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Abstract—An ambitious long-term goal for neuroevolution,
which studies how artificial evolutionary processes can be driven
to produce brain-like structures, is to evolve neurocontrollers
with a high density of neurons and connections that can adapt
and learn from past experience. Yet while neuroevolution has
produced successful results in a variety of domains, the scale of
natural brains remains far beyond reach. This paper unifies a set
of advanced neuroevolution techniques into a new method called
adaptive evolvable-substrate HyperNEAT, which is a step toward
more biologically-plausible artificial neural networks (ANNs).
The combined approach is able to fully determine the geometry,
density, and plasticity of an evolving neuromodulated ANN. These
complementary capabilities are demonstrated in a maze-learning
task based on similar experiments with animals. The most
interesting aspect of this investigation is that the emergent neural
structures are beginning to acquire more natural properties,
which means that neuroevolution can begin to pose new problems
and answer deeper questions about how brains evolved that are
ultimately relevant to the field of AI as a whole.

I. INTRODUCTION

The human brain is the most complex system known to exist
[17, 36]. It is composed of an astronomically high number of
neurons and connections organized in precise, intricate motifs
that repeat throughout it, often with variation on a theme, such
as cortical columns [26]. Additionally, the brain is not a static
entity but instead changing throughout life, enabling us to
learn and modify our behavior based on past experience. These
characteristics have so far eluded attempts to create artificial
neural networks (ANNs) with the same capabilities.

One methodology that has shown promise in autonomously
generating ANNs for complex control problems is neuroevo-
lution, i.e. evolving ANNs through evolutionary algorithms
(EAs) [12, 20, 31, 35]. To this end, as such algorithms are
asked to evolve increasingly large and complex structures,
interest has increased in recent years in indirect neural net-
work encodings, wherein the description of the solution is
compressed such that information can be reused [2, 4, 14,
16, 27, 29]. Such compression allows the final solution to
contain more components than its description. Nevertheless,
neuroevolution has historically produced networks with orders
of magnitude fewer neurons and significantly less organization
and regularity than natural brains [30, 35].

While past approaches to neuroevolution generally concen-
trated on deciding which node is connected to which (i.e.

neural topology) [12, 30, 35], the Hypercube-based Neu-
roEvolution of Augmenting Topologies (HyperNEAT) method
[8, 13, 32] provided a new perspective on evolving ANNs by
showing that the pattern of weights across the connectivity
of an ANN can be generated as a function of its geometry.
HyperNEAT employs an indirect encoding called composi-
tional pattern producing networks (CPPNs) [27], which can
compactly encode patterns with regularities such as symmetry,
repetition, and repetition with variation.

HyperNEAT exposed the fact that neuroevolution benefits
from neurons that exist at locations within the space of the
brain and that by placing neurons at locations, evolution can
exploit topography (as opposed to just topology), which makes
it possible to correlate the geometry of sensors with the
geometry of the brain. In other words, two ANNs with the
same topology (i.e. the same connectivity pattern) can have
different topographies (i.e. nodes existing at different locations
in space). While lacking in many ANNs, such geometry is
a critical facet of natural brains that is responsible for e.g.
topographic maps and modular organization across space [26].
This insight allowed large ANNs with regularities in connec-
tivity to evolve for high-dimensional problems [7, 13, 14, 32].
Yet a significant limitation is that the positions of the nodes
connected through this approach must be decided a priori
by the user. In other words, in the original HyperNEAT, the
user must literally place nodes at locations within a two-
dimensional or three-dimensional space called the substrate.

In a step towards more brain-like neurocontrollers, the
recently introduced evolvable-substrate HyperNEAT (ES-
HyperNEAT) approach [22] showed that the placement and
density of the hidden nodes can in fact be determined solely
based on implicit information in an infinite-resolution pattern
of weights generated by HyperNEAT. The novel insight was
that a representation that encodes the pattern of connectivity
across a network (such as in HyperNEAT) automatically
contains implicit clues on where the nodes should be placed
to best capture the information stored in the connectivity
pattern. In other words, there is no need for any new in-
formation or any new representational structure beyond the
very same CPPN that already encodes network connectivity in
the original HyperNEAT. This approach not only can evolve
the location of every neuron in the network, but also can



represent regions of varying density, which means resolution
can increase holistically over evolution.

