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Abstract

This position paper argues that the sciences of the artificial (artificial intelligence and artificial life) have a

special relationship to art that is absent from much of science. Just as art is often a depiction or interpretation

of nature, so are the algorithms in the sciences of the artificial. This observation is important because

the discourse in these fields largely ignores the relevance of subjective resonance with nature to their own

scientific progress. Yet progress is potentially stifled if we cannot discuss such resonance openly. To support

this view, examples in this paper illustrate how the subjective impression of such resonance led to novel

encodings and algorithms in the author’s own career. An important conclusion is that there may be more to

gain than to lose by allowing some level of subjectivity to enter the discourse in the sciences of the artificial.

1 Introduction

While the argument that artistic sensibility is important to science is not new [3, 16, 20], this position

paper argues that the relationship of the broad fields of artificial intelligence (AI) and artificial life (alife)

to art is unique within science and deserving of more open discussion. Both AI and alife share the word

“artificial,” and anything that is artificial relates at some level to a natural counterpart. For AI and alife, the

natural counterparts are unambiguous: Bothintelligenceand life are highly salient natural phenomena. In

this way, AI and alife diverge from areas of science that are not predicated on creating artificial versions

of phenomena seen in nature. The consequent connection to art is that much of art isalsoconcerned with

reproducing phenomena seen or experienced in nature. Of course, it is important to acknowledge that not

all art is concerned with the reproduction of nature, especially in the modern era [2], and that art often

speaks beyond only its representational aspects to the cultural and historical context of the artist. However,

depictions and interpretations of nature and civilization were key historical drivers of the development of art

as a cultural phenomenon and remain central to much of art today [4, 15, 18].
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Yet while art often depicts or interprets the outside world, that does not mean in such cases that it is

a perfect reproduction of its subject matter. For example, a painting may aim to capture the essence of

an event, a mood, or a person [15] without reproducing every detail. Furthermore, of course there is no

expectation that the paintingis that event or that person; rather it is anartificial reproduction of it. As

Gombrich [18, page 49] puts it, “What a painter inquires into is not the nature of the physical world but the

nature of our reactions to it.” Similarly, music may capture a feeling or literature a situation. None of these

modes of expression require that the reproduction is perfect, complete, or “photographic.” In fact, one of

the powers of art is to emphasize (or even exaggerate) a particular quality that may come at the expense of

total accuracy (e.g. in caricature [26] or impressionist art). On the other hand the artist may select particular

resonant features to approach an idealization of reality [4].

Another way to articulate this idea of acceptable distortion is to say that when art serves as a window

to our experience it is not inherently about accuracy but rather aboutresonance. That is, art is often most

moving when it resonates deeply with some aspect of our experience of the real world, such as our expe-

rience of nature [15, 18]. (Merriam-Webster defines this sense ofresonateas to have particular meaning

or importance for someone: to affect or appeal to someone in a personal or emotional wayand to relate

harmoniously: strike a chord[25].) To resonate in this way, art must capture a fundamental essence of its

subject filtered through the artist’s intent and present it to us such that we feel its resonance with its natu-

ral counterpart. Leonardo da Vinci [10] describes the challenge of achieving such resonance: “Painting ...

compels the mind of the painter to transform itself into the very mind of nature, to become an interpreter

between nature and art” (quoted in Bialostocki [4]).

For example, van Gogh’s famous paintingStarry Night[43] showcases the value of resonance without

the notion of accurate reproduction. It is unlikely that any night on Earth has lookedliterally like the starry

night depicted by Van Gogh, yet at the same time, by exaggerating some details and stylizing others, the

painting resonates with a deeper aspect of the splendor and mystery inherent in such a night. In effect, if

the viewer contemplates the scene in the painting, she may come to appreciate some deeper truths about

real starry nights that she would never have realized when experiencing the real thing. In some cases, a

recognition of the artist’s intent can further enrich such an experience. In this way, the art becomes a kind

of lens that magnifies some qualities at the expense of others, ultimately enriching our awareness of reality

by subtly distorting it [1, 15].

