
Enhancing ES-HyperNEAT to Evolve More Complex
Regular Neural Networks

In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011). New York, NY: ACM

Nominated for Best Paper Award in Generative and Developmental Systems.

Sebastian Risi
Department of EECS

University of Central Florida
Orlando, FL 32816, USA

sebastian.risi@gmail.com

Kenneth O. Stanley
Department of EECS

University of Central Florida
Orlando, FL 32816, USA

kstanley@eecs.ucf.edu

ABSTRACT
The recently-introduced evolvable-substrate HyperNEAT al-
gorithm (ES-HyperNEAT) demonstrated that the placement
and density of hidden nodes in an artificial neural network
can be determined based on implicit information in an infinite-
resolution pattern of weights, thereby avoiding the need to
evolve explicit placement. However, ES-HyperNEAT is com-
putationally expensive because it must search the entire hy-
percube, and was shown only to match the performance of
the original HyperNEAT in a simple benchmark problem.
Iterated ES-HyperNEAT, introduced in this paper, helps to
reduce computational costs by focusing the search on a se-
quence of two-dimensional cross-sections of the hypercube
and therefore makes possible searching the hypercube at
a finer resolution. A series of experiments and an analy-
sis of the evolved networks show for the first time that it-
erated ES-HyperNEAT not only matches but outperforms
original HyperNEAT in more complex domains because ES-
HyperNEAT can evolve networks with limited connectivity,
elaborate on existing network structure, and compensate for
movement of information within the hypercube.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – connectionism
and neural nets

General Terms: Algorithms

Keywords: NEAT, HyperNEAT, Neuroevolution

1. INTRODUCTION
In the field of neuroevolution, i.e. the artificial evolution

of neural networks, interest has increased in recent years in
indirect network encodings, wherein the description of the
solution is compressed such that information can be reused.
Such compression allows the final solution to contain more
components than its description. Nevertheless, neuroevo-
lution has so far mainly produced networks with orders of
magnitude fewer neurons and significantly less organization
and regularity than natural brains [16, 19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Addressing this gap, when the Hypercube-based Neuro-
Evolution of Augmenting Topologies (HyperNEAT) method
was introduced [6, 17], it provided a new perspective on
evolving artificial neural networks (ANNs) by showing that
the pattern of weights across the connectivity of an ANN can
be generated as a function if its geometry (i.e. the position
of its nodes in space). This insight allowed large ANNs with
regularities in connectivity to evolve for high-dimensional
problems [2, 6, 7, 17]. Yet one limitation is that the posi-
tions of the nodes connected through this approach must be
decided a priori by the user.

In another step forward, evolvable-substrate HyperNEAT
(ES-HyperNEAT), recently introduced by Risi et al. [10],
showed that the placement and density of the hidden nodes
can in fact be determined solely based on implicit informa-
tion in an infinite-resolution pattern of weights generated
by HyperNEAT. The novel insight was that a representa-
tion that encodes the pattern of connectivity across a net-
work (such as in HyperNEAT) automatically contains im-
plicit clues on where the nodes should be placed to best
capture the information stored in the connectivity pattern.
However, ES-HyperNEAT is computationally expensive be-
cause it must search the entire hypercube, and was shown
only to match the performance of the original HyperNEAT
in a single benchmark [10].

Iterated ES-HyperNEAT, introduced here, remedies this
cost by iteratively discovering the placement of the hidden
neurons starting from the inputs and outputs of the ANN,
which makes possible searching the hypercube at a finer res-
olution. Therefore, more ambitious experiments can be at-
tempted, like the dual task and maze navigation domains
presented in this paper. The results confirm for the first time
the advantages of deriving node placement from connectivity
and show that not only does iterated ES-HyperNEAT match
regular Hyper-NEAT, but that it can in fact outperform it.

