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Abstract

Synaptic plasticity is a major mechanism for adaptation, learning and memory. Yet current models struggle to link local
synaptic changes to the acquisition of behaviors. The aim of this paper is to demonstrate a computational relationship
between local Hebbian plasticity and behavior learning by exploiting two traditionally unwanted features: neural noise
and synaptic weight saturation. A modulation signal is employed to arbitrate the sign of plasticity: when the modulation
is positive, the synaptic weights saturate to express exploitative behavior; when it is negative, the weights converge
to average values and neural noise reconfigures the network’s functionality. This process is demonstrated through
simulating neural dynamics in the autonomous emergence of fearful and aggressive navigating behaviors and in the
solution to reward-based problems. The neural model learns, memorizes and modifies different behaviors that lead to
positive modulation in a variety of settings. The algorithm establishes a simple relationship between local plasticity
and behavior learning by demonstrating the utility of noise and weight saturation. Moreover it provides a new tool
to simulate adaptive behavior and contributes to bridging the gap between synaptic changes and behavior in neural
computation.
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1. Introduction

This paper describes a novel, modulated Hebbian plas-
ticity rule that makes productive use of features of Heb-
bian dynamics that in the past were thought undesirable.
By utilizing noise and saturation, operant reward learning
can emerge from the present learning rule, establishing
an important link between local plasticity and macro-level
behavioral adaptation.

The idea that adaptation, learning and memory rely on
synaptic change has gathered increasing consensus begin-
ning with the early studies of Hebb (1949) and the sem-
inal work of Kandel and Tauc (1965). Early studies on
the mollusk Aplysia proved that behavioral changes were
precisely linked to the growth of particular pathways from
sensory to motor systems (Kandel and Tauc, 1965; Carew
et al., 1981). However, synaptic change follows rich dy-
namics that are often the product of different chemical
signals (Clark, 2001) whose interaction and mechanisms
are not completely understood. The Hebbian paradigm
(Hebb, 1949; Marr, 1969; Stent, 1973; Brown et al., 1990;
Bi and Poo, 2001; Gerstner and Kistler, 2002a; Cooper,
2005), which states that neurons that fire together, wire
together, is a ubiquitous paradigm in neuroscience that
has been substantially validated through neural record-

ings (Stent, 1973; Kelso et al., 1986; McNaughton et al.,
1986; Lisman, 1989; Markram et al., 1997), corroborat-
ing detailed rate-based (Grossberg, 1976; Rauschecker and
Singer, 1981; Oja, 1982; Bienenstock et al., 1982; Gerst-
ner and Kistler, 2002a) and spiking neural models (van
Rossum et al., 2000).

The increasingly evident link between behavior learn-
ing and synaptic plasticity has encouraged researchers to
propose numerous models whose overall behavior changes
with the modification of synaptic weights; for reviews see
Dayan and Abbott (2001); Bi and Poo (2001); Gerstner
and Kistler (2002a). However, one controversial and of-
ten unwanted feature of Hebbian models is that increas-
ing firing leads to increasing synaptic strength, which
in turn leads to further increasing of firing (Miller and
Mackay, 1994; Hasselmo, 1994; Moldakarimov and Se-
jnowski, 2008). When a weight is larger than a cer-
tain threshold, a positive feedback will cause the weight
to increase indefinitely. Such a model yields auto-
correlation rather than cross-correlation of signals (Porr
and Wörgötter, 2006). To prevent indefinite weight
growth, various constraints can be imposed on the basic
Hebbian plasticity (Oja, 1982; Bienenstock et al., 1982;
Miller and Mackay, 1994). A second limitation of sim-
ple Hebbian plasticity is that learning can be just as fast
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as unlearning. For such models, short-lived stimuli leave
a short-lived trace in the network regardless of their rel-
evance. This feature contrasts with long term potentia-
tion (LTP), in which certain conditions induce synapses
to maintain the increased strength in the long term (Levy
and Steward, 1979, 1983; Kelso et al., 1986; Brown et al.,
1988; Gustafsson et al., 1987).
In effect, the dynamics of Hebbian plasticity in biology

are often affected and substantially altered by additional
homeostatic dynamics (Turrigiano, 2008) and neuromodu-
lators (Harris-Warrick and Marder, 1991; Hasselmo, 1995;
Giocomo and Hasselmo, 2007; Bailey et al., 2000; Clark,
2001). For example, when the Aplysia encounters nox-
ious stimuli, additional modulatory activity is also trig-
gered, resulting in longer-lasting synaptic changes (Clark
and Kandel, 1984; Bailey et al., 2000). This observation
suggests that additional modulatory chemicals act as selec-
tors of relevant stimuli that require learning of long-lasting
responses, as in the case of dangerous or pain-inducing
conditions (Bailey et al., 2000). To date there is extensive
evidence linking conditioning behavior and reward learn-
ing with neuromodulation. Modulatory activity appears to
carry reward information across a surprisingly large spec-
trum of animals, from insects like the honeybee (Hammer,
1993; Gil et al., 2007), to mollusks like the Aplysia (Wal-
ters and Byrne, 1983; Brembs et al., 2002) and to mam-
mals (Schultz et al., 1993, 1997; Wise and Rompre, 1989;
Berridge and Robinson, 1998). Yet whether and why neu-
romodulation is computationally essential to achieve such
long-lasting behavioral responses has not been clarified.
Driven by biological findings, researchers have aug-

mented their models with modulatory signals (Hasselmo
and Schnell, 1994; Fellous and Linster, 1998; Ludvig et al.,
2008) or attempted to model biological modulatory activ-
ities (Baxter et al., 1999; Cohen, 2008). The precise role
of various modulatory chemicals (e.g. serotonin, acetyl-
choline, dopamine and norepinephrine (Bear et al., 2005;
Hasselmo, 2006)) is still debated, in particular regarding
the role of dopamine in reward learning (Pennartz, 1996,
1997; Berridge and Robinson, 1998; Montague et al., 2004;
Schultz, 2006; Redgrave et al., 2008). Moreover, modula-
tion appears to regulate a large variety of behaviors like
arousal, attention, reward learning, and memory (Harris-
Warrick and Marder, 1991; Hasselmo, 1995; Aston-Jones
and Cohen, 2005), resulting in an accordingly large spec-
trum of dynamics and models that regulate synaptic ef-
ficacy, synaptic changes and other neural variables (Has-
selmo and Schnell, 1994; Fellous and Linster, 1998; Doya,
2002; Smith et al., 2002; Krichmar, 2008; Cox and Krich-
mar, 2009). One promising computational aspect of mod-
ulation is the possibility of increasing, decreasing or in-
verting the strength and sign of plasticity (Abbott, 1990;
Montague et al., 1996; Florian, 2007; Porr and Wörgötter,
2007; Izhikevich, 2007; Pfeiffer et al., 2010), making neuro-
modulation particularly suitable for modeling and imple-
menting learning processes (Sporns and Alexander, 2002;
Doya, 2002; Doya and Uchibe, 2005; Soula et al., 2005;