Interestingly, the relationship between a painting and its natural counterpart is not unlike the relationship

between any artificial reproduction of nature and its inspirational counterpart. In this way, analgorithm in
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the spirit of AI or alife is in effect a kind of “painting” of nature, only viewed through the lens ofprocess

rather than through image. Yet the reproduction of nature through a description of process is in principle

no less interpretive or revelatory than through any other artistic medium. The main difference is only that

process is often described through a code that only those experienced in the art of programming or computer

science can easily appreciate.

The idea that an algorithm’s value can be traced to the resonance of its process with a counterpart process

in nature opens up an important discussion on our conventions as a scientific community for evaluating the

impact of algorithms in the “sciences of the artificial” (to borrow the term from Simon [36]). As with any

other art, a feeling of resonance with nature is possible to achieve without conventional measurable accuracy,

and in fact exaggeration or emphasis on some aspects of natural processes over others may even be intended

[18], thereby opening the mind of the “viewer” to a hidden aspect of nature just like inStarry Night.

This perspective raises a genuine practical question for the fields of AI and alife because their artifacts

are so commonly evaluated from an antithetical objective perspective. This sharply objective inclination is

exemplified by a preoccupation withperformancein AI and machine learning [31], andaccuracyin alife

worlds [8, 27]. The problem is that these conventional concerns stifle the discussion and promotion of the

more subjective notion of resonance with nature. Perhaps an artificial intelligence can be a kind ofStarry

Night, prompting us to view the mind anew. In this way, a new AI algorithm could serve as a different

perspective on intelligence rather than a better performer. Few would demand a “comparison” between

Starry Nightand a real starry night before admitting it into the world of bona fide art.

It is important to note of course that resonance is not entirely excluded from consideration in the sciences

of the artificial. A number of such exceptions from AI and alife are listed in online Appendix A. Scientific

communities are broad and diverse, so it makes sense that some smaller subcommunities will sometimes

defy the trends of the whole. Thus the argument here is not against the straw man thatall decisions of

import in AI and alife are entirely objective and performance-driven. Rather, the problem is that while

such subjective considerations do occasionally influence thinking, they are often relegated either to entirely

private discourse where resonance cannot be contemplated in the literature of record, or they seep through

only in highly specialized venues such as EvoMUSART calibrated for such discussion, yet outside the

mainstream (e.g. AAAI, NIPS, or ICML).

While the benefits of debating subjective resonance may still seem abstract, the fundamental problem

with ignoring this artistic side of exploring the artificial is that the chain of innovation that leads from one

idea to another in these fields may ultimately require traversingsomeideas that stand out not for their
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accuracy or performance, but for their resonance. After all, even in mainstream AI ideas that present to us a

familiar landscape in an entirely new light are exactly the kind of stimulus we will need in the long run to

be able to provoke imaginative new approaches. While it goes without saying that of course notall progress

in these fields requires artistic inclination, to avoid handicapping our capacity for progress, we may need

to acknowledge more broadly the special nature of artificiality within some sciences, which connects more

strongly to art than in other scientific disciplines.

This paper is an attempt to argue through evidence that the subjective interpretation and experience of

artifacts from alife and AI should be admissible in the professional discourse of these disciplines (e.g. in

publications and reviews), not just in the service of generating aesthetic results, but in achieving the ultimate

ambitious aims of the fields. Because a thorough examination of art within science necessitates at least

some level of subjectivity, I have consciously chosen to present much of this position paper from my own

first-person perspective. Yet despite taking this unusual first-person perspective for an article in a scientific

journal, it is important to emphasize that the intent isnot primarily to be autobiographical. Rather, my hope

is that anecdotes from my own career can effectively support the general position that art is essential to AI

and alife. My broader hope (perhaps overly ambitious) is that through initiating a dialogue on this important

subject, it will become easier to discuss subjective and aesthetic aspects of our algorithms, both in published

work and in the reviews of article submissions, without the present stigma of being calledunscientific.

