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Abstract. Biological brains can adapt and learn from past experience.
In neuroevolution, i.e. evolving artificial neural networks (ANNs), one
way that agents controlled by ANNs can evolve the ability to adapt is
by encoding local learning rules. However, a significant problem with
most such approaches is that local learning rules for every connection
in the network must be discovered separately. This paper aims to show
that learning rules can be effectively indirectly encoded by extending
the Hypercube-based NeuroEvolution of Augmenting Topologies (Hy-
perNEAT) method. Adaptive HyperNEAT is introduced to allow not
only patterns of weights across the connectivity of an ANN to be gener-
ated by a function of its geometry, but also patterns of arbitrary learning
rules. Several such adaptive models with different levels of generality are
explored and compared. The long-term promise of the new approach is
to evolve large-scale adaptive ANNs, which is a major goal for neuroevo-
lution.
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1 Introduction

Research in neuroevolution, i.e. evolving artificial neural networks (ANNs) through
evolutionary algorithms, often focuses on static ANNs (i.e. weights do not change
during the network’s lifetime). However, in many control and decision-making
problems, the environment may change too quickly to allow phylogenetic adap-
tation; thus the controller needs to adapt online to maintain performance. For
example, a robot may need to remember a location that changes over time.

One way that agents controlled by ANNs can evolve the ability to adapt over
their lifetime is by encoding local learning rules in the genome that determine
how their synaptic connection strengths should change in response to changing
activation levels in the neurons they connect [1–3]. This approach resembles
the way organisms in nature, which possess plastic nervous systems, cope with
changing and unpredictable environments.

Although demonstrations of this approach have suggested the promise of
evolving adaptive ANNs, a significant problem is that local learning rules for
every connection in the network must be discovered separately. That is, although
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interest has grown in recent years in indirectly encoding the weights of ANNs so
that they can be discovered as patterns [4–9], the power of indirect encoding is
rarely applied to encoding learning rules. Yet the distribution of rules across a
network likely conforms to discoverable regularities just as weights.

Additionally, as noted by Yao [10], the right learning rule depends on the
ANN architecture, which makes it difficult to design an optimal such rule a
priori. Yao further points out that designing learning rules by hand, which is
common in this area [1,10], requires making assumptions that might not hold in
practice.

This paper aims to show that learning rules can be effectively indirectly en-
coded by extending the Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT) method [6, 11, 12], which currently indirectly encodes large
geometric patterns of fixed weights for high-dimensional problems [6,11–13]. The
new method introduced here, called adaptive HyperNEAT, allows not only pat-
terns of weights across the connectivity of an ANN to be generated by a function
of its geometry, but also patterns of learning rules. The idea that learning rules
can be distributed in a geometric pattern is new to neuroevolution but reflects
the intuition that synaptic plasticity in biological brains is not encoded in DNA
separately for every synapse in the brain. Thus the main idea in this paper is a
step towards more biologically plausible adaptive systems.

An important contribution of this work is to show that there is a tradeoff
between the generality of an indirect encoding of plasticity and its computational
cost. Yet, as experiments in a variant of the T-Maze learning domain [3,14] will
show, in special cases, e.g. when the reward signature is nonlinear and the ANN
topology is restricted, a most general encoding may be necessary. Thus, rather
than offering a single approach to all problems, this paper reveals the existence of
a continuum of adaptive encodings that trade off generality with computational
expense. From this perspective the practitioner can make the most informed
choice on the ingredients that may be necessary for a particular domain.

Building on the ability of HyperNEAT to evolve large-scale connectivity pat-
terns, the long-term promise of the new approach is to evolve large-scale adaptive
ANNs, which is a major goal for neuroevolution.

2 Background

The HyperNEAT method that enables learning from geometry in this paper is
an extension of the original NeuroEvolution of Augmenting Topologies (NEAT)
algorithm that evolves ANNs through a direct encoding [15, 16]. NEAT starts
with a population of small, simple neural networks and then complexifies them
over generations by adding new nodes and connections through mutation. By
evolving networks in this way, the topology of the network does not need to be
known a priori. The important feature of NEAT for the purpose of this paper is
that it evolves both the topology and weights of a network.

