. Therefore, in this case, whether or not NEAT could evolve these images

in the particular experiment of Woolley and Stanley [53], the conclusion that NEAT “cannot” evolve such

images is not viable. Not only can NEAT evolve such images, but NEAT is the only algorithm ever to evolve

any of them. This contradiction highlights the danger of drawing general inferences from negative results.

Yet with respect to the conclusions in van den Berg and Whiteson [51], the implications for the interpre-

tation of negative results are even deeper because van den Berg and Whiteson [51] attempt to validate their

fracture hypothesis with experiments almost identical to the target-based pattern-matching experiments in

Woolley and Stanley [53]. In particular, they conclude their paper by aiming to confirm that HyperNEAT

has a problem with fracture by testing HyperNEAT’s ability to replicate arbitrary fractured target patterns

of weights. As shown in Woolley and Stanley [53], such an experiment can be expected to fail even though

CPPNscanevolve such fractured patterns.

Thus the question shifts to why HyperNEAT or CPPNs would fail to reproduce patterns that they are

demonstrably able to produce under other conditions. A growing body of evidence [31, 32, 33, 34, 35,

36, 37, 42, 53, 54] suggests that often evolutionary algorithms fail to achieve desired results that are set as

explicit objectivetargetseven though the very same algorithms can succeed at the same problems when the

desired result is not set as an explicit target. In other words, if the fitness function is little more thandistance

to the target patternor distance from optimal performance, such algorithms tend to fail, but changing the

fitness function to be less target-driven can entirely change the result.

While a detailed treatment of the problem with target-based objectives is beyond the scope of this paper

(a number of sources cover the issue in detail [34, 36, 53]), an intuitive explanation is that setting the

objective as an explicit target is often highly susceptible to deception. For example, if the target pattern

is the Skull (figure 18), then a mutation that places the right color inoneof the two eyes would cause an

increase in fitness. However, such an increase is deceptive in the long run because the representation has

failed to discover the important underlying regularity ofsymmetrythat underlies the entire Skull. Thus

from that moment onward, any mutation that changes one eye will not change the other side of the face

accordingly, reducing the probability of reproducing the whole image correctly.

At the same time, if symmetryis discovered with a target-based objective, it will nevertheless not be

rewarded unless it happens to look reminiscent of the Skull right away, even though the most important
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fundamental discovery that could be made to set the search for the Skull in the right directionis bilateral

symmetry.

The same kind of deception arises with behavioral performance objectives. For example, if the objective

is to evolve a quadruped to walk the longest distance possible (i.e. the target is maximal distance), then an

early mutation that leads a single forceful lunge of the body will be rewarded for propelling the body farther

than in the past. However, deceptively again, such a large lunge is not a good stepping stone to walking

because walking requiresoscillations, not isolated lunges.

At the same time, similarly to with the target-based image, if oscillationisdiscovered, it will nevertheless

not be rewarded initially unless it happens by coincidence also to be paired with good balance (which is

unlikely), even though oscillation is a critical and fundamental discovery in the search for locomotion. In

effect, target-based fitness functions inadvertently favor short-term gain over long-term benefit, leading to

deception and premature convergence.

Moreover, there are many good alternatives, such as novelty search [34], minimal criteria novelty search

[33], collaborative interactive evolution (which tends to lack a unified target objective) [12, 26, 27, 45, 46],

combinations of novelty search with interactive evolution [54], and behavioral diversity techniques [40,

42]. These alternatives share the idea that evolution is rewarded not merely for distance to an objective,

but for maintaining a healthy behavioral diversity. In this way, for example, discovering oscillationcan

be rewarded because it is recognized as novel whether or not it provides an immediate boost in target

performance. Symmetry can be rewarded because it is interesting in its own right, regardless of whether

it initially raises or lowers fitness. Some such techniques rely on measuring novelty automatically, while

others include human judgment in the selection process. Still others combine novelty with objectives, such

as through multiobjective optimization [42]. The main point is that itis possible to formulate problems

through overall non-objective (i.e. less target-based) reward schemes, whereupon methods that otherwise

might be hypothesized to have a problem with certain domains actually prove successful.

This observation is particularly important for the field of generative and developmental systems (GDS),

which focuses on indirect encoding [1, 6, 7, 20, 28, 38, 39, 47, 48, 50]. (CPPNs are one kind of indirect

encoding.) Indirect encodings rely on the discovery of compositional regularities. For example, a system

might first discover symmetry and then elaborate that symmetry into four legs, two of which might later

elaborate into arms. Each step in such a process of elaboration requires refining a regularity established in

a previous step, that is, regularities arecomposedhierarchically over generations to achieve increasingly

refined phenotypes and behaviors. Target-based fitness functions are antithetical to such a process because
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they are not sensitive to anything but the final solution, thereby entirely missing (and thereby penalizing)

critical regularities that should be discovered along the way. Symmetry on its own may not initially look

like a face, but it is essential to capturing the essence of facial structure at a deep level. On the other hand,

behavioral diversity tends to reward such discoveries in their own right, thereby accumulating promising

stepping stones that can become the basis of solutions. In this way, target-based fitness functions are gen-

erally not good tests of the abilities of algorithms, but this is especially true for indirect encodings, due to

the circuitous path they often need to follow to reach a solution. Thus, target-based fitness functions do not

test what indirect encodings ultimately can or cannot do; rather they only tell us something about how such

encodings might perform under target-based conditions.

For these reasons, drawing broad inferences on the capabilities of GDS techniques from the results

of target-based problems is potentially misleading and even dangerous for the field of GDS and indirect

encoding. If indirect encoding produces its most impressive results under non-objective conditions (such as

in Picbreeder or even on Earth, where there is no final target for evolution), then formulating hypotheses

about the capabilities of such encodings based on their performance under strictly target-based conditions

will lead us inevitably astray. We will end up with seemingly contradictory conclusions (which would be

confusing), such as that fracture can be problematic for HyperNEAT on the one hand, while on the other

hand fracture is the essence of almost every pattern that CPPNs produce. Similarly, we would not want to

conclude that DNA cannot evolve complex organisms simply because we might fail to breed a single cell

into a fish or a bird.

In this way, it is important within our discourse as a field to separate carefully what an evolutionary

methodcando and what it tends to do under strictly target-based conditions.

5 Conclusion

The evidence in this paper contradicts the hypothesis that HyperNEAT and CPPNs have a problem with

fracture and show it effectively utilizing hidden nodes. The results show that HyperNEAT is capable of

effectively solving the two reimplemented problem domains from van den Berg and Whiteson [51] after

all. It has also exhibited positive results in separate publications in domains similar to the walking gait task

[41, 43] that was not reimplemented for this paper. Furthermore, this paper provides a range of examples

wherein CPPNs exhibit fracture. Perhaps a deeper lesson is that evolutionary algorithms are notoriously

difficult to characterize through benchmark results and the implications of such benchmarks need to be
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considered carefully. That is, we need to be careful about drawing broad conclusions about interesting

algorithms only from target-based benchmarks. By digging deeper (such as in the examples of fracture in

this paper), we can potentially learn a tremendous amount from algorithms and encodings beyond only such

superficial benchmark performance results.
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