Another common contrast with real brains is that the
synaptic connections in ANNs produced by EAs are static in
many implementations (i.e. they do not change their strength
during the lifetime of the network). While some tasks do not
require the network to change its behavior, many domains
would benefit from online adaptation. In other words, whereas
evolution produces phylogenetic adaptation, learning gives the
individual the possibility to react much faster to environmental
changes by modifying its behavior during its lifetime. For
example, a robot that is physically damaged should be able to
adapt to its new circumstances without the need to re-evolve
its neurocontroller.

One way that agents controlled by ANNs can evolve the
ability to adapt over their lifetime is by encoding local
learning rules in the genome that determine how their synaptic
connection strengths should change in response to changing
activation levels in the neurons they connect [11, 18, 25].
This approach resembles the way organisms in nature, which
possess plastic nervous systems, cope with changing and
unpredictable environments. Although demonstrations of this
approach have suggested the promise of evolving adaptive
ANNs, a significant problem is that local learning rules for
every connection in the network must be discovered separately.
The recently introduced adaptive HyperNEAT [21] addressed
this problem and showed that not only patterns of weights
across the connectivity of an ANN to be generated by a
function of its geometry, but also patterns of local neural
learning rules. The idea that learning rules can be distributed
in a geometric pattern is new to neuroevolution but reflects
the intuition that synaptic plasticity in biological brains is not
encoded in DNA separately for every synapse in the brain.

While ES-HyperNEAT and adaptive HyperNEAT have
shown promise, it is the combination of the two methods
that should allow the evolution of complex regular plastic
ANNs, which is a major goal for neuroevolution. Adaptive
ES-HyperNEAT, introduced here, is able to fully determine
the geometry, density, and plasticity of an evolving ANN. In
this way, it unifies two insights that have recently extended
the reach of HyperNEAT: First, the placement and density of
neurons throughout the geometry of the network should reflect
the complexity of the underlying functionality of its respective
parts [22]. Second, neural plasticity, which allows adaptation,
should be encoded as a function of neural geometry [21]. Also
importantly, the approach has the potential to create networks
from several dozen nodes up to several million, which will be
necessary in the future to evolve more intelligent systems.

The main conclusion is that adaptive ES-HyperNEAT takes
a step towards more biologically-plausible ANNs and expands
the scope of neural structures that evolution can discover, as
demonstrated by experiments in a T-Maze learning task in
this paper. In this scenario, the reward location is a variable
factor in the environment that the agent must learn to exploit.
The most important aspect of this domain is that it is not the
traditional discrete grid-world T-Maze that is popular in this

area [21, 25]; rather, the more realistic domain presented here
requires the robot to develop both collision avoidance and the
ability to learn during its lifetime in a continuous world [3, 9].
Both are afforded seamlessly by adaptive ES-HyperNEAT’s
ability to evolve both neural density and plasticity together.

II. BACKGROUND

This section reviews the sequence of cumulative abstractions
of processes in natural evolution from the last decade that are
combined in this paper.

A. Neuroevolution of Augmenting Topologies (NEAT)

The approaches introduced in this paper are extensions of
the original NEAT algorithm that evolves increasing large
ANNs. It starts with a population of simple networks and then
adds complexity over generations by adding new nodes and
connections through mutations. By evolving ANNs in this way,
the topology of the network does not need to be known a pri-
ori; NEAT searches through increasingly complex networks to
find a suitable level of complexity. Because it starts simply and
gradually adds complexity, it tends to find a solution network
close to the minimal necessary size. However, as explained
next, it turns out that directly representing connections and
nodes as explicit genes in the genome cannot scale up to large
brain-like networks. For a complete overview of NEAT see
Stanley and Miikkulainen [28].