However, in direct encodings like NEAT, each part of the representation maps
to a single piece of structure in the solution [17]. The significant disadvantage
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of this approach is that even when different parts of the solution are similar,
they must be encoded and therefore discovered separately. Thus HyperNEAT
employs an indirect encoding instead, which means that the description of the
solution is compressed such that information can be reused, allowing the final
solution to contain more components than the description itself [4–9].

In HyperNEAT, NEAT is altered to evolve an indirect encoding called compo-
sitional pattern producing networks (CPPNs [8]) instead of ANNs [6,11–13]. The
main idea in HyperNEAT is that the CPPN, which is itself a network composed
of a variety of activation functions, acts as a pattern generator that outputs a
pattern of connection weights situated within the geometry of the ANN. The
activation functions within the CPPN, such as sine and Gaussian, allow it to
express regularities across the geometry of the ANN [6,11,12].
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Fig. 1. How an ANN is Encoded by a CPPN. A collection of ANN nodes,
called the substrate, is assigned coordinates that range from −1 to 1 in all dimensions.
(1) Every potential connection in the substrate is queried to determine its presence
and weight; the dark directed lines in the substrate depicted in the figure represent a
sample of connections that are queried. (2) Internally, the CPPN (which is evolved) is
a graph that determines which activation functions are connected. As in an ANN, the
connections are weighted such that the output of a function is multiplied by the weight
of its outgoing connection. For each query, the CPPN takes as input the positions of
the two endpoints and (3) outputs the weight of the connection between them. Thus,
CPPNs can produce regular patterns of connections in space.

Formally, CPPNs are functions of geometry (i.e. locations in space) that out-
put connectivity patterns whose nodes are situated in n dimensions, where n is
the number of dimensions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-dimensional space also
denotes the connection between the two-dimensional points (x1, y1) and (x2, y2),
and the output of the CPPN for that input thereby represents the weight of that
connection (Fig. 1). By querying every possible connection among a pre-chosen
set of points in this manner, a CPPN can produce an ANN, wherein each queried
point is a neuron position. Because the connections are produced by a function of
their endpoints, the final structure is produced with knowledge of its geometry. In
effect, the CPPN is painting a pattern on the inside of a four-dimensional hyper-
cube that is interpreted as the isomorphic connectivity pattern, which explains
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the origin of the name hypercube-based NEAT (HyperNEAT). Connectivity pat-
terns produced by a CPPN in this way are called substrates so that they can be
verbally distinguished from the CPPN itself, which has its own internal topology.
As a rule of thumb, nodes are placed on the substrate to reflect the geometry
of the task [11–13]. That way, the connectivity of the substrate is a function of
the task structure and while the task may be complex, the domain geometry is
often intuitive.

For example, the sensors of an autonomous robot can be placed from left to
right on the substrate in the same order that they exist on the robot. Outputs for
moving left or right can also be placed in the same order, allowing HyperNEAT
to understand from the outset the correlation of sensors to effectors. In this
way, knowledge about the problem geometry can be injected into the search
and HyperNEAT can exploit the regularities (e.g. adjacency, or symmetry) of a
problem that are invisible to traditional encodings.

For a complete overview of HyperNEAT, see Gauci and Stanley [6] and Stan-
ley et al. [12]. The next section extends this approach to evolve adaptive ANNs.

3 APPROACH: Adaptive HyperNEAT

The main idea in adaptive HyperNEAT is that CPPNs can not only encode con-
nectivity patterns but also patterns of plasticity rules. As in the brain, different
regions of the ANN should be more or less plastic and employ different learning
rules, which HyperNEAT allows because it sees the ANN geometry. In general,
a learning rule changes the weight of a connection based on presynaptic activity
oi, postsynaptic activity oj , and the current connection weight wij :

∆wij = Φ(oi, oj , wij) . (1)

In this paper three different adaptive HyperNEAT models are compared that
are able to encode different levels of learning rule generality. The goal of this
comparison is to elucidate the advantages and disadvantages of different levels
of generality to modeling dynamic learning processes. All three models allow
learning rules to be distributed as patterns across the connectivity of an ANN.