2 Past Reflections at the Intersection of Science and Art

Because science and art are both creative endeavors, it is not surprising that their relationship would intrigue

many thinkers. As Albert Einstein said, “The greatest scientists are artists as well” [6]. This perspective that

the practice of science is at least in part a kind of art pervades much of the commentary on the subject, often

focusing on the role of intuition in scientific discovery.

William Beveridge’s classic book,The Art of Scientific Investigation[3], exemplifies this approach to

connecting science and art, including an entire chapter on the role of intuition in science. While conventional

scientific tools such as objective observations and hypotheses are discussed as well, one important message

is that a sense for aesthetics and elegance also plays a role in effective scientific intuition. Online Appendix

B reviews several other commentaries that strike similar themes. Of course, while an artistic inclination

can benefit scientific discovery, science can also serve art, both as a method of explaining its mechanics

[19, 28, 32, 35] and as a vehicle even for artificially generating it [30, 37]. In the latter case, when machines
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generate art, many interesting questions arise concerning the role of artistic intent and authorship [5].

This paper diverges both from conventional arguments for the role of artistic inclination within sci-

ence and from explorations of science to explain or support art. Instead, the suggestion in this paper is

that branches of science concerned with the artificial arethemselvesintrinsically artistic (and not only in

a metaphorical sense), an idea that is significantly less discussed or debated. Because the sciences of the

artificial are especially concerned with reproducing phenomena observed in nature artificially, this relation-

ship is unique even compared to the relationship of art to other branches of science. In this way, this paper

aligns more strongly with the literature on art-within-science and is thereby also not a conventional exposi-

tion of the virtues of evolutionary or artificially-generated art. The next section begins to explain the unique

relationship between art and the sciences of the artificial by examining art as a tool for research in these

areas.

3 Art as a Tool for Science

This section recalls the origins of two ideas from my own career. In both cases, the initial spark that led to the

idea is a subjective observation about pictures that resonated for me with something deep in nature. While

of course not all scientific discoveries in AI or alife will originate with subjective observations, the question

is whether discouraging such observations in public discourse might cut off some future discoverers from

what could have been their inspirations.

3.1 Compositional Pattern-Producing Networks

Art is not new to artificial intelligence or especially evolutionary computation (online Appendix C reviews in

particular work in the field ofevolutionary art). In 2004 I was exploring two new evolutionary art programs

called DelphiNEAT-based Genetic Art (DNGA [12]) and SharpNEAT-based Genetic Art (SNGA [13]). Both

of these programs interested me in part because they are based on the NeuroEvolution of Augmenting

Topologies (NEAT; [40, 42]) algorithm, which I had recently introduced with Risto Miikkulainen. Because

NEAT is a method for evolving increasingly complex artificial neural networks (ANNs) that was originally

designed for control problems, it had not occurred to me that the ANNs evolved by NEAT might be asked

to output pictures. Particularly intriguing to me was that because NEAT gradually adds complexity to the

networks it evolves, the images in an evolutionary art system based on NEAT could in principle become

more complex over time. However, evolutionary art was familiar to me at the time primarily as a toy.
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Figure 1:Sequence of Interactively Evolved Spaceships that Inspired CPPNs.The spaceships in this sequence
are the original inspiration for CPPNs.