B. Hypercube-based NEAT

In direct encodings like NEAT, each part of the solution’s
representation (i.e. each gene) maps to a single piece of struc-
ture in the final solution [12]. The significant disadvantage of
this approach is that even when different parts of the solution
are similar, they must be encoded and therefore discovered
separately. Thus HyperNEAT introduces an indirect encoding
instead, which means that the description of the solution is
compressed such that information can be reused, allowing the
final solution to contain more components than the description
itself. Indirect encodings allow solutions to be represented as
patterns of parameters, rather than representing each parameter
individually [4, 14, 27, 29]. HyperNEAT, reviewed here, is
an indirect encoding extension of NEAT that is proven in
a number of challenging domains that require discovering
regularities [6, 13, 14, 32, 34]. For a full description see
Stanley et al. [32] and Gauci and Stanley [14].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [27]) instead of ANNs. The CPPN in HyperNEAT
plays the role of DNA in nature, but at a much higher level
of abstraction; in effect it encodes a pattern of weights that is
painted across the geometry of a network. Yet the convenient
trick in HyperNEAT is that this “DNA” encoding is itself a
network, which means that CPPNs can be evolved by NEAT.
Specifically, a CPPN is a composition of functions, wherein
each function loosely corresponds to a useful regularity. For
example, a Gaussian function induces symmetry and a periodic
function such as sine creates segmentation through repetition.
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Fig. 1. HyperNEAT Geometric Connectivity Pattern Interpretation. A
collection of nodes, called the substrate, is assigned coordinates that range
from −1 to 1 in both dimensions. (1) Every potential connection in the
substrate is queried by the CPPN to determine its presence and weight; the
dark directed lines in the substrate depicted in the figure represent a sample
of connections that are queried. (2) Internally, the CPPN (which is evolved by
NEAT) is a graph that determines which activation functions are connected.
As in an ANN, the connections are weighted such that the output of a function
is multiplied by the weight of its outgoing connection. For each query, the
CPPN takes as input the positions of the two endpoints and (3) outputs the
weight of the connection between them. Thus, CPPNs can produce regular
patterns of connections in space.

In effect, the indirect CPPN encoding can compactly encode
patterns with regularities such as symmetry, repetition, and
repetition with variation [27]. Thus as the CPPN increases in
complexity through NEAT, it encodes increasingly complex
amalgamations of regularities and symmetries that are pro-
jected across the connectivity of an ANN [13, 14].

Unlike in many common ANN formalisms, in HyperNEAT
neurons exist at locations in space. That way, connectivity is
expressed across a geometry, like in a natural brain. Formally,
CPPNs are functions that input the locations of nodes (i.e.
the geometry of a network) and output weights between
those locations. That way, when queried for many pairs of
nodes situated in n dimensions, the result is a topographic
connectivity pattern in that space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output
of the CPPN for that input thereby represents the weight
of that connection (figure 1). Because the connections are
produced by a function of their endpoints, the final structure
is produced with knowledge of its geometry. In effect, the
CPPN is painting a pattern on the inside of a four-dimensional
hypercube that is interpreted as the isomorphic connectivity
pattern, which explains the origin of the name Hypercube-
based NEAT (HyperNEAT). Connectivity patterns produced
by a CPPN in this way are called substrates so that they can
be verbally distinguished from the CPPN itself, which (recall)
is also a network.

Each queried point in the substrate is a node in an ANN. In
the original HyperNEAT approach, the experimenter defines
both the location and role (i.e. hidden, input, or output) of
each such node. As a rule of thumb, nodes are placed on
the substrate to reflect the geometry of the task [6, 32]. That
way, the connectivity of the substrate is a function of the task
structure. For example, the sensors of a robot can be placed

from left to right on the substrate in the same order that they
exist on the robot. Outputs for moving left or right can also be
placed in the same order, allowing HyperNEAT to understand
from the outset the correlation of sensors to effectors. In this
way, knowledge about the problem geometry can be injected
into the search and HyperNEAT can exploit the regularities
(e.g. adjacency, or symmetry) of a problem that are invisible
to traditional encodings.

Because it encodes the network as a function of its ge-
ometry, HyperNEAT made it possible to evolve ANNs with
large geometrically-situated output fields [34] and millions
of connections [32], thereby advancing neuroevolution a step
closer to nature. Yet a problem with the original HyperNEAT
was that the experimenter is left to decide how many hidden
nodes there should be and at what geometric locations to place
them. The recent solution to this problem is the evolvable
substrate, which is reviewed in the next section.