Farries and Fairhall, 2007; Krichmar, 2008; Cox and Krich-
mar, 2009). The focus in this study is on this latter role of
modulation as a gating mechanism for Hebbian synaptic
plasticity.
A fundamental issue is that a weight change that fol-

lows local rules does not always have a straightforward
relationship with the system-level input-output mapping.
This disconnect makes it difficult to apply local unsuper-
vised plasticity rules to the fields of simulated adaptive
behavior, artificial life (Langton, 1990; Sporns and Alexan-
der, 2002) and robotics (Arkin, 1998). In these areas, the
use of closed-loop controllers, in which the relationships
between local and system-level dynamics are continuously
tested, can provide the ultimate verification of the learning
properties of a model. The model presented in this paper
aims to establish a simple relationship between modulated
Hebbian plasticity and operant reward learning, thereby
connecting models of plasticity more closely to the learn-
ing of behaviors.
Instead of focusing on precise weight tuning, the unique

position of this paper is to search for behavioral responses
by allowing the weights to saturate, expressing either
highly excitatory or inhibitory responses. By intention-
ally allowing weights to saturate, a network can express a
marked and stable response to inputs, which can be inter-
preted as behavioral exploitation. On the other hand, by
inverting this process at times, i.e. by inverting the sign
of Hebbian plasticity (Stent, 1973; Lisman, 1989), path-
ways can be depressed to allow noisy neural transmission
to implement behavioral exploration. The alternation of
these two regimes of Hebbian and anti-Hebbian plastic-
ity produces the key dynamics of alternating exploitation
and exploration observed in operant reward learning. The
change in modulatory activity has in fact been suggested
to regulate the alternation of exploration and exploita-
tion in Krichmar (2008). Thus, while the dynamics of
modulated Hebbian plasticity and modulated spike-time-
dependent plasticity (STDP) have been extensively inves-
tigated (Abbott, 1990; Montague et al., 1996; Florian,
2007; Porr and Wörgötter, 2007; Frémaux et al., 2010;
Pfeiffer et al., 2010), the novelty of this work is their ex-
tension by means of saturation and noise, resulting in a
simpler and more fundamental connection between local
changes and higher-level simulated behavior. The funda-
mental properties of the new plasticity model are tested
in behavioral tasks employing first a single-neuron model,
and later extended to multi-neuron networks.
As opposed to the algorithms proposed by Pfeiffer et al.

(2010), Legenstein et al. (2010) and Frémaux et al. (2010),
the present work neither devises a learning rule for optimal
weight tuning nor proposes a new reinforcement learning
algorithm. In fact, while reinforcement learning by means
of modulated spike-timing dependent plasticity (STDP)
was demonstrated in Soula et al. (2005), Florian (2007)
and Frémaux et al. (2010), the primary aim of this work
is the exploitation of saturated weights and neural noise
to achieve a simple bottom-up implementation of oper-
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ant reward learning. Furthermore, in contrast to Pfeif-
fer et al. (2010), the current algorithm does not require
a decay function, input signal preprocessing nor winner-
take-all action selection. Crucially, the neural noise in
the present implementation is not used to improve explo-
ration, as in Legenstein et al. (2010), but rather serves as
the only and fundamental driving mechanism to reconfig-
ure the network connectivity, thereby achieving behavioral
exploration under the anti-Hebbian regime. Additionally,
as opposed to Legenstein et al. (2010), where slow varia-
tion of input values and continuity in the task are required
for recent activity averages, inputs and outputs in the pro-
posed method can change state arbitrarily according to
sudden changes of the task or environmental conditions.
The insight that operant reward learning can emerge nat-
urally and without additional engineering from Hebbian
dynamics is a fundamental contribution of this study.
The plasticity mechanism, described in Section 2, is

tested in several simulations reported in Section 3. Section
4 discusses the results, and Section 5 presents the conclu-
sion. Appendix A reports that the plasticity rule behaves
similarly on a simple spiking-neuron model. Further im-
plementation details and how to reproduce the results with
the Matlab code are reported in Appendices B and C.

2. Reconfigure-and-saturate Hebbian plasticity

In a rate-based model, the simplest form of Hebbian
plasticity is expressed by the product of presynaptic and
postsynaptic firing rates

∆wji = vj · vi , (1)

where wji is the weight from neuron j to neuron i and
the firing rate v is computed as a nonlinear monotoni-
cally increasing function, e.g. the hyperbolic tangent, of
the membrane potential. The membrane potential is the
weighted sum of the incoming firing rates.
When a presynaptic signal increases the activation of

a postsynaptic neuron, Eq. 1 causes the weight to in-
crease, which in turn causes a stronger correlation of activ-
ities. The auto-correlative dynamics then lead to indefinite
weight growth (Miller and Mackay, 1994). The unique po-
sition in this paper is that this auto-correlative effect can
be beneficial. The dynamics induced by Eq. 1 in fact im-
plement weight consolidation (Fusi et al., 2000; Gerstner
and Kistler, 2002a) by enhancing pathways among cor-
relating neurons and suppressing pathways between non-
correlating neurons. As suggested by Fusi et al. (2000),
dynamics that favor either maximum or minimum weights
can help preserve information. In the current model, indef-
inite weight growth is counteracted only by hard bounds
between zero and a saturation value λ.
Consider now one excitatory and one inhibitory weight

carrying the same signal and projecting onto the same
postsynaptic neuron. In the model of this study, excitatory
and inhibitory neurons are distinct entities, and are labeled

Signal A
GLU

GABA
GLU

Plastic weights 

Signal B

Signal A

GLU

GABA
GLU

Signal η(t)

Signal B

(A)

(B)

Figure 1: Pathways of two competing weights. (A) Signal A repre-
sents an input or an internal signal to be transformed into Signal B.
Signal A feeds a cluster of two excitatory (GLU, from glutamate) and
inhibitory (GABA, from GABAergic; see (Bear et al., 2005)) neu-
rons, which then project onto a postsynaptic neuron that encodes
Signal B. The circles can be interpreted either as a single neuron or
a cluster of neurons of the same type. Given an initial random con-
figuration, one of the two weights may be stronger than the other.
The stronger weight drives the activity of the postsynaptic neuron.
When the hyperbolic tangent produces the output, or in any other
case when tonic activity produces a null output and inhibited ac-
tivity produces a negative output, the effect of Eq. 1 is to increase
the stronger weight and reduce the weaker. (B) The addition of a
modulatory signal allows the structure to reverse the divergence of
weights by reducing them to similar values.

glutamate (GLU) neurons and GABAergic (GABA) neu-
rons after the corresponding neurotransmitters in biology
(Bear et al., 2005). Fig. 1A illustrates the scenario. This
structure of two competing weights carrying the same sig-
nal is called in this study a pathway. If the two weights
have equal strength, the output neuron is neither excited
nor inhibited. If one of the two weights is stronger, the ac-
tivation of the output neuron follows the stronger weight.
As observed by Pennartz (1997), models in which synap-
tic connections change sign are not biologically implau-
sible and can be interpreted as two such parallel excita-
tory and inhibitory weights (Alger and Nicoll, 1982; Finch
et al., 1988; Pennartz and Kitai, 1991). In the proposed
model, when the GABA input prevails over the GLU in-
put and successfully inhibits the output, the GABA-to-
output weight increases its strength (Stent, 1973). This
means that in this model inhibition is not modeled as a
homeostatic signal, i.e. it does not bring the network to
an equilibrium because inhibition causes even more inhi-
bition. However, this process can be reversed by changing
the sign of Hebbian plasticity by means of a modulatory
term η (Abbott, 1990; Porr and Wörgötter, 2007; Florian,
2007; Soltoggio et al., 2008; Pfeiffer et al., 2010) in

∆wji = η · vj · vi . (2)