Analysis of the evolved ANNs shows that the better per-
formance is due to ES-HyperNEAT’s ability to evolve net-
works with limited connectivity, thereby reducing the amount
of crosstalk that each neuron experiences, and its ability to
elaborate on existing structure by increasing the number
of connections in the ANN during evolution. Thus the ap-
proach in this paper provides a significant new practical tool
for evolving large regular ANNs with less user involvement.

2. BACKGROUND
This section reviews NEAT and HyperNEAT, which are

foundational to the approach introduced in this paper.

2.1 Neuroevolution of Augmenting Topologies
The HyperNEAT method that enables learning from ge-

ometry in this paper is an extension of the original NEAT
algorithm that evolves ANNs through a direct encoding [14,
16]. It starts with a population of simple neural networks
and then complexifies them over generations by adding new
nodes and connections through mutation. By evolving net-
works in this way, the topology of the network does not need
to be known a priori; NEAT searches through increasingly
complex networks to find a suitable level of complexity.

The important feature of NEAT for the purpose of this pa-
per is that it evolves both the topology and weights of a net-
work. Because it starts simply and gradually adds complex-
ity, it tends to find a solution network close to the minimal
necessary size. The next section reviews the HyperNEAT
extension to NEAT that is itself extended in this paper.

2.2 HyperNEAT
In direct encodings like NEAT, each part of the solution’s

representation maps to a single piece of structure in the final
solution [5]. The significant disadvantage of this approach
is that even when different parts of the solution are similar,
they must be encoded and therefore discovered separately.
Thus this paper employs an indirect encoding instead, which
means that the description of the solution is compressed
such that information can be reused. Indirect encodings are
powerful because they allow solutions to be represented as a
pattern of parameters, rather than requiring each parameter
to be represented individually [1, 7, 8, 13, 15]. HyperNEAT,
reviewed in this section, is an indirect encoding extension of
NEAT that is proven in a number of challenging domains
that require discovering regularities [2, 6, 7, 17]. For a full
description of HyperNEAT see Stanley et al. [17] and Gauci
and Stanley [7].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [13]) instead of ANNs. CPPNs, which are also
networks, are designed to encode compositions of functions,
wherein each function in the composition loosely corresponds
to a useful regularity. For example, a Gaussian function in-
duces symmetry. Each such component function also creates
a novel geometric coordinate frame within which other func-
tions can reside. For example, any function of the output of
a Gaussian alone will output a symmetric pattern because
the Gaussian is symmetric.

The appeal of this encoding is that it allows spatial pat-
terns to be represented as networks of simple functions (i.e.
CPPNs), which means that NEAT can evolve CPPNs just
like ANNs. CPPNs are similar to ANNs, but they rely on
more than one activation function (each representing a com-
mon regularity) and are an abstraction of biological devel-
opment rather than of brains.

The indirect CPPN encoding can compactly encode pat-
terns with regularities such as symmetry, repetition, and
repetition with variation [12, 13]. For example, simply by in-
cluding a Gaussian function, which is symmetric, the output
pattern can become symmetric. A periodic function such as
sine creates segmentation through repetition. Most impor-
tantly, repetition with variation (e.g. such as the fingers of
the human hand) is easily discovered by combing regular co-
ordinate frames (e.g. sine and Gaussian) with irregular ones
(e.g. the asymmetric x-axis). For example, a function that
takes as input the sum of a symmetric function and an asym-

-1 1

CPPN (evolved)
x1 y1 x2 y2

3) Output is weight
between (x

1
,y

1
) and (x

2
,y

2
)

1) Query each potential
connection on substrate

Substrate

1,0 1,1
...

-0.5,0 0,1
...

-1,-1 -0.5,0
...

-1,-1 - 1,0
...