C. Evolvable-Substrate HyperNEAT

While past approaches to neuroevolution generally con-
centrated on deciding which node is connected to which
[12, 30, 35], HyperNEAT exposed the fact that neuroevolution
benefits from neurons that exist at locations within the space
of the brain. By placing neurons at locations, evolution can
exploit topography, which makes it possible to correlate the
geometry of sensors with the geometry of the brain. While
lacking in many ANNs, such geometry is a critical facet of
natural brains that is responsible for e.g. topographic maps and
modular organization across space [26].

Thus when Risi et al. [24] introduced a method to au-
tomatically deduce node geometry and density from CPPNs
instead of requiring a priori placement (as in original Hyper-
NEAT), it significantly expanded the scope of neural structures
that evolution can discover. This approach, called evolvable-
substrate HyperNEAT, evolves not only the location of every
neuron in the brain, but also can represent regions of varying
density, which means resolution can increase holistically over
evolution. This advance was enabled by the insight that both
connectivity and hidden node placement can be automatically
determined by information already inherent in the pattern
encoded by the CPPN.

The key idea is to search the pattern within the four-
dimensional hypercube encoded by the CPPN for areas of high
information. The fundamental insight is that the geometric
location of nodes in an ANN is ultimately a signification of
where information is stored within the hypercube. That is,
areas of uniform weight (which map to uniform connection
weights in the substrate) ultimately encode very little informa-
tion and therefore little of functional value. Thus connections
(and hence the node locations that they connect) can be chosen
to be expressed based on the variance within their region of
the CPPN-encoded function in the hypercube.

The implementation of this idea is based on a quadtree-like
decomposition of weight-space that searches for areas of high
variance. Interestingly, such a decomposition will continue to
drill down to higher and higher resolutions as long as variance
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Fig. 2. Example point selection in two dimensions. Chosen points without
band pruning are shown in (a). Points that still remain after band pruning
(e.g. point P , whose neighbors at the same resolution have different CPPN
activation levels) are shown in (b). The resulting point distribution reflects the
information inherent in the image.

is detected. In this way, the density of nodes is automatically
determined and effectively unbounded. Thus substrates of
unbounded density can be evolved and determined without
any additional representation beyond the original CPPN in
HyperNEAT. This result is elegant because it corresponds to a
philosophical view of neural organization that the locations of
useful information within the hypercube are where the nodes
should be placed. That way, the size of the brain is roughly
correlated to its complexity. The full ES-HyperNEAT approach
is detailed in Risi and Stanley [22].

Figure 2a shows an example of the points chosen by
the quadtree algorithm for a two-dimensional pattern, which
resembles typical quadtree image decompositions [33]. To
understand how this pattern (which would be encoded by a
CPPN) relates to HyperNEAT, think of it as an infinite set
of candidate connection weights from which ES-HyperNEAT
must choose those actually to include in the network. The
variance is high at the borders of the circles, which results in
a high density of expressed points at those locations. However,
for the purpose of identifying connections to include in a
neural topography, the raw pattern output by the quadtree
algorithm can be improved further. If we think of the pattern
output by the CPPN as a kind of language for specifying
the locations of expressed connections, then it makes sense
additionally to prune the points around borders so that it is
easy for the CPPN to encode points definitively within one
region or another.

Thus a more parsimonious “language” for describing den-
sity patterns would ignore the edges and focus on the inner
region of bands, which are points that are enclosed by at
least two neighbors on opposite sides (e.g. left and right)
with different CPPN activation levels (figure 2b). Furthermore,
narrower bands can be interpreted as requests for more points,
giving the CPPN an explicit mechanism for affecting density.

Thus, to facilitate banding, a pruning stage is added that
removes points that are not in a band. Membership in a band
for a square with center (x, y) and width ω is determined
by band level b = max(min(dtop, dbottom),min(dleft, dright)),
where dleft is the difference in CPPN activation levels between
the point (x, y) and its left neighbor at (x − ω, y). The
other values, dright, dbottom, and dtop, are calculated accordingly.
If the band level b is below a given threshold bt then the

corresponding point is not expressed. Figure 2b shows the
resulting point selections with band pruning. This approach
also naturally enables the CPPN to increase the density of
points chosen by creating more bands or making them thinner.