The term η (Fig. 1B) can be interpreted as a third factor,
or modulatory signal. A positive unitary η is the simplest
form of Hebbian plasticity. A negative unitary η is the
simplest anti-Hebbian form as described in Brown et al.
(1990). The signal η can be computed by internal neu-
ral structures as proposed by Soltoggio et al. (2007, 2008),
or, for simple problems, it can be directly derived from
a sensory input (Montague et al., 1996). In both cases,
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η is derived directly from, or is in relation to, the agent-
environment interaction, and its value is problem and con-
tingency dependent.
The modulatory signal η acts as a referee determining

whether to increase or decrease in absolute value the over-
all strength of a pathway. Positive modulation increases
the difference between the two weights and negative mod-
ulation decreases the difference, thereby decreasing the
overall strength of the pathway. A low modulatory value,
or tonic value, implies small changes and is useful in con-
ditions of low relevance for learning, as opposed to phasic
values (Aston-Jones and Cohen, 2005; Krichmar, 2008).
A crucial aspect in the present implementation is that un-
der negative modulation the pathway oscillates between
weakly excitatory and inhibitory states due to the stabi-
lizing effect of anti-Hebbian plasticity. In this condition,
neural noise becomes determinant in driving the neural
dynamics to random alternations of the pathway’s sign.
These random alternations are the key element in the ex-
ploration of new neural configurations when a network
includes such pathways. These dynamics of alternating
random reconfigurations and then growing the weights to
saturation are the core of the proposed model. This rule is
therefore called reconfigure-and-saturate modulated Heb-
bian plasticity.
The neural output signals are then computed as

vi(t+ 1) = tanh
( i=n∑

j=1

wji(t) · vj(t)
)
+ ξi(t) , (3)

where wji is the weight from neuron j to neuron i, and ξi(t)
is a random number drawn from a uniform distribution in
[-0.1,0.1] unless differently specified. Note that the neuron
inputs at time t (i.e. vj(t)) produce the output at time
t+ 1. This time delay can be interpreted as the propaga-
tion time of a signal between presynaptic and postsynaptic
neurons, or alternatively as the single neuron computation
delay. The weight update in the reconfigure-and-saturate
plasticity rule is expressed by

w∗
ji(t) = wji(t− 1)+

(
C · η(t) · vi(t) · vj(t− 1)

)
+ ξji(t)(4)

wji(t) = max(0,min(w∗
ji(t), λ)) , (5)

which is applied on two excitatory and inhibitory com-
peting weights carrying the same signal. The variable C
is +1 when the presynaptic neuron is excitatory and -1
when the presynaptic neuron is inhibitory, vj and vi are
the outputs of the presynaptic and postsynaptic neuron,
respectively, and η is the modulatory signal. Eq. 5 main-
tains the weight values in the interval [0, λ]. The fac-
tor C indicates that when a presynaptic inhibitory neuron
successfully inhibits a postsynaptic neuron, these are seen
as correlating activities. Note that the presynaptic activ-
ity is taken at the time t − 1 because, according to Eq.
3, this signal affects the postsynaptic neuron only at the
following time step. Therefore, Eq. 4 expresses causality
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Figure 2: Simulation of the reconfigure-and-saturate modulated Heb-
bian plasticity on a one-input one-output structure. The first row
shows the imposed modulation, whose intensity (either positive or
negative) is visually represented by the colored areas. The second
row shows the GLU (excitatory) and GABA (inhibitory) weight val-
ues. Finally, the third row shows the output signal. The output is
neutral during negative modulation, whereas it assumes either pos-
itive or negative values when the modulation is positive. The sign
of the output during positive modulation is a stochastic process de-
pending on the initial conditions and neural noise.

of firing rather than simultaneity. Causality is a govern-
ing principle in spike-timing-dependent plasticity (STDP)
(Markram et al., 1997). It is nevertheless important to
note that the dynamics of the reconfigure-and-saturate
rule are considerably simplified with respect to their in-
spiring biological counterparts; the current study does not
aim to mimic biological neural activity.
As opposed to previous studies, the novelty introduced

by this new rule is the fundamental exploratory role of
noise level ξ(t) during anti-Hebbian phases in combina-
tion with the convergence to saturation values λ during
Hebbian phases. How these two factors contribute exactly
to the dynamics of the reconfigure-and-saturate plasticity
rule is investigated in the following sections.

3. Experiments

The simulations presented in this section explore the ef-
fect of the reconfigure-and-saturate Hebbian plasticity in
increasingly complex scenarios. First, the effect of modu-
lation change is observed on a single pathway of two com-
peting weights. Next, the behavioral consequences of the
weight dynamics are demonstrated in a navigating agent.
Finally, the model is tested on problems with an arbitrary
number of inputs and outputs. All experiments and figures
with output data can be easily reproduced running the
Matlab R© code provided at this article’s associated web-
site http://andrea.soltoggio.net/rec-sat.

3.1. Effect of modulation change on a single pathway

The purpose of this test is to observe the effect of chang-
ing the modulation sign on the mapping from input to out-
put. Therefore, while the input (Signal A in Fig. 1B) is
held constantly high, the modulation signal (η) alternates
from +1 to -1 every 40 steps.
Fig. 2 shows that the GLU and GABA weights diverge

when the modulation is positive, causing one of the two

4



0

500

1000

0

500

O
cc

ur
re

nc
e

0 5 10 15 20 25 30
0

50

Set of 5−tuples

No noise

High noise

Low noise

Figure 3: Testing exploration in the output sequence. The his-
tograms count the occurrence of each of the 32 different tuples of
5 bits found in the output sequence. The top histogram (the run
with no noise) shows that only the tuples 01010 and 10101 (10 and
21 in decimal notation) are represented. The middle histogram (the
run with low noise) shows that other tuples begin to appear, but the
01010 and 10101 tuples are predominant. The bottom histogram
(the run with high noise) shows that all possible tuples are similarly
represented. This result means that with high noise, each reconfigu-
ration leads the network to a new random state.

weights to prevail over the other. When the modulation
becomes negative, the two weights converge and oscillate
around the same value, neither of them prevailing. During
this phase the input signal is not converted into a defi-
nite output value because the latter oscillates around zero.
When the modulation returns to being positive, whichever
of the two weights is higher during the oscillation at that
moment prevails over the other, leading the output either
to continuous excitation or continuous inhibition. This
property is retained when simulating the model with spik-
ing neurons, as shown in Appendix A.

3.2. The role of noise

This section shows that neural noise is essential to ex-
ploring all network states in networks of one neuron to net-
works of many. The previous experiment was performed
again with three different settings: no noise, low noise
(ε = 0.02) and high noise (ε = 0.1), corresponding to 0,
2% and 10%, respectively, of the maximum output value.
The output is sampled at the end of each positive mod-
ulation period, i.e. when the weights and the output are
stable at the saturation level, e.g. in Fig. 2 at steps 40,
120, 200, etc. This condition of saturated weights is called
in the current study a network configuration state. The
aim is to observe the sequence of configuration states over
a long simulation. For each noise level, 10,000 modulation
periods were executed, producing a binary string that rep-
resents the sequence of configuration states. The network
reconfigures to a random state at each modulation phase
if the observed sequence follows a binomial distribution.
A simple stochasticity test was conducted by segmenting

the sequence into 5-tuples and counting the occurrences of
each possible 5-tuple of binary digits. The histograms of
the 5-tuples found in the sequences are shown in Fig. 3.
With no noise, the sequence is a predictable alternation
of inhibitory ‘0’ and excitatory ‘1’ states. By introducing
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Figure 4: (A) Weights during an anti-Hebbian phase between two
Hebbian phases. In the absence of noise, the stronger and weaker
weights have regular oscillations. (B) With noise, the oscillations are
perturbed, resulting in a less predictable alternation of weights. The
addition of noise does not affect the weight values during positive
modulation.

a small amount of noise (ε = 0.02), different 5-tuples be-
gin to emerge as shown in the middle histogram in Fig. 3,
indicating that the sequence is no longer completely pre-
dictable. However, it is only with a high level of noise
(ε = 0.1) that the sequence of states becomes random,
approximating a binomial distribution: in the bottom his-
togram of Fig. 3 all 5-tuples are similarly represented.

These findings raise two important questions. First, why
does the absence of noise lead to the alternation of in-
hibitory ‘0’ and excitatory ‘1’ states? Second, what is the
mechanism by which noise disrupts the regular pattern?
To provide answers, the weight dynamics during an anti-
Hebbian phase are shown in Fig. 4. Fig. 4A shows the
pure anti-Hebbian dynamics without noise. At each step,
the stronger weight is decreased and the weaker weight
is increased. This alternation proceeds regularly during
the anti-Hebbian phase while the amplitude of the weight
change decreases progressively. On the other hand, Fig.
4B shows that the regular alternation of weights is occa-
sionally disrupted by noise, making it unpredictable which
weight will emerge to be the stronger.