That changed one day in 2004 when I interactively evolved a sequence of spaceships with the DNGA

tool (a selection of this sequence is shown in figure 1). This single experience of evolving a sequence of

spaceships struck a deep chord because the sequenceresonatedwith something subtle in nature. However,

instead of reminding me of spaceships (which to me is their superficial likeness), these images reminded me

of the way evolution progresses in nature, which is a feature ofprocess. In effect they appeared a kind of

allegory for natural descent and elaboration. For example, the sequence begins with a discovery of bilateral

symmetry and elaborates from there, adding increasingly intricate elaborations that then become fodder for

further elaboration. I was particularly astonished when the tail fins appeared (figure 1h). After all, DNGA

knows nothing of rockets, planes, or tail fins. While the spaceships themselves may not be great art with

respect to spaceship depictions, in the resonance of the whole sequence with an abstract conception of nature

thereis an artistic connection. In this sense, the sequence to me is like a stylized interpretation of the way

natural evolution unfolds.

Over time, as I studied the images and their underlying representations in NEAT I began to understand
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that a key property enabling this kind of elaborated regularity isfunction composition, and I started to relate

function composition to more traditional abstractions of biological development (which often appear in alife

research) like cell chemistry and grammatical encodings [41] (online Appendix D gives several examples

of such encodings). It turns out that function compositions of increasing complexity make an analogy with

the way genetic representation in nature elaborates form over generations [7]. This realization led to the

new encoding calledcompositional pattern-producing networks(CPPNs), which are in effect networks of

functions evolved by NEAT [38]. The idea is that these functions can be conceived as representing steps in

pattern-formation during a developmental process, thereby introducing a new developmental abstraction.

CPPNs went on to become the basis of numerous applications and experiments in AI and alife (several

dozen examples ranging from generating music to robot morphologies are documented in online Appendix

E). They also became the basis of the new kinds of evolutionary ANNs in HyperNEAT [17, 39], which itself

became the basis of a new research area with practical applications in autonomous control and decision

making (online Appendix E). These active areas of research would not currently exist if not for that first

impression of a few images of spaceships on my computer screen.

One other application of CPPNs that deserves special mention is Picbreeder

(http://picbreeder.org) [33, 34]. The potential for evolving CPPNs to lead to such interesting progressions

as in figure 1 suggested to my research group that more such discoveries might emerge if a large-scale,

crowd-sourced effort to evolve CPPN-generated images was made available on a public website1, which

became Picbreeder (figure 2). However, while the hope for better evolved art is a plausible motivation, after

the experience of the spaceship, that wasnot my personal motivation. Rather, I had begun to believe that

the products of evolutionary art are so rich with scientific implications thatsomethingelse (though I did not

know what) would likely emerge from such a large-scale artistic collaboration on the Internet. The resultant

discovery is described next.

3.2 Novelty Search

Unlike most evolutionary algorithms that search for a particular objective or set of objectives, novelty search

[22, 23], first introduced by Joel Lehman and myself in 2008, searches only for novelty. This kind of search

is interesting in part because by ignoring objectives it can avoid the deception inherent in many objective

functions [22, 23, 29]. That is, sometimes it can evolve a solution to a problem more reliably than an

evolutionary algorithm that is actually rewarded for approaching the objective. However, novelty search is

1This idea was first proposed in a lab meeting by Jimmy Secretan.
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Figure 2: CPPN-Encoded Images Interactively Evolved by Picbreeder Users. A sample of the over-9,000
collaboratively evolved images is shown.

interesting more deeply because it can potentiallycollect interesting items in the search space, whether they

are preconceived or not [9, 24]. In this way, unlike most evolutionary and optimization algorithms that are

convergent, novelty search is adivergentsearch and thereby lends itself to new kinds of applications. Like

CPPNs, novelty search has provoked a significant body of work extending and analyzing it (several dozen

examples, from practical applications like robot ambulation to tools for discovery and invention, are given

in online Appendix F).