2) Feed each coordinate pair into CPPN

X

1 Y

-1

Figure 1: Hypercube-based Geometric Connectiv-
ity Pattern Interpretation. A collection nodes, called
the substrate, is assigned coordinates that range from −1 to
1 in all dimensions. (1) Every potential connection in the
substrate is queried to determine its presence and weight;
the dark directed lines in the substrate depicted in the fig-
ure represent a sample of connections that are queried. (2)
Internally, the CPPN (which is evolved) is a graph that de-
termines which activation functions are connected. As in
an ANN, the connections are weighted such that the out-
put of a function is multiplied by the weight of its outgoing
connection. For each query, the CPPN takes as input the
positions of the two endpoints and (3) outputs the weight
of the connection between them. Thus, CPPNs can produce
regular patterns of connections in space.

metric function outputs a pattern with imperfect symmetry.
In this way, CPPNs produce regular patterns with subtle
variations. The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies [12, 13].

The main idea in HyperNEAT is that CPPNs can nat-
urally encode connectivity patterns [6, 7, 17]. That way,
NEAT can evolve CPPNs that represent large-scale ANNs
with their own symmetries and regularities.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes are
situated in n dimensions, where n is the number of dimen-
sions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output
of the CPPN for that input thereby represents the weight of
that connection (figure 1). By querying every possible con-
nection among a pre-chosen set of points in this manner, a
CPPN can produce an ANN, wherein each queried point is
a neuron position. Because the connections are produced by
a function of their endpoints, the final structure is produced
with knowledge of its geometry. In effect, the CPPN is paint-
ing a pattern on the inside of a four-dimensional hypercube
that is interpreted as the isomorphic connectivity pattern,
which explains the origin of the name hypercube-based NEAT
(HyperNEAT). Connectivity patterns produced by a CPPN
in this way are called substrates so that they can be ver-
bally distinguished from the CPPN itself, which has its own
internal topology.

Each queried point in the substrate is a node in an ANN.
In the original HyperNEAT approach, the experimenter de-
fines both the location and role (i.e. hidden, input, or out-
put) of each such node. As a rule of thumb, nodes are placed
on the substrate to reflect the geometry of the task [2, 6, 17].

That way, the connectivity of the substrate is a function of
the task structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot. Outputs for moving left or
right can also be placed in the same order, allowing Hyper-
NEAT to understand from the outset the correlation of sen-
sors to effectors. In this way, knowledge about the problem
geometry can be injected into the search and HyperNEAT
can exploit the regularities (e.g. adjacency, or symmetry) of
a problem that are invisible to traditional encodings. Yet
a problem with the original HyperNEAT is that the experi-
menter is left to decide how many hidden nodes there should
be and where to place them. That is, although the CPPN
determines how to connect nodes in a geometric space, it
does not specify where the nodes should be.

As a step towards allowing CPPNs also to specify the
positions of the nodes and their density, Risi et al. [10]
recently introduced an extension called evolvable-substrate
HyperNEAT (ES-HyperNEAT). This approach searches for
areas of high variance within the CPPN-generated pattern
and places nodes there. However, ES-HyperNEAT is com-
putationally expensive because it must search the entire hy-
percube, and was shown only to match the performance of
the original HyperNEAT in a single benchmark [10]. The
aim of this paper is to introduce a significantly more effi-
cient version of ES-HyperNEAT (explained next) and then
to show not only that it can match regular HyperNEAT, but
that it can outperform it, and why.

3. ITERATED ES-HYPERNEAT
This section introduces iterated ES-HyperNEAT, which is

an enhancement of the original ES-HyperNEAT. While the
location of the hidden nodes in the substrate in figure 1
had to be decided by the user in original HyperNEAT, ES-
HyperNEAT showed that the decision can in fact be au-
tomated. Yet the challenge faced by such an approach is
to decide the placement and density of nodes that can po-
tentially span between networks of several dozen nodes and
several billion.