While the approach so far identifies which connections
to express from within a field of potential connections, the
problem still remains of ensuring that the inputs and outputs
that the user places on the substrate ultimately connect into
the network. ES-HyperNEAT thus completes the network by
iteratively discovering the placement of the hidden neurons
starting from the inputs of the ANN [22]. This approach
focuses the search within the hypercube on discovering func-
tional networks in which every hidden node contributes to the
ANN output and receives information (at least indirectly) from
at least one input neuron, while ignoring parts of the hypercube
that are disconnected.

The idea behind this completion algorithm is depicted in
figure 3. Instead of searching directly in the four-dimensional
hypercube space (recall that it takes four dimensions to rep-
resent a two-dimensional connectivity pattern), the algorithm
analyzes a sequence of two-dimensional cross-sections of the
hypercube, one at a time, to discover which connections to
include in the ANN.

For example, given an input node at (0, −1) the
quadtree point-choosing approach is applied only to
the two-dimensional outgoing connectivity patterns from
that single node (figure 3a) described by the function
CPPN(0, −1, x, y) with x and y ranging from -1 to 1.
This process can be iteratively applied to the discovered hidden
nodes until a user-defined maximum iteration level is reached
or no more information is discovered in the hypercube (fig-
ure 3b). Note that an iteration level greater than zero enables
the algorithm also to create recurrent ANNs. To tie the network
into the outputs, the approach chooses connections based on
each output’s incoming connectivity patterns (figure 3c). Once
all hidden neurons are discovered, only those are kept that
have a path to an input and output neuron (figure 3d).

Because ES-HyperNEAT can automatically deduce node
geometry and density instead of requiring a priori placement
(as in original HyperNEAT), it significantly expands the scope
of neural structures that evolution can discover. The approach
does not only evolve the location of every neuron in the brain,
but also can represent regions of varying density, which means
resolution can increase holistically over evolution. The main
insight is that the connectivity and hidden node placement can
be automatically determined by information already inherent
in the pattern encoded by the CPPN. In this way, the density of
nodes is effectively unbounded. Thus substrates of unbounded
density can be evolved without any additional representation
beyond the original CPPN in HyperNEAT.

D. Evolving Plastic ANNs with HyperNEAT

Unlike traditional static ANNs in neuroevolution whose
weights do not change during their lifetime, plastic ANNs can
learn during their lifetime by changing their internal synaptic
connection strengths following a Hebbian learning rule that
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Fig. 3. Iterated Network Completion. The algorithm starts by iteratively
discovering the placement of the hidden neurons from the inputs (a) and
then ties the network into the outputs (c). The two-dimensional motif in (a)
represent outgoing connectivity patterns from a single input node whereas the
motif in (c) represent incoming connectivity pattern for a single output node.
The target nodes discovered (through the quadtree algorithm) are those that
reside within bands in the hypercube. In this way regions of high variance are
sought only in the two-dimensional cross-section of the hypercube containing
the source or target node. The algorithm can be iteratively applied to the
discovered hidden nodes (b). Only those nodes are kept that have a path to
an input and output neuron (d). That way, the search through the hypercube
is restricted to functional ANN topologies.

modifies synaptic weights based on pre- and postsynaptic
neuron activity. The generalized Hebbian plasticity rule [18]
takes the form: ∆wji = η · [Aojoi +Boj +Coi +D], where
η is the learning rate, oj and oi are the activation levels
of the presynaptic and postsynaptic neurons and A–D are
the correlation term, presynaptic term, postsynaptic term, and
constant, respectively. However, recent studies [18, 25] suggest
that more elaborate forms of learning require mechanisms
beyond Hebbian plasticity, in particular neuromodulation.

In a neuromodulated network, other neurons can change the
degree of potential plasticity between separate pre- and post-
synaptic neurons based on their activation levels. The benefit
of adding neuromodulation is that it allows the ANN to change
the level of plasticity on specific neurons at specific times. This
property seems to play a critical role in regulating learning
behavior in animals [5] and neuromodulated networks have
a clear advantage in more complex dynamic, reward-based
scenarios: Soltoggio et al. [25] showed that networks with
neuromodulated plasticity and the same evolved Hebbian rule
at each synapse significantly outperform fixed-weight recurrent
and traditional adaptive ANNs without neuromodulation in a
discrete T-Maze domain.