The most general iterated model (Fig. 2a) augments the four-dimensional
CPPN that normally encodes connectivity patterns with three additional inputs:
presynaptic activity oi, postsynaptic activity oj , and the current connection
weight wij . That way, the synaptic plasticity of a connection between two two-
dimensional points (x1, y1) and (x2, y2) can be described by

∆wij = CPPN(x1, y1, x2, y2, oi, oj , wij) . (2)

The update of the synaptic weights can thereby be iteratively performed by the
same CPPN that normally encodes network connectivity, which allows evolving
increasingly complex learning rules. In effect, the CPPN encodes an entire dy-
namical system, including how changes depend on both location and activity.
The CPPN is requeried on every tick of the clock to update the ANN weights.
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Fig. 2. Adaptive HyperNEAT. CPPNs for the iterated (a) and ABC models (b)
are shown. The CPPN in (a) is continually requeried during the lifetime of the agent
to determine the weight change given the location of the connection, activation of the
presynaptic and postsynaptic neuron, and the current weight as input. In contrast, the
CPPN in (b) is only activated once to determine the three parameters A–C and the
learning rate η, which control synaptic plasticity during the lifetime of the agent, in
addition to the initial weight w.

The initial weight configuration is determined by querying the CPPN as in the
original HyperNEAT approach (Sec. 2) with the presynaptic activity, postsy-
naptic activity, and weight inputs all set to zero.

The less general Hebbian ABC model augments the CPPN instead with
four additional outputs (Fig. 2b): learning rate η, correlation term A, presy-
naptic term B, and postsynaptic term C. When the CPPN is initially queried,
these parameters are permanently stored, which allows the synaptic weight to
be modified during the lifetime of the agent by the following plasticity rule:

∆wij = η · [Aoioj +Boi + Coj ] . (3)

Traditional approaches to evolving adaptive ANNs with direct encodings also
evolve the coefficients of Equation (3) but because of the limitations of direct
encodings often only employ one such evolved rule throughout all ANN connec-
tions [3, 18]. The difference here is that A, B, C, and η are indirectly encoded
by HyperNEAT in a geometric pattern across the connectivity of the whole
network. Therefore each connection could potentially employ a different rule if
necessary. However, unlike the more general iterated model, this CPPN only
produces variants of the ABC Hebbian rule. Thus the space of possible rules is
more restricted.

Finally, the simplest model is plain Hebbian. The CPPN has only one
additional output that encodes the learning rate η:

∆wij = η · oioj . (4)

This variant tests for the minimal sufficient dynamics to solve the T-Maze do-
main given in this paper, which is explained in the next section.

4 T-Maze Domain

T-Mazes are often studied in the context of operant conditioning of animals;
they are also studied to assess the ability of plastic ANNs [3, 14]. The discrete



6 Sebastian Risi and Kenneth O. Stanley

RR

A

(a) T-Maze

1
Y

-1
-1 1 X

31 2

L

A

F R

C

(b) Substrate

Fig. 3. T-Maze and Substrate Configuration. (a) In this depiction, high reward is
located on the left and low reward is on the right side, but these positions can change
over a set of trials. The challenge for the agent is to remember the location of the high
reward from one trial to the next. (b) The autonomous agent A is equipped with three
distance sensors and a reward color sensor that is set to zero during navigation.

T-Maze in this paper (Fig. 3a) consists of two arms that either contain a high
or low reward. The agent begins at the bottom of the maze and its goal is to
navigate to the reward position. This procedure is repeated many times during
the agent’s lifetime. One such attempted trip to a reward location is called a
trial. A deployment consists of a set of trials. When the position of the reward
sometimes changes, the agent should alter its strategy accordingly to explore the
other arm of the maze in the next trial and remember the new position in the
future (requiring adaptation). The goal of the agent is to maximize the amount
of reward collected over all deployments.

5 Experiments

To generate a controller for the T-Maze domain, the evolved CPPNs query the
substrate shown in Fig. 3b. The locations of inputs and outputs are designed
to geometrically correlate (e.g. seeing something on the left correlates to turn-
ing left). Thus the CPPN can exploit the geometry of the agent. The agent is
equipped with three rangefinder sensors that detect walls to the left, front, and
right of the robot. The Color input (explained shortly) is set to the color of the
collected reward at the maze end, which determines the amount of reward given
to the agent. The three output neurons are Left, Forward, and Right. At each
simulated time step, the agent continues to move straight at a constant pace if
the Forward output has the highest activation level. Otherwise the agent turns
90 degrees in the direction of the highest activated neuron (Left or Right).