3.1 Foundational Idea: ES-HyperNEAT
The insight introduced by Risi et al. [10] is that a repre-

sentation that encodes the pattern of network connectivity
automatically contains implicit information on where the
nodes should be placed. In HyperNEAT the pattern of con-
nectivity is described by the CPPN, where every point in
the four-dimensional space denotes a potential connection
between two two-dimensional points. Because the CPPN
takes x1, y1, x2, and y2 as input, it is a function of the infi-
nite continuum of possible coordinates for these points. In
other words, the CPPN encodes a potentially infinite num-
ber of connection weights within the hypercube of weights
from which some subset must be chosen to be incorporated
into the ANN substrate. If a connection is chosen to be
included, then by necessity the nodes that it connects must
also be included in the substrate. Thus by asking which con-
nections to include from the infinite set, we are also asking
which nodes to include.

Another important insight is that, for any given pattern,
there is some density above which increasing density fur-
ther offers no advantage. For example, if the hypercube is
a uniform gradient of maximal connection weights (i.e. all

V 4x4

2x2

1x1

1 2
3 42 3 4

c. Determine
variance for all
higher nodes

a.
Sp

lit
un

til
de

si
re

d
re

so
lu

tio
n

b. Query CPPN

1

(1) Division Phase

Va. Remove nodes
with low parent
variance

b. Create points
for resulting
leaves

(2) Pruning Phase

Figure 2: Quadtree information extraction example
for a two-dimensional CPPN. The algorithm works in
two main stages. (1) In the division phase the quadtree is
created by recursively splitting each square into four new
squares until the desired resolution is reached (1a). Sub-
sequently the CPPN value for each leaf (1b) and the vari-
ance of each higher node is determined (1c). Gray nodes in
the figure have a variance greater than zero. Then, in the
pruning phase (2), all quadtree nodes are removed whose
parents have a variance that is smaller than a given thresh-
old (2a). Points are created for all resulting quadtree leaves
(2b). That way, the density of points in different regions will
correspond to the amount of information in that region.

weights are the same constant), then in effect it encodes a
substrate that computes the same function at every node.
Thus adding more such nodes adds no new information. On
the other hand, if there is a stripe of differing weights run-
ning through the hypercube, but otherwise uniform maxi-
mal connections everywhere else, then that stripe contains
information that would perform a different function from its
redundantly-uniform neighbors.

Thus the answer to the question of which connections
should be included in ES-HyperNEAT is that connections
should be included at high enough resolution to capture the
detail (i.e. information) in the hypercube. Any more than
that would be redundant. Therefore, an algorithm is needed
that can choose many points to express in regions of high
variance and fewer points to express in regions of relative
homogeneity. Each such point is a connection weight in the
substrate whose respective nodes will be expressed as well.
The main principle is simple: Density follows information.
In this way, the placement of nodes in an ANN is ultimately
a signification of where information is stored within weights.

To perform the task of choosing points (i.e. weights) to
express, a data structure is needed that allows space to be
represented at variable levels of granularity. One such multi-
resolution technique is the quadtree [4], which traditionally
describes two-dimensional regions. It has been applied suc-
cessfully in fields ranging from pattern recognition to im-
age encoding [11, 18] and is based on recursively splitting
a two-dimensional region into four sub-regions. That way,
the decomposition of a region into four new regions can be
represented as a subtree whose parent is the original region
with one descendent for each decomposed region. The re-

cursive splitting of regions can be repeated until the desired
resolution is reached or no further subdivision is needed.

The quadtree point-choosing algorithm works in two main
phases (figure 2): In the division phase the quadtree is
created by recursively subdividing the initial square until a
desired initial resolution r is reached (e.g. 4 × 4). Once this
resolution is reached, for every quadtree leaf (corresponding
to square (x1, y1, x2, y2)), the CPPN is queried at position(
x1+x2

2
, y1+y2

2

)
and the resulting value w is stored. Given

those values (w1, w2, .., wk) for a subtree of quadtree node p
and mean w̄, the variance of node p in the quadtree can be
calculated as σ2

p = 1
k

∑k
1(w̄−wi)

2. This variance is a heuris-
tic indicator of the heterogeneity (i.e. presence of informa-
tion) of a region. If the variance of the parent of a quadtree
leaf is still higher than a given division threshold dt then
the division phase can be reapplied for the corresponding
square, allowing increasingly high densities. A maximum
resolution level rm can be set to place an upper bound on
the number of possible nodes.