However, the experiment in this paper evolves controllers
for a significantly more challenging continuous T-Maze. This
advance is enabled by an enhancement called adaptive Hyper-
NEAT that can evolve patterns of heterogeneous rules within
the same network [21]. It is based on the insight that if a CPPN
can paint a pattern of connection weights across network
geometry, then it should also be able to paint a pattern of

varying plasticity rules across the same geometry. That way,
it does not need to encode each rule separately (i.e. because the
CPPN is an indirect encoding) and can thus escape from the
trap of evolving only a single rule. To facilitate this capability,
instead of outputting only a weight, the CPPN also outputs
the coefficients for the generalized Hebbian plasticity rule.
In effect, the CPPN computes an entire pattern of rules as
a function of the neural geometry, allowing it to distribute
heterogeneous rules in a regular pattern across the network.
Risi and Stanley [21] showed that this approach can solve a
discrete T-Maze with every parameter for the entire evolved
learning network compactly encoded by the CPPN.

III. UNIFIED APPROACH: ADAPTIVE ES-HYPERNEAT

To date no method in neuroevolution unifies the ability to
indirectly encode connectivity through geometry, simultane-
ously encode the density and placement of nodes in space,
and generate patterns of heterogeneous plasticity. While such a
unified approach risks being ad hoc, HyperNEAT offers a uni-
fying principle that naturally expresses both node placement
and plasticity. That is, both can be encoded by the CPPN as a
pattern situated within the geometry of the substrate. Thus this
section introduces for the first time the complete adaptive ES-
HyperNEAT approach that can evolve increasingly complex
neural geometry, density, and plasticity.

Adaptive ES-HyperNEAT augments the four-dimensional
CPPN that normally encodes connectivity patterns with six
additional outputs beyond the usual weight output: learning
rate η, correlation term A, presynaptic term B, postsynaptic
term C, constant D, and modulation parameter M . The
pattern produced by parameter M encodes the modulatory
connections, as explained in the next paragraph. When the
CPPN is initially queried, these parameters are permanently
stored for each connection, which allows the weights to
be modified during the lifetime of the ANN. In addition
to its standard activation, each neuron i also computes its
modulatory activation mi based on the types of its incoming
connections: mi =

∑
wji∈Mod wji · oj . The weight of a

connection between neurons i and j then changes following
the mi-modulated plasticity rule: ∆wji = tanh(mi/2) · η ·
[Aojoi+Boj+Coi+D]. Thus HyperNEAT allows connection-
mediated neuromodulation (i.e. connections instead of neurons
are either standard or neuromodulatory) because that way
HyperNEAT can efficiently encode plasticity as a pattern of
local rules.

The other important component of adaptive ES-HyperNEAT
is that it determines the placement and density of nodes from
implicit information in the hypercube encoded by the CPPN,
as in ES-HyperNEAT alone [22]. Among the seven CPPN
outputs, the node placement and connectivity is determined by
searching only through the patterns produced by the weight
output W (to discover regular connections) and modulatory
output M (to discover modulatory connections). These pat-
terns in effect represents a priori information at the “birth”
of the ANN, which by convention then determines node
placement. As noted earlier, the node-placement algorithm



Fig. 4. Adaptive ES-HyperNEAT CPPN. This CPPN is only activated once
for each queried connection to determine its weight and learning parameters.
This model completely determines weights, plasticity, and modulation through
a single vector function encoded by the CPPN. Node placement is further
determined by implicit information in the pattern within the hypercube,
following the ES-HyperNEAT approach.

searches for areas of high variances within the hypercube, in
effect giving the CPPN a language to express density patterns
[22]. Once all hidden neurons are discovered, only those are
kept that have a path to an input and output neuron.

Thus adaptive ES-HyperNEAT is able to fully determine
the geometry, density, and plasticity of an evolving ANN
based on a function of its geometry. While past work on
ES-HyperNEAT [22] has shown the benefits of evolving the
HyperNEAT substrate, the next section presents an experiment
designed to demonstrate the advantages of augmenting the
model with synaptic plasticity.