Fig. 4A shows that the high weight before the anti-
Hebbian phase becomes low afterwards because the
weights change an odd number of times. Were there an
even number of updates, the initial high weight would re-
turn to being high after the anti-Hebbian phase. There-
fore, applying random durations to the anti-Hebbian
phases appears to be another way to introduce the nec-
essary variation in the system to produce unpredictable
reconfigurations. However, when a network is composed
of many neurons undergoing the same modulatory signal,
the variation in duration of such signals affects all neurons
simultaneously and therefore produces an unwanted cor-
relation. To highlight this point, the algorithm was run
again on a network with one input neuron and five out-
put neurons, each of which is connected as in Fig. 1. In
this experiment, the durations of the anti-Hebbian phases
are randomly set to an odd or even number of steps with
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Figure 5: States of a five-neuron network undergoing 150 reconfigura-
tion phases with variable duration of modulation. Each discrete value
on the y-axes represents a different state mapped into the decimal
interval 0-31. The graphs show that in the experiment with no noise
(top graph), the network can reconfigure itself, but assumes only two
complementary states, 01110 and 10001 (14 and 17 in decimal repre-
sentation), demonstrating why changing the duration of modulation
alone is not enough to encourage full exploration. With a low level of
noise (middle graph), the network expresses a higher level of varia-
tion, assuming different configurations, but switches mostly between
complementary states. With high noise (bottom graph), the network
reconfigures itself to a new input-output mapping at each modula-
tion cycle. Such randomness is key when anti-Hebbian plasticity is
used to explore the space of network states.

probability 0.5. Because there are five output neurons,
each modulation phase now results in not one but five
output values. The change of those values over modula-
tion phases describes the changing pattern of configuration
states. Fig. 5 shows the results of the simulation with 150
modulation phases and three noise levels as before. The
plots indicate that the variable length modulation makes
the state change unpredictable, but the network does not
visit all possible configuration states unless different noise
dynamics affect each pathway independently.
In conclusion, the capability to reconfigure the network

proves to be related to the level of noise. Only with a
sufficient level of noise is the network capable of jump-
ing to a completely random state at each reconfiguration
cycle. Therefore, anti-Hebbian plasticity enforced by neg-
ative modulation expresses its full potential to reconfigure
pathways, and consequently in the exploration of all net-
work states, only when complemented with a sufficiently
high level of noise.

3.3. The role of saturation

While noise is essential during anti-Hebbian reconfigu-
ration phases, the maximum weight, or saturation value
λ, is the stable state of weights after some duration of
positive modulation. The maximum weight value must be
large enough to overcome noise on neural transmission and
small enough to make the updates significant in the time
window of a simulation. The combined effect of the plas-
ticity rate and the saturation value determines the time to
convergence from mean value to saturation and vice versa.
In a new simulation, the saturation value λ was set to

the large value of 50. Fig. 6 shows the slow climb and
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Figure 6: Weights and output dynamics with a large saturation value.
Modulation is represented here as a shaded area overlapping the
output signal. The weights now take longer than in the experiment
of Fig. 2 to increase and decrease to and from the saturation value.
This delay implies that weight reconfiguration can be reached only
after a prolonged exposure to negative modulation. Thus this feature
allows for a greater weight stability in the presence of stochastic noisy
modulation, such as brief bursts of negative modulation over a trend
of positive values.

descent of weights after modulation changes. Such a long
convergence time allows the network to preserve its state
for a longer time in the face of negative modulation. It
is important to note that a slower decay time of weights
does not imply significantly longer-lasting memory, as is
generally assumed elsewhere. Rather, the slow weight de-
cay represents an index of greater inertia against change
in the face of stochastic signals with hidden averages. A
pathway converges to a neutral value (neither excitatory
nor inhibitory) only when the modulation is negative on
average over a long period. Thus the plasticity rule has the
property of detecting average trends in a noisy signal. This
property can be beneficial for addressing real-world noisy
reward contingencies (Montague et al., 1995; Niv et al.,
2002) and it is therefore further analyzed later in section
3.5.1.

3.4. From modulation to Braitenberg vehicles

An important implication of the previous simulations is
that if the mode (i.e. excitatory or inhibitory) of a pathway
can be associated with an action, then initially random ac-
tions are reinforced in the presence of positive modulation
and extinguished in the presence of negative modulation.
This section explains how this principle can be exploited
in a simulated behavioral test. The chosen experiment is
a navigation task in which an agent moves inside a closed
arena and occasionally encounters different types of ob-
jects with different properties.

The geometrical properties of the environment and of
the agent are similar to those of Braitenberg vehicles
(Braitenberg, 1984). Braitenberg vehicles are moving
robots capable of simple navigation and equipped with
symmetrical sensors in the front. Thanks to the symmet-
rical configuration of sensors and the difference in speed
between two parallel wheels, Braitenberg vehicles are ca-
pable of turning, avoiding or approaching objects, and dis-
playing seemingly emotional behavior, whose emergence is
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Figure 7: Navigating agent. The agent navigates in a square arena
of unitary size (1U) with a constant speed of 0.01U/time step. The
sensors are located symmetrically to the left and to the right of the
agent. The activation of each omnidirectional sensor is inversely pro-
portional to the distance of the object. The maximum sensor value
is 1 when the distance between the sensor and an object is zero.
Each sensor decreases its activation and reaches zero at the maxi-
mum sensing distance. The vehicle is also equipped with a unique
modulation sensor (not shown). In this way, the amount of modula-
tion is an input to the circuit regulated by the effect of behavior in
the environment. The difference in rotation speed between the left
and right wheels of a traditional Braitenberg vehicle is represented
here by the activation of one output neuron whose value determines
the steering angle in the range [−18◦, 18◦].

defined by Braitenberg as synthetic psychology. The vehi-
cles are particularly suited to demonstrating the properties
of the reconfigure-and-saturate rule because such vehicles
describe relationships between neural wiring and higher-
level behaviors. The simulations in this section focus in
particular on Braitenberg vehicles 2a and 2b, described
in the section “Fear and Aggression” (Braitenberg, 1984,
Pages 6-9), which can either escape or attack an object
according to the prewired input-output connections.

To reproduce the geometric placement of sensors in
Braitenberg vehicles, in the present simulations each sen-
sor is present in pairs located symmetrically to the left
and to the right sides of the agent as shown in Fig. 7. The
agent is equipped with wall, type-A object and type-B ob-
ject proximity sensors, resulting in three pairs of sensors
projecting their pathways (as in Fig. 1) onto one afferent
output neuron. The activity of the output neuron sets the
difference in speed between the left and right wheels of
a typical Braitenberg vehicle, effectively determining the
steering direction.

The agent has no a priori knowledge of the world, ex-
cept for the capability of detecting signals. All signals,
i.e. walls and objects, are processed equally and carry no
initial meaning to the agent. However, the world-agent
interaction causes the agent to receive different levels of
modulation according to the circumstances. The purpose
of devising modulation policies is to observe self-organizing
behavior that derives from the reconfigure-and-saturate
Hebbian plasticity under different environmental condi-
tions. Instead of wiring the vehicle in a specific manner
and observing the behavior that emerges from that wiring,
as done by Braitenberg (1984), the proposed plasticity rule
solves the reverse problem of allowing for the emergence of
both wiring and behavior from a given modulation policy.
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Figure 8: Modulation level through one lifetime, averaged over 200
lifetimes. Values, initially negative, tend to become positive over the
early lifetime of the agent. When the modulation policy is changed at
step 6,000, the agent suddenly receives negative modulation from the
objects that earlier gave it positive modulation. However, the agent
progressively modifies its behavior such that the sign of modulation
returns to positive again. During the first half of the simulation, high
modulation is reached more quickly than in the second half because
initially the agent starts with uniform equal weights and therefore
displays weak unbiased behavioral responses. In the second half of
its lifetime the agent is first unlearning the behaviors that induce
negative modulation before learning the new correct ones.