While much has been written on novelty search and its variants, its original inspiration has not previously

been discussed in publication. As images like those in figure 2 accumulated on Picbreeder, it became

apparent that humans could discover interesting images fairly consistently. Of course, theinterestingness

of images is subjective, but to learn something from the results of a system that produces images requires

at least initially some openness to subjective judgment. Serendipity ultimately revealed to me how such

images are discovered. My intent initially was not to make a scientific discovery, but rather just to play

with Picbreeder to see what I could evolve. An important option on Picbreeder is the ability tobranch

an interactive session from an image previously evolved by another user. The site provides a searchable

8



(a) Alien Face (b) Car

Figure 3:Images that Inspired Novelty Search. The image of the alien face (a) previously published on Picbreeder
turned out to be an unexpected stepping stone to evolving the car (b).

catalog of images previously evolved by users to facilitate such branching. In this particular case, I decided

to branch from a previously-evolved image that looked to me like an alien face (figure 3a). I thought that I

might evolve more interesting aliens from this original alien.

However, that is not what happened. Instead, the eyes of the alien began to descend relative to the head,

and I realized that it was beginning to look like a car. From there I was able to push it further in the direction

of a car until I had evolved to my surprise a plausible image of a car (figure 3b). This experience was

strangely reminiscent of the spaceship. At first I was amazed that I had been able so easily to evolve a car.

However, the more I thought about it, the more something seemed wrong: I had not beentrying to evolve a

car. How was it that I evolved something I did not set out to evolve?

Even more strange, I realized that not only had I not set out to look for it, but that the only reason I found

it wasbecauseI was not looking for it. After all, I began with an alien face because I wanted to find more

alien faces. Therefore, if I had actually been trying to evolve a car, I would not have started with an alien

face, and as a result I would have pruned away a promising path to the car. In short, it seemed that the only

way for the discovery to happen was bynot trying to look for it. This realization contradicted a lot of what I

had previously believed about search, which is that the way to find something is to set it as an objective and

then optimize towards it. I began to wonder, what if that is not how interesting discoveries are really made?

Of course, it is possible that the story of the car is somehow unique and that other discoveries are not

made in that way, but when I looked back at the lineages of other images on Picbreeder (such as those in

figure 4), the conclusion was unavoidable – almosteveryinteresting discovery in Picbreeder works that way.

Users almost always first branch from something so radically different from what they ultimately discover
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Figure 4:Deceptive Stepping Stones.In each pair of evolved images, the image on the left was initially evolved by
a different user from the one (or more) who ultimatelybranchedfrom it to create to image on the right.

that there is no plausible argument that they had it in mind from the start. Instead, surprisingly, users on

Picbreeder discover interesting images only when they are not looking for them.

In this way, the observation that users only find what they are not seeking, provoked initially by evolving

the car, was the initial impetus behind novelty search, an algorithm that searches without an objective. The

idea is that maybe a good way to find something interesting is to explore possible stepping stones (like the

alien face) without trying to control where they might lead. I discussed this observation with my then-student

Joel Lehman, and together we developed it into the novelty search algorithm.

The common thread from CPPNs to novelty search is thatpicturesand their subjective resonance with

nature triggered the key insight, in part through their own subjective resemblance to natural artifacts, but

also in part through their chronological depiction ofprocessesreminiscent of those in nature. Importantly,

that does not mean CPPNs areequivalentto natural DNA or that novelty search is thetrueprocess of search

in nature. Rather, they are resonant with such natural counterparts without being equivalent. In a sense

they can be regarded asinterpretationsof nature that focus on a particular important facet, just as art often

interprets the world without reproducing it precisely.

Thus it is important that we are open to the subjective nature of art-like or aesthetic output from systems

and models in the sciences of the artificial. After all, the initial inspiration for both AI and alife is nature,

and the root of this inspiration is not in any quantifiable fact but rather in afeeling about the profound

significance of nature’s achievements. Should we be afraid to acknowledge that as scientists?
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4 Algorithms as Artistic Artifacts

The idea that subjective impressions should sometimes serve as admissible inspiration in AI and alife sug-

gests more generally that the algorithms and encodings we create themselves can be regarded as art, and

perhaps sometimes should be judged in that spirit. Just like any other art, algorithms in the sciences of the

artificial are interpretations of phenomena observed in the real world, and thus stand alongside paintings,

literature, sculpture, and other art forms asstatementson the artist’s view of nature. Yet outside the field of

generative art (which focuses explicitly on algorithms in the context of art production [5, 11]), algorithms

in alife and AI are rarely judged publicly in this way. If they were, then sometimes the statement made by

the artist through the artifact would be more important than its results because what would matter is how it

opens our mind to a new perspective rather than how it performs or how accurate it is.