An agent crashes if it does not (1) maintain a forward direction in corridors
or (2) turn either right or left when it encounters the junction. If the agent
crashes then the current trial is terminated.

In this paper, two T-Maze scenarios are studied to elucidate the advantages
and disadvantages of encoding different levels of plasticity rule generality. Sce-
nario 1 resembles the traditional T-Maze domain described in the previous
section. Each agent is evaluated on four deployments with 100 trials each. The
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Fig. 4. Nonlinear Reward Color Encoding. The agent receives a high reward for
green or red and a low reward for blue or yellow. The ANN color encoding together
with the given ANN topology requires the agent to include a nonlinear learning rule.

starting position of the high reward alternates between deployments and switches
positions after 50 trials on average. Color input values of 1.0 and 0.1 encode the
high (red) and low (blue) reward, respectively.

In scenario 2, the agent is exposed to a total of four different colored re-
wards. The first deployment resembles scenario 1 with reward signatures of 0.1
and 1.0. However, in the second deployment, color input values of 0.3 and 0.8
are introduced to encode new high yellow and low green rewards, respectively
(Fig. 4). Adding these intermediate reward colors yields a reward signature that
is not linearly separable. Because the ANN controlling the agent does not have
any hidden neurons, the learning rule must itself be nonlinear. Scenario 2 there-
fore makes a good domain for this study because it requires evolving a specific
learning rule that depends on the ANN topology.

The fitness function, which is the same for all compared approaches and
identical to Soltoggio et al. [3], is calculated as follows: Collecting a high reward
has a value of 1.0 and a low reward is worth 0.2. A penalty of 0.4 is subtracted if
the agent does not maintain forward motion in corridors or does not turn left or
right at a junction. The total fitness of an individual is determined by summing
the fitness values for each of the 100 trials over all deployments.

Note that although Risi et al. [19] showed that novelty search [20], which
abandons objective-based fitness and instead simply searches only for novel be-
havior, significantly outperforms fitness-based search in the traditional T-Maze
domain, a standard fitness function is employed in this paper to keep the exper-
iment focused on the issue of adaptation.

5.1 Experimental Parameters

All experiments were run with a modified version of the public domain Sharp-
NEAT package [21] called HyperSharpNEAT. Runs consisted of 500 generations
with a population size of 500 and 10% elitism. Sexual offspring (50%) did not
undergo mutation. Asexual offspring (50%) had 0.94 probability of link weight
mutation, 0.03 chance of link addition, and 0.02 chance of node addition. The
available CPPN activation functions were sigmoid, Gaussian, absolute value,
and sine, all with equal probability of being added. A connection is not ever
expressed if the magnitude of its initial weight is below a minimal threshold of
0.4. Parameter settings are based on standard SharpNEAT defaults and prior re-
ported settings for NEAT [15,16]. For all adaptive HyperNEAT models synaptic
strength is bound within the range [−1.0, 1.0].
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6 Results

The standard T-Maze (scenario 1) is solved when the agent reaches a fitness
of 395. A minimum amount of exploration (i.e. collecting the low reward) is
required at the beginning of each deployment and when the reward positions
switch. The T-Maze with nonlinear reward signature (scenario 2), consisting of
two deployments with different reward signatures, is solved with a fitness of 195.
All reported results are averaged over 20 runs.

Figure 5a shows the average training performance over generations for the
standard T-Maze (scenario 1). It took the ABC model 141 generations (σ=141)
on average to find a solution. The iterated model took 89 generations (σ=61) on
average. While the fitness for the iterated model initially increases more slowly
than for ABC, it finds a solution slightly (though not significantly) faster on
average. The plain Hebbian model cannot solve the task. Although both the
more general iterated model and the ABC model can solve the task, the iterated
model is computationally more expensive because the CPPN must be continually
requeried for every ANN connection.
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Fig. 5. Training Performance. The change in performance over evaluations for both
scenarios is shown in this figure. All results are averaged over 20 runs. The horizontal
line (top) indicates at what fitness the domain is solved. The iterated and ABC model
are both able to solve the standard T-Maze domain (a) in about the same number of
generations whereas the plain Hebbian approach does not show the necessary dynamics.
The T-Maze domain with a nonlinear reward signature (b) requires a nonlinear learning
rule, which only the iterated model discovers.