To signify that hitting walls is undesirable, approaching
and impacting a wall causes negative modulation. Type-A
objects also cause negative modulation on approach, but
positive modulation while fleeing. Type-B objects are the
opposite of type-A objects: approaching causes positive
modulation while fleeing causes negative modulation. The
numerical values of modulation are given in Appendix B.
When the agent moves centrally over an object, the ob-
ject is “eaten” or “destroyed”. Eaten objects regenerate
once the agent has moved outside the sensing radius. The
modulation policy for walls does not change throughout
the simulation. On the other hand, type-A and type-B
objects can exchange their modulation policies from time
to time. Relearning and rememorization of an acquired be-
havior is an important property of animal behavior (Stad-
don, 1983), also called reversal (Hasselmo et al., 2002).
Such property is tested by changing the modulation pol-
icy during one simulation as described.

3.4.1. Simulation results

In a first experiment, the agent was tested over 200 life-
times with a duration of 12,000 steps each. Each lifetime
started with all weights reset to their middle value (5 in
this setting). To ensure varied initial conditions, the agent
started each lifetime at the position where it ended the
previous one and the order of policies alternated across
lifetimes. The modulation policies for type-A and type-
B objects were exchanged halfway through each lifetime
(i.e. at step 6,000). The modulation received by the agent
averaged over 200 lifetimes is plotted in Fig. 8.

The plot indicates that the modulation level, which on
average is negative at first, tends to increase during the
lifetime. The change in modulation policy (at step 6,000)
causes the modulation to drop to negative values, which
then grow again to positive values. This trend indicates
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Figure 9: Samples of navigation paths. The path during a naviga-
tion of 2,000 time steps is shown in (A). For this particular plot,
the weights are reset every 100 time steps to show the typical nav-
igation pattern during the initial 100 time steps of a simulation.
The agent hits walls and displays weak or uncertain responses to
objects. In (B), 2,000 time steps are sampled after the learned
behavior is stable and without weight reset. The agent displays
fearful behaviors towards walls and type-A objects and aggressive
behavior towards type-B objects; see also the supporting video at
http://andrea.soltoggio.net/rec-sat.

that the behavior of the agent adapts continuously by ex-
tinguishing behaviors leading to negative modulation and
reinforcing behaviors leading to positive modulation. Di-
rect observation of the agent’s behavior indeed confirms
that the agent learns on its own to avoid walls, is attracted
by one type of object and escapes the other type of object.
Navigation samples are shown in Fig. 9.

The emergence of the agent’s behavior during different
stages of the simulation was analyzed in increasingly longer
lifetimes of 100, 500 and 1,000 time steps. The location of
the agent over many such lifetimes is plotted in the temper-
ature graph in Fig. 10A-C. While at first the agent appears
to navigate uniformly across the arena (Fig. 10A), as learn-
ing takes place, the agent becomes better at distinguishing
significant features in the environment. Wall avoidance
and frequent visits to one type of object are established at
first (Fig. 10B-C ). Fig. 10D-E show the agent’s location
after learning. The agent displays precise navigation pat-
terns and preferences for one type of object. Those pref-
erences are inverted when object types exchange modula-
tion policies, as shown in Fig. 10E. The video of simulation
provided as support material also shows that the agent’s
behaviors are equally acquired when objects slowly move
across the area. The agent also relearns quickly a correct
neural wiring when the motor output is suddenly inverted.

A key point in this study is that the acquisition of behav-
iors as displayed in Fig. 9A-B and 10A-E is a direct conse-
quence of the weight dynamics induced by the reconfigure-
and-saturate rule. To demonstrate this causality, the val-
ues of the six GLU weights from the inputs to the output
are plotted in Fig. 11. The plot shows that weights diverge
with time and reach high or low values. However, when the
modulation policy changes, some weights undergo recon-
figurations. Interestingly, two of the weights, namely those
corresponding to the wall sensors, do not change. Such sta-
bility makes sense: while the modulation policy changes

for type-A and type-B objects, it remains unchanged for
walls. The simulation shows that the network can recon-
figure those connections involved in the tasks that need to
be relearned, but leaves unchanged those weights respon-
sible for correct behaviors such as wall avoidance. This
result means that the agent preserves memories related to
particular stimuli even when it is coping with other or-
thogonal problems, as long as they are independent, such
as those of facing type-A or type-B objects. The weights
related to wall stimuli would reconfigure if the modulation
policy governing walls changed.

It is interesting to note that the weight reconfiguration
at the moment of policy change does not occur at the same
speed for the weights from type-A and type-B sensors.
In fact, the change is faster for type-B weights, i.e. those
weights that previously determined an object-seeking be-
havior. When the modulation policy switches, the agent
continues to target the previously positive objects (now
negatively modulating), thus collecting negative modula-
tion and causing the behavior to reverse at a faster rate. In
contrast, type-A objects are avoided at the moment of pol-
icy switch with a consequent minimization of modulatory
signal and longer learning time. This additional result is
a simple demonstration that not only does learning affect
behavior, but that behavior itself, by determining seek-
ing or avoidance of stimuli, in turn affects learning. As
an example, one final weight configuration during a static
modulation policy is shown in Fig. 12.

The experiments presented in this section show that the
“fearful” and “aggressive” behaviors described by Brait-
enberg (1984) can emerge in the simulated agent solely
from the environmental modulation policies acting on the
reconfigure-and-saturate Hebbian rule. In other words, the
proposed Hebbian rule autonomously finds the connectiv-
ity and learns the behaviors of Braitenberg vehicles exclu-
sively from the consequences of the agent’s actions.

3.5. Action selection in multiple-input and multiple-output
networks

Reconfigure-and-saturate Hebbian plasticity can be
tested on networks with a higher number of inputs and
outputs. Such networks can potentially solve an arbitrary
number of problems, in which each individual input cor-
responds to one particular problem and the output vector
represent a solution to the selected problem. Assume in
particular that one problem is selected by activating one
input, while one unique output vector, i.e. a pattern of
activations across all outputs, represents the correct so-
lution. Consistently with the previous experiments, the
response from the environment is devised such that one
particular output vector causes positive modulation while
all the other output vectors cause negative modulation.
The unique output vector that causes positive modula-
tion represents the solution to the selected problem, while
the other possible output vectors represent wrong answers.
The purpose is to test that (1) the network can find the
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Figure 10: Average location of the agent in the area during different phases of learning. The high-temperature areas indicate a more frequent
presence of the agent with respect to the low-temperature areas. (A) In the early simulation phase (100 steps repeated 1,000 times), the
agent does not show distinctive navigation patterns and collides frequently with walls. (B) Over a longer lifetime (500 steps repeated 200
times) a wall-avoidance navigation pattern starts to emerge as well as frequent visits to one type of object. (C) Over an even longer lifetime
(1,000 steps) good wall avoidance and visits to one type of object are established. (D) After 3,000 steps, the agent was left running for other
197,000 steps. The agent displays good wall avoidance, frequently visits type-B objects and avoids type-A objects. (E) To show the agent’s
behavior after the rewards for objects are switched, the agent’s location is shown from step 203,000 to step 400,000. The agent reverses its
preferences and now visits type-A object locations and correctly avoids type-B objects. A gray-scale version of the temperature graphs is
included in Appendix B.
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Figure 11: Average GLU weights during odd-numbered lives (encom-
passing 100 lifetimes) starting with policy 1 and ending with policy
2. The labels “L” and “R” indicate weights connected to the left
and right side of the agent.

unique weight configuration from one input to the out-
puts that causes positive modulation and (2) that such
a network can have multiple inputs representing different
problems and that the same output neurons can provide
solutions to different problems. Fig. 13 illustrates the net-
work.

The problem is structured as an n-armed bandit prob-
lem (Sutton and Barto, 1998), a test for reward learning
algorithms in which n arms, also called choices or options,
are associated with different rewards. In such problems,
the amount of reward returned by each arm is initially
unknown to the agent. The agent chooses one arm and
immediately receives a reward that reflects the value of
its choice. The task is to explore the arms and adopt a
selection pattern that maximizes the total reward in the
long term. The literature presents different types of bandit
problem characterized by having static or dynamic reward
policies, deterministic or stochastic rewards and, when dy-
namic, by the functions governing the changes in reward
policy (Sutton and Barto, 1998).