Nevertheless, a likely criticism is that such conversation belongs outside thesciencesof the artificial be-

cause it does not in itself advance the science. However, if indeed our fields are about ultimately replicating

some of the most impressive aspects of natural phenomena, then surely the resonance of our artifacts with

such phenomena is relevant not only to philosophical discourse but to concrete progress as well. That is, if

we view these fields as largely creative endeavors whose practitioners are searching for ever more powerful

or accurate algorithms, then each published algorithm becomes a potential stepping stone to new ideas and

yet more innovative algorithms. There is no a priori reason to believe that the path through the space of

algorithms is lit exclusively by performance and accuracy instead of sometimes by resonance and elegance.

The result is thatif algorithms whose primary highlight is resonance with nature might be stepping stones

eventually to algorithms with greater performance (such as CPPNs leading to HyperNEAT), then we are

effectivelypruningmany such chains of innovation out of the search space of the sciences of the artificial.

Whether intended or not, many algorithms in the sciences of the artificial are thereby inevitably state-

ments about nature as well. They reveal a personal perspective on behalf of their authors about what res-

onates in nature. In this way, they might even be regarded as mediums of self-expression, as with any other

art. In short, as a field we might sometimes benefit from following the gradient of resonance over the gradi-

ent of performance in the search for new ideas. Interestingly, even beyond the benefit to the science (which

is the focus of this article), the novel mode of understanding opened by an algorithmic interpretation of

nature may in its own right offer value, even outside its utility as a tool for science.

Perhaps the easiest way to show what I mean by algorithms as artistic artifacts is to paint some of my

own work in this unusual light: NEAT is a meditation on the elegance of increasing complexity in nature.
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HyperNEAT is a contemplation on the relationship between the geometry of the outside world, which is

often regular, with the geometry of the inner world of the mind. Novelty search is a depiction of nature as

a free spirit and a rebel – a process that becomes endlessly playful and innovative, but only when it is not

told what to do or where it should go. These could be ultimate truths, or as art simply my personal truths,

feelings about the world expressed by algorithms that thereby become their own stepping stones to new

ideas. Sometimes algorithms can be odes to certain aspects of nature rather than faithful reproductions of

them. And so it goes with art.

5 Synthesis

The traditions and culture of each scientific discipline in part help to protect its practitioners from a flood of

baseless speculation (in what Kuhn [21] calls “normal science”). Each of us can only read so much, and the

expectation that claims are supported by objective evidence helps to filter the discourse of the field to only

the most scientifically rigorous.

Yet the danger of a flood of mediocrity trades off with the danger of pruning too much [14]. The risk of

lost opportunity arises in particular if the point of the idea is subjective. In such cases, no amount of objective

evidence can flip the subjective into the objective. Especially in the sciences of the artificial, where inexact

reproduction of nature itself is on offer, there mayneverbe such an objective resolution for some questions.

Are the spaceships in figure 1objectivelyreminiscent of some deeper aspect of nature?

The question then is whether we would be better off not sharing such subjective impressions (or only

sharing them within the narrow context of art-based subdisciplines like evolutionary art). My suggestion

is that the response to this question should be carefully balanced. It is clear that traditional objective evi-

dence is essential to scientific progress, but some room for the discussion of subjective impression would

be healthy for the fields as well. That way, a future researcher can share his or her “spaceships” with the

scientific community without the need for objective pretense and maybe the next CPPNs will result after

some discussion.