IV. CONTINUOUS T-MAZE DOMAIN

The domain investigated in this paper is the T-Maze, which
is often studied in the context of operant conditioning of
animals; it is also studied to assess the ability of plastic
ANNs [3, 25]. Thus it makes a good test of the ability to
evolve adaptive neural structures. The domain consists of two
arms that either contain a high or low reward (figure 5a). The
simulated robot begins at the bottom of the maze and its goal is
to navigate to the reward position. This procedure is repeated
many times during the robot’s lifetime. When the position of
the high reward sometimes changes, the robot should alter
its strategy accordingly to explore the other arm of the maze
in the next trial and remember the new position in the future
(requiring adaptation). The goal of the robot is to maximize the
amount of reward collected over four independent deployments
with varying initial reward positions and switching times. Both
the abilities to evolve neural density and to adapt should come
into play.

The most important aspect of this domain is that it is not
the traditional discrete grid-world T-Maze that is popular in
this area [25]; rather, the more realistic domain presented
here requires the robot to develop both collision avoidance
and the ability to learn during its lifetime in a continuous
world. Similar experiments with neuromodulated ANNs were
performed by Dürr et al. [9] but their robot relied on additional
ANN inputs (e.g. an input that signaled the end of the maze
and an input that was activated once the T-Maze junction
came into view) to solve the task. Additionally, to facilitate
the task, their robots had only two infrared sensors whose
values were merged into one sensory input. The increased
number of rangefinder inputs (five) in the present experiment
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Fig. 5. Domain and Substrate Configuration. (a) The challenge for the
robot in the T-Maze domain is to remember the location of the high reward
from one trial to the next. (b) The simulated robot is equipped with five
distance sensors (white) and one reward sensor (black).

gives the simulated robot a finer resolution without the need
for any sensor preprocessing. Blynel and Floreano [3] also
solved a version of the continuous task, but with CTRNNs
instead of plastic networks, which often required incremental
evolution. Therefore, this challenging version of the T-Maze
domain should test adaptive ES-HyperNEAT’s ability to di-
rectly evolve more sophisticated plastic ANNs.

A. Experimental Setup

To generate a controller for the T-Maze, the evolved CPPNs
query the substrate shown in figure 5b. The placement of input
and output nodes on the substrate is designed to geometrically
correlate sensors and effectors (e.g. seeing something on
the left and turning left). Thus the CPPN can exploit the
geometry of the robot. The simulated robot is equipped with
five rangefinder sensors that are scaled into the range [0, 1].
The Reward input remains zero during navigation and is set
to the amount of reward collected at the maze end (e.g. 0.1
or 1.0). At each discrete moment of time, the number of units
moved by the robot is 20F , where F is the forward effector
output. The robot also turns by 17(R− L) degrees, where R
is the right effector output and L is the left effector output.

Because prior research has shown that only measuring
performance based on the amount of collected reward is not a
good indicator of the adaptive capabilities of the agent [23], the
fitness function in this paper rewards consistently collecting
the same reward, with a score of 1.0 for each low reward and
a score of 2.0 for each high reward collected in sequence.

B. Experimental Parameters

All experiments were run with a modified version of the
public domain SharpNEAT package (Green [15]). More in-
formation on ES-HyperNEAT and its source code can be
found at: http://eplex.cs.ucf.edu/ESHyperNEAT. The size of
each population was 300 with 10% elitism and a termination
criterion of 1,000 generations. Sexual offspring (50%) did not
undergo mutation. Asexual offspring (50%) had 0.94 proba-
bility of weight mutation, 0.03 chance of CPPN link addition,
and 0.02 chance of CPPN node addition. The available CPPN
activation functions were sigmoid, Gaussian, absolute value,
and sine, all with equal probability of being added. As in
previous work [32] all CPPNs received the length of the
queried connection as an additional input.
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Fig. 6. Average Performance. The average best fitness over generations
is shown for the T-Maze domain (a). The main result is that adaptive ES-
HyperNEAT significantly outperforms ES-HyperNEAT because it allows the
robot to more easily adapt during its lifetime. The activation of two hidden
neurons from a T-Maze solution ANN is shown in (b). Only on trials with
the high reward to the right does one of the two neurons show a positive
activation (black) while the robot passes through the maze and turns onto the
right choice arm. The other neuron only shows a positive activation (gray)
on trials with the reward to the left, indicating an episodic-like encoding of
events [10].