The problems presented in this section have dynamic,
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Figure 12: Twelve weights (six pathways) connecting the sensory
inputs to the output with policy 1. The thickness of the line denotes
the synaptic weight. The activation of the output neuron determines
the turning strength such that inhibition results in left turns and
excitation in right turns. This weight configuration yields a network
in which stimuli on the left wall sensor excite the output, thereby
causing the agent to steer to the right. Conversely, stimuli on the
right wall sensor inhibit the output, causing the agent to steer to the
left. The same strategy was learned when facing type-A stimuli: the
agent steers away from them. Stimuli from type-B objects instead
elicit an opposite response in the output, which leads the agent to
point directly at those objects and hit them frontally.

stochastic rewards, which makes them more difficult than
when they have static deterministic rewards. However,
to focus on the plasticity rule, the mapping between re-
wards and modulation is preset by assigning negative
modulation to all suboptimal arms (output vectors) and
positive modulation to the only optimal arm. In other
words, the estimation of the relative values of rewards,
as traditionally done by algorithms solving n-armed ban-
dit problems, and the identification of the hidden Markov
processes underlying the reward policies are not the fo-
cus of this experiment. This fact highlights that the
reconfigure-and-saturate rule does not prescribe particular
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Figure 13: A multiple-input, multiple-output network. Each input
represents one problem. The pattern of output values encodes the
chosen answer.

exploratory/exploitative regimes. In particular, the rule
explores the search space randomly and exploits contin-
uously positively modulating action. Thus the plasticity
rule is tested specifically for its capability to reinforce ac-
tions leading to positive modulation in this particular type
of problem, and not as a general reinforcement learning al-
gorithm.
The experiment is implemented by allowing h output

neurons to encode 2h = n binary patterns. A total of
m inputs select one of m different problems. The test is
performed by activating one of the m inputs at a time,
observing the h output values and comparing them with
a target binary sequence. If the output neurons display
activation signs matching the target sequence, the problem
is solved and the network receives a positive modulation
of 1, i.e. η(t) = 1 during that time step. If any of the
activation signs differ from the target sequence, a negative
modulation is given proportionally to the number of errors
up to -1 when no output matches the target.

The assumption that the inputs representing different
problems must display phasic activity, i.e. be high, one at
a time, ensures soundness. That is, in this domain, al-
lowing more than one input to be active simultaneously
would mean asking the output vector to answer two prob-
lems, possibly with different answers, at the same time.
In analogy to the behavioral experiment with the Brait-
enberg vehicle, it would be similar to placing one object
to flee and one to attack in the same place: in this condi-
tion, no correct behavioral response exists. However, it is
important to note that while only one input may display
phasic activity, the other inputs still display continuous
tonic noisy activity, i.e. they continue to send background
noisy signals to the outputs.
A first test includes three bandit problems of eight arms

each, represented in binary by three output neurons. In a
second test, six problems of 64 arms each are tested with
a network of six inputs by six outputs. One lifetime is
composed of four learning sessions: the target patterns of
each bandit problem are randomly initialized and changed
to new random patterns three times during a lifetime. The
aim is to show that the network can learn the initial correct
pattern for each of the problems, maintain such outputs
while still valid and relearn new outputs when the target

Figure 14: (A) Solving three problems with eight arms. One learn-
ing session, i.e. one phase during which the output target does not
change, lasts 60 steps. One lifetime includes four learning sessions.
When solved correctly, each problem produces a unitary modula-
tion value. During one scan of all problems, the sum of modulation
values thus can be at best 3. The modulation over 100 lifetimes
is then summed. The value of 300 is reached when the solution is
found for each of the three problems in all 100 simulations. When
the maximum modulation level is reached, the network continues to
provide correct answers to all problems as long as the target pat-
tern is not changed. (B) Solving six problems with six outputs, i.e.
64 arms. To accommodate the large number of arms, the learning
session is lengthened to 300 steps. The six problems were solved
correctly in all of the 100 simulations. In other words, the network
found consistently in 100 independent simulations the unique correct
configuration of the 36 pathways in each of the four learning sessions.
(C) Solving three problems with eight arms with highly stochastic
modulation values. The sum of the modulation over the 100 runs
approaches the value 60 on average (marked in the plot) before the
target switch. The implication is that even with highly stochastic
modulation, the network finds consistently the correct weight con-
figurations to output the correct answer to the three problems.

solutions change. The simulation is performed by scanning
all problems by activating all inputs one at a time for one
simulation step. The simulation was repeated 100 times
to assess robustness. The modulation received by the net-
work while scanning each problem over all the 100 lifetimes
was recorded to capture the dynamics of learning in this
domain. The modulation values are shown in Fig. 14A.
The modulation level increases consistently in all learn-
ing sessions, which means that the network changes the
weights such that the output matches the target sequence.
Once the target pattern is matched for all problems, mod-
ulation is maximized.
Fig. 14B shows the modulation values for the test with

six problems and 64 arms. In this case, there are six unique
target configurations, i.e. one for each problem, that are
correctly matched by the output vector. This success in-
dicates that even with a high number of arms, 63 of which
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give negative modulation and only one of which gives pos-
itive modulation, the network modifies its outputs to find
eventually a configuration that produces positive modula-
tion.

This implementation does not consider a moving aver-
age of past rewards as in traditional solutions to n-armed
bandit problems because the focus here is on the neural
dynamics established by positive and negative modulation
rather than on solving the reinforcement learning problem.
Nevertheless, these dynamics can be interpreted as solving
reward learning under the assumption that positive mod-
ulation represents higher-than-average reward. If such an
assumption cannot be made, but there exists a stable asso-
ciation between outputs and modulation, the reconfigure-
and-saturate rule will still drive the network towards out-
puts that causes positive modulation. This principle holds
even if those dynamics do not constitute an optimal rein-
forcement learner. From this viewpoint, rather than re-
inforcement learning (Sutton and Barto, 1998), this algo-
rithm mimics animal operant reward learning (Thorndike,
1911; Staddon, 1983), where actions leading to a successful
outcome can be reinforced regardless of their optimality.

3.5.1. Dynamic stochastic modulation policies

Section 3.3, “The role of saturation”, described the sta-
ble weight configuration as capable of detecting long-term
hidden averages of stochastic modulatory processes. That
claim is confirmed by performing an experiment with a
highly stochastic modulation policy.

Stochasticity is implemented by assigning a modulation
of 0.2 ± 0.5 to correct answers and −0.2 ± 0.5 to wrong
answers. Thus, although correct answers provide on aver-
age positive modulation, they can occasionally give nega-
tive modulation and wrong answers can occasionally give
positive modulation. Fig. 14C shows the modulation to-
tal in a three-input, three-output network over 100 runs.
The solution of three problems over 100 runs results in
a modulation of 60 on average. The plot indicates that
this value is reached within 200 steps in all four learning
sessions. To appreciate the difficulty of this problem, the
modulation values and weight dynamics during one run
are plotted in Fig. 15. The plot shows that the weights
leave the saturation state frequently during the run. This
phenomenon is due to the occasional negative modulation,
as is evident from the first row of Fig. 15. However, the
saturated weights have a sufficiently large value to over-
come the temporary negative modulation without network
reconfiguration. Thus the saturation value determines the
inertia against change. A larger saturation value allows an
even greater robustness to stochasticity of the modulatory
signal; however, such robustness is counterbalanced by less
readiness of adaptation when the hidden modulation av-
erage changes. In other words, as anticipated earlier in
Section 3.3, the value of saturation appears to be a trade-
off between readiness to change when the hidden reward
average changes and robustness to stochastic rewards.
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Figure 15: Modulation and weights with highly stochastic modu-
lation. The reconfigure-and-saturate rule is capable of finding the
weight configuration that maximize the modulation even when this
signal is highly stochastic.