More broadly, an author should have the space to point to resonance with nature, both in the results

of experiments and in the motivation for algorithms themselves. In some cases, such resonance should

even trump performance. While a good algorithm is sometimes one that performs well, sometimes a good

algorithm is insteadone that leads to other algorithms and new frontiers.

The inevitable protest ishow can we knowwhether such slippery intuitive ideas are genuinely good.
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Might some clever author pull the wool over our eyes and fool us with pretty pictures? But that is the same

problem faced by art. It is a messy problem to address, but that does not imply it should be avoided.

The answer is simply that we are qualified to do this. Professional scientists in the sciences of the

artificial have spent years observing nature and thinking about its connection to computation. While our

opinions may differ (as humans will inevitably differ on art as well), that does not mean our opinions are

baseless or without substance. Rather, as experts in these fields, we are the most qualified to judge such

resonance and discuss it openly. Feeling is behind all inspiration, and an iron rule that it must be hidden

implies that the spark of inspiration can never light from one scientist to another unless through entirely

objective means. How can that really make sense in fields predicated on the artificial interpretation of

reality?
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Appendix A: Exceptions: Systems Recognized for their Resonance

Although it is uncommon that achievements in AI or alife are explicitly recognized for their resonance with

nature, there are some exceptions. Examples include John Conway’s Game of Life [20] (reminiscent of

elementary particle interactions in nature leading to organized structures), Craig Reynold’s boids algorithm

[83] (reminiscent of animals flocking), Aristid Lindenmayer’s L-systems [68, 69] (reminiscent of the growth

of plants), Thomas Ray’s Tierra [81, 82] (reminiscent of evolution within natural ecologies), Karl Sims’

evolved three-dimensional creatures [93] (reminiscent of the ambulation of natural organisms), etc.

Appendix B: Commentaries on Art within Science

The view expressed by Beveridge [7] that that science can benefit from artistic intuition is echoed in many

places [34, 53, 73, 89, 102], often focusing on particular angles like imagery [73] (which is also an important

focus in this paper) or creativity [89].

Appendix C: Evolutionary Art

Evolutionary art [5, 29, 43, 70, 72, 92, 94] is a branch of interactive evolutionary computation (IEC; [98])

going back decades to Dawkins’ early work with Biomorphs reported in his book,The Blind Watchmaker

[28], and the work of Todd and Latham [99].
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Appendix D: Abstractions of Biological Development in Evolutionary Com-

putation

A number of artificial encodings meant to abstract essential properties of biological development were con-

ceived prior to CPPNs [1, 6, 8, 50].

Appendix E: Applications and Extensions of CPPNs and HyperNEAT

The introduction of CPPNs spawned a new research area with numerous applications and extensions [2, 3,

4, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 24, 25, 26, 27, 31, 32, 33, 35, 35, 36, 36, 44, 45, 46, 47, 48, 49,

51, 57, 74, 80, 84, 86, 90, 91, 96, 97, 101]. In fact, because CPPNs are a kind of generic pattern-generator,

their applications are diverse, including music [45, 46, 47, 48, 49], three-dimensional objects [15], dance

[33], more evolutionary art [90, 91] (even winning awards at an art competition [78]), robot morphologies

[3, 11, 86], and the design of robust mechanical structures [12, 84].

Perhaps the most significant new direction based on CPPNs is the HyperNEAT method for evolving

large-scale artificial neural networks, which itself opened up a new research area [19, 24, 25, 26, 27, 32, 35,

36, 36, 44, 57, 74, 85, 97, 101]).

Appendix F: Applications and Extensions of Novelty Search

The introduction of novelty search led to numerous applications and extensions [16, 21, 22, 23, 30, 37, 38,

39, 40, 41, 42, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 74, 75, 76, 77, 79, 85, 87, 88,

95, 100, 103, 104]. Some of these works apply it to practical problems like biped or quadruped locomotion

[62, 74, 85] while others explore its potential as an automated tool for discovery and invention [23, 63].
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