V. RESULTS

Whereas ES-HyperNEAT alone could only solve the T-
Maze task in one out of 30 runs (by storing state informa-
tion through recurrent connections), adaptive ES-HyperNEAT
found a solution in 19 out of 30 runs, in 426 generations
on average (σ = 257) when successful (figure 6a). This result
suggests that augmenting ES-HyperNEAT with the ability also
to encode plastic ANNs is important for tasks that require the
agent to adapt. Evolved solutions always collect the maximum-
possible reward without colliding and only require a minimum
amount of exploration (i.e. collecting a low reward) at the
beginning of their lifetime and when the reward changes
position. Unlike in Dürr et al. [9], the ANNs have no special
sensors to designate key locations and they also take raw
rangefinder input.

Figure 6b also shows that the neural dynamics start to
resemble particular dynamics found in nature. Similarly to
cells in the rat’s hippocampus [10], individual hidden neurons
in a typical ANN solution only fire when the robot is in a left
or right-side trial, indicating an episodic-like coding of events
(i.e. each trial is encoded separately).

Figure 7 shows an example ANN solution and its underlying
CPPN. The ANN has 149 connections and 32 hidden nodes.
With seven parameters per connection, the network has a total
of 1,043 parameters. In contrast, the CPPN that encodes this
network has only 54 connections and 6 hidden nodes; thus it
is 19 times smaller than the network it encodes. In this way,
HyperNEAT is able to explore a significantly smaller search
space (i.e. CPPNs) while still creating complex structures
(i.e. substrates). The ANN includes both neuromodulatory
and plastic connections, showing that the full heterogeneous
plasticity of an adaptive network can be encoded by a single
compact CPPN. Different regions of the substrate show vary-
ing levels of node density and the majority of the modulatory
connections originate from the right side of the substrate.
Similar neural structures can also be found in the brain, where
groups of neurons, called diffuse modulatory systems, project
to numerous other areas [1].

(a) ANN (1,043 parameters)

Bias
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X1 Y1
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(b) CPPN (54 parameters)
Fig. 7. Example solution ANN created by Adaptive ES-HyperNEAT
and its underlying CPPN. Positive connections are dark whereas negative
connections are light. Modulatory connections are dotted and line width
corresponds to connection strength. The algorithm discovered this ANN
solution (a) by extracting the information inherent in the simpler underlying
CPPN (b). CPPN activation functions are denoted by G for Gaussian, S for
sigmoid, Si for sine, and A for absolute value. The CPPN receives the length
of the queried connection L as an additional input.

VI. DISCUSSION AND FUTURE WORK

The main results signify progress in the field of neuroevo-
lution. Evolved ANNs are beginning to assume more natu-
ral properties such as topography, regularity, heterogeneous
plasticity, and neuromodulation. Furthermore, the results in
the continuous T-Maze demonstrate that these capabilities
combine effectively in a task that requires adaptation. Perhaps
the most important point is that progress in this area has
been cumulative: rather than separate methods that depend
on entirely different architectures, the techniques combined in
this study are built one upon another. In effect, a new research
trajectory is coming into focus. For the field of AI, the idea
that we are beginning to be able to reproduce some of the
phenomena produced through natural evolution at a high level
of abstraction is important because the evolution of brains
ultimately produced the seat of intelligence in nature.

For example, adaptive ES-HyperNEAT can potentially later
be applied to a neural-inspired navigation domain that requires
map-based reasoning. An interesting question in such a domain
is whether an architecture reminiscent of place cells, which
are currently the object of intense study in neuroscience [19],
might evolve. If they did, or if an alternative structure emerged,
it would provide insight into possible neural organizations for
intelligent thought.

VII. CONCLUSION

This paper tied several strands of research in neuroevolution
into a unified approach. For the first time, the geometry,
density, and plasticity of ANNs was evolved based on a
function of their neural geometry. Results in a maze-learning
domain demonstrated that the presented approach can com-
pactly encode and discover neural geometry and plasticity
that exhibit more natural features than traditional ANNs. The
conclusion is that it is becoming possible to produce more
natural neural structures through artificial evolution, which



increasingly opens up opportunities for discovery relevant to
the broader field of AI.
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