This experiment provides evidence that the learning dy-
namics extend to the stochastic case when the modula-
tion is positive on average but can be occasionally neg-
ative. This behavioral robustness co-exists with the in-
trinsic adaptivity of the network and originates from the
saturation dynamics of the model. The dynamic stochas-
tic reward contingencies in this last experiment are often
found in real scenarios (Montague et al., 1995; Niv et al.,
2002). The capability of the reconfigure-and-saturate rule
to extract the average of the modulation signal is there-
fore a fundamental property relevant to real-world appli-
cations.

4. Discussion and Future Work

The single-pathway experiment showed that one active
input maps to either positive or negative stable activity
in the output under positive modulation. Under neg-
ative modulation the output oscillates between positive
and negative states. If modulation is interpreted as re-
ward, this simple implementation of Hebbian plasticity
augmented with modulation, neural noise and weight sat-
uration represents a new most basic neural model of oper-
ant reward learning. The alternation of weight saturation
and noisy weight oscillations, although deriving from sim-
ple correlation-decorrelation dynamics, can be interpreted
as the equivalent behavioral manifestation of exploration
and exploitation in reward learning. The analysis of both
noise-driven dynamics and saturation values indicates that
these are pivotal elements to implement the alternation
between exhaustive exploration of the behavior space and
stable exploitation. One novel aspect is the use of neural
noise as the driving mechanism to reconfigure a negatively
modulated network into a new set of weights with possibly
different behavioral consequences. A second novel aspect
is the use of weight saturation as a factor in determining
the inertia against behavioral change, an important con-
sideration when the reward is a stochastic noisy measure
of a hidden average (Montague et al., 1995). The combi-
nation of these two elements in concert with modulated
Hebbian plasticity represents the unique contribution of
this study. The versatile dynamics in the first experiment
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suggest that the model can be extended effectively to a
simulated agent in a continuous simulated world.
The development of a Braitenberg vehicle further shows

that the reconfigure-and-saturate rule can be successfully
applied to a multi-input scenario where subproblems, e.g.
type-A objects, type-B objects and walls, can be learned
simultaneously and tackled separately and successfully by
the simple one-output structure. Novel sensory informa-
tion can be further plugged into the neural structure at any
time. Noisy fluctuations of weights lead to initial behav-
ioral responses that then cause a modulatory type of feed-
back. These behavioral responses, which are direct con-
sequences of weights, are then reinforced or extinguished
according to the modulation sign.
The multiple-input multiple-output experiment demon-

strates that the plasticity rule presented in this paper can
be applied to networks with many inputs and outputs
without losing the learning property. The rule is thus ap-
plicable to learning multiple problems simultaneously, each
of which may have a large search space. Interestingly, the
modulation signal is global, and applies to all connections
in the network; however, modulation affects the subpart
of the network responsible for the current problem and
leaves unaffected other weights because tonically active in-
puts, even when affected by noise, do not cause Hebbian
updates. Learning with multiple outputs can also be em-
ployed to express one single value in a range, where the
lower and upper bounds are expressed by all output neu-
rons being inhibited or excited respectively, and interme-
diate values are expressed by the excitation of a subset of
output neurons. Thus the limitation of saturating weights
that cannot express intermediate values can be overcome
by integrating one output signal over many output neu-
rons. For example, the experiments in Section 3.5 showed
that the network can learn one state out of 64, which can
be interpreted as a 64-interval discretization of one con-
tinuous output value.
In both the navigation and bandit problems, specific

stimuli are presented to the network for a short amount
of time. In other words, after encountering a type-A ob-
ject the navigating agent might proceed by meeting walls
and type-B objects for a long time before encountering
a type-A object again. Yet the reconfigure-and-saturate
rule allows a quick synaptic update of the type-A sen-
sory weights during the brief exposure to a type-A ob-
ject. Those weights then remain unchanged while the
agent deals with other problems (i.e. walls and type-B ob-
jects), thereby preserving the acquired memory for later
use. Such a property of the reconfigure-and-saturate rule
is essential in a multi-problem world in which different sit-
uations require different behaviors.
All experiments were structured such that the modu-

lation is simultaneous in time to the actions that cause
it. Therefore, the analogy of modulation with reward is
possible under the assumption that the credit assignment
problem is solved in the stimulus space (i.e. distinct stim-
ulus types) but not with respect to time. In other words,

the simple single-layer networks used in this paper cannot
associate actions to modulation if the modulation is deliv-
ered later in time. Therefore, the one-layer structure does
not implement temporal difference (TD) learning (Sutton
and Barto, 1998); however, the credit assignment problem
or sequence learning are not the focus of investigation in
this paper. Other neural algorithms that use eligibility
traces target those problems (Izhikevich, 2007; Soltoggio
and Steil, 2012). The current study does not exclude the
possibility that the reconfigure-and-saturate rule can be
applied to multi-layer networks with longer time dynamics.
One limitation in the current implementation of the rule
is that exploration of the network states occurs randomly,
while exploitation continues as long as positive modula-
tion is perceived. Future work will focus on extending the
rule to apply more sophisticated exploratory/exploitative
regimes to solve a larger variety of reinforcement learning
problems (Sutton and Barto, 1998). The one-layer struc-
ture is also capable of learning only linear problems (i.e.
when the inputs can be treated as independent). How-
ever, it is important to appreciate that these limitations
are inherent only in the one-layer structures analyzed in
this paper. Just as the perceptron learning rule ultimately
led to backpropagation (Werbos, 1974; Russell and Norvig,
2003), the potential of a new fundamental learning prop-
erty is often first established in single-layer networks and
later generalized.
An interesting research direction in this context is

the combination of the proposed learning structure with
reservoir recurrent networks (Maass and Markram, 2004)
to complement nonlinear computation with modulation-
driven learning. In particular, a large pool of randomly
connected neurons, i.e. the reservoir, can potentially im-
plement the nonlinear preprocessing stage from which the
linear multiple-input multiple-output learning structure of
Fig. 13 can read signals. In such a case, provided that
the reservoir has rich enough dynamics, the plasticity rule
on the linear output can also learn solutions to nonlin-
ear problems. The reconfigure-and-saturate Hebbian rule
can potentially also be integrated in larger artificial net-
works designed by neuroevolution (Stanley and Miikku-
lainen, 2002; Stanley et al., 2009). Simulated evolution
can explore the application of the rule either at a global
or at a local scale in relation to various learning scenarios.
One other exciting prospect is to apply the plasticity

rule within large recurrent networks to reinforce or extin-
guish oscillatory attractors. Oscillation in neural circuitry
is believed to play a crucial role both in pattern gener-
ation (Marder, 1996; Dickinson, 2006) and higher cogni-
tion (Buzaki, 2006). Future studies can investigate the
dynamic behavior of completely or locally modulated re-
current networks as substrates for learning behavioral re-
sponses.
Finally, it is important to note that the saturate-and-

configure Hebbian rule is not intended to predict biolog-
ical neural dynamics. Nevertheless, the use of noise as a
driving exploratory mechanism and saturation as a stable
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state for exploitation hints at the potential for new inter-
pretations and hypotheses for the corresponding biological
dynamics. Indeed, recent evidence suggests that neural
noise in the central nervous system is responsible for trial-
to-trial variability (Faisal et al., 2008). A research ques-
tion that emerges from the current study is whether the
noise-induced variability in biological systems can be also
responsible for behavioral exploration. Likewise, the stable
exploitation of acquired neural functions, such as the con-
sistent application of a skill, might be expressed through
high-weight pathways that encode clear mappings among
neurons. Just as the strength of the saturated synapse in
the this study represents a level of resistance to the re-
versal of previously acquired behaviors (Hasselmo et al.,
2002), a similar relationship might be also present in bio-
logical networks between the strength of pathways and the
stability of behaviors.