The quadtree representation created in the division phase
serves as a heuristic variance indicator to decide on the
placement and density of points to express. Because more
points should be expressed the higher the variance is in a
region, a pruning phase is next executed (figure 2 bot-
tom), in which quadtree nodes are removed whose parents’
variance is smaller than the variance threshold σ2

t . Subse-
quently, points are created for all resulting leaf nodes. The
result is higher resolution in areas of more variation.

Figure 3a shows an example of the points chosen at this
stage of the algorithm, which resembles typical quadtree im-
age decompositions [18]. The variance is high at the borders
of the circles, which results in a high density of expressed
points at those locations. However, Risi et al. [10] pointed
out that the raw pattern output by the quadtree algorithm
can be improved further. If we think of the pattern out-
put by the CPPN as a kind of language for specifying the
locations of expressed connections, then it makes sense to
additionally to prune the points around borders so that it
is easy for the CPPN to encode points safely within one re-
gion or another. Thus a more parsimonious “language” for
describing density patterns would ignore the edges and fo-
cus on the inner region of bands, which are points that are
enclosed by at least two neighbors on opposite sides (e.g.
left and right) with different CPPN activation levels (fig-
ure 3b). Furthermore, narrower bands can be interpreted as
requests for more point density, giving the CPPN an explicit
mechanism for affecting density.

Thus, to facilitate banding, a second pruning stage is
added that removes points that are not in a band. Mem-
bership in a band for square (x1, y1, x2, y2) is determined by
b = max(min(dtop, dbottom),min(dleft, dright)), where dleft is
the difference in CPPN activation levels between the point
(x1+x2

2
, y1+y2

2
) and its left neighbor at the same resolution

level with location (2x1−|x1−x2|
2

, y1+y2
2

) (the other values,
dright, dbottom, and dtop, are calculated accordingly). If the
band level b is below a given threshold bt then the corre-
sponding point is not expressed. Figure 3b shows the re-
sulting point selections with band pruning.

This approach also naturally enables the CPPN to in-
crease the density of points chosen by creating more bands
or making them thinner. Thus no new information and no
new representational structure beyond the CPPN already

(a) Without band pruning

P

(b) With band pruning

Figure 3: Example point selection in two dimen-
sions. Chosen points are shown in (a) after the pruning
stage but without band pruning. Points that still remain
after band pruning (e.g. point P , whose neighbors at the
same resolution have different CPPN activation levels) are
shown in (b). The resulting point distribution reflects the
information inherent in the image.

employed in HyperNEAT is needed to encode node place-
ment and connectivity, as concluded in the next section.

3.2 Iterated Network Completion
The original ES-HyperNEAT approach [10] searches di-

rectly in the four-dimensional weight space, which makes
discovering regions of high variance expensive at high reso-
lutions. In fact, in four dimensions, instead of four branches
for each node in the quadtree, there are 16, making such a
search substantially more costly. The ES-HyperNEAT re-
finement presented in this section remedies this cost by it-
eratively discovering the placement of the hidden neurons
starting from the inputs and outputs of the ANN, which
turns out to make it possible to constrain the search back
to two dimensions. The iterated model focuses the search
within the hypercube on discovering functional networks in
which every hidden node contributes to the ANN output
and receives information (at least indirectly) from at least
one input neuron, while ignoring parts of the hypercube that
are disconnected. This refinement not only allows searches
at higher resolutions with less computational cost but also
eliminates the need for an extra integration phase of the in-
put and output neurons, which was also part of the original
ES-HyperNEAT approach.