The average training performance over generations for scenario 2 is shown
in Fig. 5b. The plain Hebbian rule is not tested in this variant because it is
not able to solve the standard T-Maze. Whereas the iterated model solves the
domain in 19 out of 20 runs, in 367 generations (σ=101) on average, ABC is not
able to solve the task with the given ANN topology, which suggest the need for
a nonlinear learning rule in this scenario (or potentially an ANN with hidden
nodes). The more general iterated model is able to evolve such a rule.

Figure 6a shows CPPN-encoded learning rules of an ANN solution discovered
by the iterated model. The function embodied by the CPPN (Fig. 6b) encodes
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Fig. 6. Discovered Learning Rules of an ANN Solution Created by the It-
erated Model and the Underlying CPPN. The nonlinear learning rules shown in
(a) are encoded by the evolved CPPN shown in (b). A geometric pattern of learning
rules can been seen that varies with the target node’s x location. The amount of synap-
tic change is a function of the pre- and postsynaptic activity and the corresponding
positions of the pre- and postsynaptic neurons in the substrate (weight input w on the
CPPN is set to zero in this depiction).

a geometric pattern of nonlinear learning rules. Interestingly, the evolved rules
resemble postsynaptic-based learning rules that have been shown essential in the
T-Maze domain [18].

7 Discussion and Future Work

The indirect HyperNEAT encoding is able to generate ANNs with millions of
connections based on underlying geometric motifs [12]. This paper introduced
an extension called adaptive HyperNEAT that generates not only patterns of
weights across the connectivity of an ANN, but also patterns of learning rules
(Fig. 6). The long-term promise of the new approach is therefore to evolve large-
scale adaptive ANNs, which is a major goal for neuroevolution that may bring
it closer to evolving brain-like structures.

While the ABC model together with an adequate ANN topology should be
sufficient for most domains, the nonlinear variant of the T-Maze learning domain
reveals that sometimes a more general encoding may be necessary. Although the
ANN topology could potentially have been extended to allow a less general
model to solve the nonlinear T-Maze domain, this experiment confirms the risk
of making a priori assumptions about the type of necessary learning rules [10].

However, the generality of the indirect encoding of plasticity trades off with
its computational cost. The most general iterated model is computationally ex-
pensive because the CPPN must be continually requeried for every ANN connec-
tion. The computational complexity for every time step is O(n)+nO(m), where
O(n) and O(m) are the costs of simulating an ANN with n connections and
an underlying CPPN with m connections, respectively. Thus the most general
model in its current form might be too computationally expensive for practical
purposes that require large CPPNs and ANNs. However, it gives us a reference
point from which to derive more specialized models such as the ABC model.

In the current iterated model the synaptic weights are updated at every time
step. Characterizing how often a weight update is necessary is an important
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future research direction that may allow cutting down the computational cost of
even the most general model. Additionally, synaptic plasticity could be controlled
by neuromodulation [2, 3, 19], which means that some neurons can enhance or
dampen the neural plasticity of their target nodes. Such modulation could allow
precise timing of CPPN weight queries. Finally, another potentially promising
approach is combining the iterated and ABC models.

8 Conclusion

A new method called adaptive HyperNEAT was presented, which allows not only
patterns of weights across the connectivity of an ANN to be indirectly encoded
as a function of its geometry, but also patterns of arbitrary learning rules. Im-
portantly, this paper shows that there is a tradeoff between the generality of an
indirect encoding of plasticity and its computational cost. Yet, as a variation of
the T-Maze domain demonstrates, the most general encoding may be necessary
in some cases. The main conclusion is that the indirect HyperNEAT encoding
may enable evolving large-scale adaptive ANNs.
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