5. Conclusion

A central insight of this article is that the tradition-
ally undesirable weight growth of the Hebbian rule can in
fact benefit a model of synaptic plasticity. In effect, such
auto-correlative dynamics can amplify a random initial be-
havior when it proves beneficial to obtaining a reward. In
the simple model of this paper, when negative modulation
is registered, autocorrelation is reversed into decorrelation
or anti-Hebbian plasticity. Such environment-driven al-
ternation of Hebbian and anti-Hebbian plasticity, when
complemented with sufficient neural noise and saturation
boundaries, establishes a plasticity model that implements
exploratory and exploitative behaviors. This model in turn
results in simulated operant reward learning at the system
level. The rule, effectively the simplest form of modulated
Hebbian plasticity augmented with noise and saturation,
produces exploration and exploitation with a simpler and
more essential mechanism than those in previous studies
of reward-modulated Hebbian plasticity.
The model was tested on a navigation problem in which

not only wall avoidance was achieved, but also the “fear-
ful” and “aggressive” behaviors of Braitenberg vehicles
emerged purely from environmental reward policies. Ex-
ploratory and exploitative behaviors were thus achieved
with the most basic Hebbian model. While such learning
problems as those analyzed in this paper have been em-
ployed for decades to test the bottom-up emergence of in-
telligent behaviors in fields such as artificial life (Langton,
1990) and evolutionary robotics (Floreano and Nolfi, 2004;
Floreano and Mattiussi, 2008), the results presented here
show that very small structures can serve as exemplary
paradigms of adaptive behavior (Staddon, 1983). The fi-
nal experiment suggests that this plasticity rule maintains
its problem-solving properties in multiple-input multiple
output-networks in the face of highly stochastic signals,
an important capability for the real world. All experi-
ments showed that brief but significant stimuli are pro-
cessed to capture and retain relevant information indefi-

nitely. Such a property particularly fits real-world scenar-
ios in which fast memorization of stimuli is often required
for later reuse.
In summary, this study indicates that Hebbian plastic-

ity, when augmented with neuromodulation, neural noise
and weight saturation, acquires key dynamics that link
plasticity to adaptive behavior and facilitates learning
from short-lived but relevant events. With this model, the
dynamics of Hebbian synaptic plasticity can be directly
related to the learning, manifestation and memorization
of behavior.
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Appendix A. Spiking neuron simulation

The reconfigure-and-saturate Hebbian dynamics hold
equally with a simple spiking neuron model (Wilson, 1999;
Maass and Bishop, 1999; Gerstner and Kistler, 2002b).
The membrane potential u can be computed as a leaky
integrate-and-fire model Gerstner and Kistler (2002b),
which can be expressed in discrete time as

ui(t+1) = ui(t)+
1

τ

(
−ui(t)+

i=n∑
j=1

wji(t)·vj(t)
)
,(A.1)

where τ is the time constant that determines the rate of the
leak, here set to the value 30. In the current simulation,
the firing threshold is set to zero. For positive values of u,
a spike is emitted with probability 0.5. Following a spike,
u is reset to zero and the neuron has a resting time of one
step during which it cannot spike. To detect positive and
negative correlations in the plasticity rule, the relevant
constraint here is to assume a positive output value for
a spiking time step and a negative output value for non-
spiking time steps, which are set respectively to 1 and -0.1.
The plasticity rule remains unchanged.
The one-input one-output pathway experiment was run

in an additional experiment with the spiking neural dy-
namics. Fig. A.16 shows that the weight change is sim-
ilar to that of the rate-based model. The mapping from
input to output neuron is expressed by the frequency of
spikes. When the input inhibits the output, the output
neuron does not spike. When a prevailing GLU weight is
established, the output neuron spikes with high frequency.
Interestingly, the negatively modulated phases are char-
acterized by a residual level of spiking, which is neither
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Figure A.16: Simulation of switching modulation with spiking neu-
rons. The first row shows the imposed modulation value. The second
row shows the values of the excitatory and inhibitory weights. Fi-
nally, the third row shows the spiking pattern of the output neuron.
The absence of spikes indicates that the input causes inhibition of the
output. A high spiking frequency, e.g. between steps 2,500 and 3,000,
indicates that the input causes excitation of the output. When the
modulation is negative, occasional spikes characterize the output.
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Figure A.17: Simulation of switching modulation with spiking neu-
rons and a high saturation value λ = 50. Similarly to the simulation
with the rate-based model in Fig. 5 in the main text, the network
reaches the reconfigure dynamics only after a certain duration of
negative modulation.

full activity nor silence and can be interpreted as the tonic
firing rate. This frequency can be seen as an uncertain or
neutral state of activation.
Fig. A.17 shows the weight dynamics and output pattern

with a high saturation value λ = 50, which are similar to
Fig. 6 in the main text, and spiking neural dynamics.

Appendix B. Agent’s simulation

Details of the navigating agent are reported in this sec-
tion.

Appendix B.1. Agent, arena and policies

The square arena has a side of length one unit (1U).
The bounding walls and the type-A and type-B objects
are illustrated in Fig. B.18A. The agent navigates with a
constant speed of 0.01U per simulation step. One neuron
is used as output. However, the alternative use of two out-
put neurons, determining the speed of two wheels, would
allow for the synthesis of more behaviors, similar to those
described in the section “Love” (Braitenberg, 1984, Pages
10-14). These additional behaviors become possible be-
cause the agent could also increase or decrease the speed

Figure B.18: (A) The arena, the bounding walls, and the type-A
and type-B objects. (B) Modulation policies: plus signs indicate
positive modulation and minus signs indicate negative modulation.
When the agent meets an object by navigating over it, the object is
removed temporarily, and reappears in the same location after the
agent has left the sensing area.

∀d < ρ Policy 1 Policy 2
Walls -∆d/(2κ) -∆d/(2κ)
Type-A -∆d/κ ∆d/κ
Type-B ∆d/κ -∆d/κ

Table B.1: Values of η for the modulation policies in the agent’s
simulation. The maximum sensing distance κ (sensor range) is set
to 0.1U in all experiments. The distance d of the agent from an
object is used to compute ∆d = d(t) − d(t − 1). The speed of the
agent is (0.01U/step). The normalization implemented by dividing
by κ means that the maximum modulation is 0.5 and 1.0 in absolute
value for walls and objects, respectively.

while turning. Such an extension is a good candidate for
increasing the set of possible behaviors in future work. It
is also important to note that the simulation time is mea-
sured in time steps rather than in seconds; this convention
implies that the speed of change of synaptic weights can
be interpreted over different time scales.
When hitting a wall, the agent bounces back 0.02U and

rotates 30◦ away from the wall. An object disappears when
the agent navigates at a distance equal or less than 0.025U
from it; the object reappears when the agent exits the sens-
ing radius ρ of 0.1U. A graphical representation of modula-
tion policies is illustrated in Fig. B.18B. Exact modulation
values are reported in table B.1. Fig. B.19 is a gray-scale
version of Fig. 10.

Appendix C. Computer simulations

The experiments presented in this paper were imple-
mented and simulated in Matlab R©. The complete Matlab
code is provided as support material. All figures show-
ing data and the data generated by the simulations can
be reproduced exactly (using the same pseudo-random se-
quence) or qualitatively (using different pseudo-random
sequences) with the provided Matlab code. The code is
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Figure B.19: Gray-scale version of Fig. 10 from the main text. The
lighter areas indicate a more frequent presence of the agent with
respect to the darker areas.

Figure C.20: Video showing the simulation process of the agent in the
arena. The video and the source code to reproduce these simulations
can be downloaded at http://andrea.soltoggio.net/rec-sat.

cross-platform, and does not require any particular instal-
lation procedure.
An example of one simulation of the agent, explaining

the user interface and the phases for learning, is captured
in a video provided with the study (Fig. C.20). The video
and source code can be downloaded at this article’s asso-
ciate website http://andrea.soltoggio.net/rec-sat.
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