The idea behind the algorithm is depicted in figure 4. In-
stead of searching directly in the four-dimensional hypercube
space, the algorithm analyzes a sequence of two-dimensional
cross-sections of the hypercube, one at a time, to discover
which connections to include in the ANN. For example, given
an input node at (0, −1) the quadtree point-choosing ap-
proach is applied only to the two-dimensional outgoing con-
nectivity patterns from that single node (figure 4a) described
by the function CPPN(0, −1, x, y) with x and y ranging
from -1 to 1. This process can be iteratively applied to the
discovered hidden nodes until a user-defined maximum iter-
ation level is reached or no more information is discovered in
the hypercube (figure 4b). Similarly, starting from the out-
put neurons the approach chooses connections based on each
output’s incoming connectivity patterns (figure 4c). Once
all hidden neurons are discovered, only those are kept that
have a path to an input and output neuron (figure 4d).

The iterated version of ES-HyperNEAT helps to reduce
computational costs by focusing the search on a sequence
of two-dimensional cross-sections of the hypercube instead

A
N

N
 C

on
st

ru
ct

io
n

a. Input to Hidden

b. Hidden to Hidden

c. Hidden to Output

d. Complete Paths

Figure 4: Iterated ES-HyperNEAT. The algorithm
starts by iteratively discovering the placement of the hidden
neurons from the inputs (a) and simultaneously from the
outputs (c) of the ANN. The two-dimensional motif in (a)
represents outgoing connectivity pattern from a single input
node whereas the motif in (c) represents incoming connec-
tivity pattern for a single output node. The target nodes
discovered are those that reside within bands in the hyper-
cube. In this refinement of ES-HyperNEAT regions of high
variance are sought only in the two-dimensional cross-section
of the hypercube containing the source or target node. The
algorithm can be iteratively applied to the discovered hidden
nodes (b). Only those nodes are kept that have a path to an
input and output neuron (d). That way, the search through
the hypercube is restricted to functional ANN topologies.

of the full four-dimensional hyperspace and therefore makes
possible searching the hypercube at a finer resolution. Also,
unnecessary computation is avoided. For example, if the
hypercube is entirely uniform, the iterated approach will
stop after the first expansion from inputs and outputs when
the lack of variance in the connected cross-sections is dis-
covered. In contrast, the original ES-HyperNEAT approach
would continue to drill down n times, to its minimal neces-
sary resolution, which costs 16n expansions. Thus in cases
such as uniform weights where such search is unnecessary,
the iterated approach saves significant computation. The
result is that more ambitious experiments can be attempted
than in Risi et al. [10], as described next.

4. EXPERIMENTS
This section discusses two experiments designed to demon-

strate new advantages of evolving the substrate.

4.1 Dual Task Domain
Organisms in nature have the ability to switch rapidly be-

tween different tasks depending on the demands of the envi-
ronment. For example, a rat reacts differently when placed
in a maze or in an open environment with a visible food
source. The dual task domain presented here (figure 5a) will
test the ability of ES-HyperNEAT and regular HyperNEAT
to evolve such task differentiation.

The dual task domain consists of two non-dependent sce-
narios that require the agent to exhibit different behaviors

G

(a) Dual Task

G

(b) Maze Navigation

Figure 5: Domains. In the dual task domain shown in
(a) the agent either has to exhibit wall-following or food-
gathering behavior depending on its current environment.
The goal of the agent in the maze navigation domain (b)
is to reach goal point G. Because the task is deceptive the
agent is rewarded for making incremental process towards
the goal by following the seven waypoints.

and to react either to its rangefinders or pie-slice sensors.
Because certain neurons ideally would be responsible for in-
formation that should be treated differently, this domain
will likely benefit from ANNs that are not fully-connected,
which the original HyperNEAT has struggled to produce in
the past [3]. The hypothesis is that ES-HyperNEAT should
allow the evolution of networks with limited connectivity
because connections are only included at a high enough res-
olution to capture the information in the hypercube, thereby
reducing the amount of crosstalk that each neuron experi-
ences. In this way, ES-HyperNEAT should not only be able
to match, but to outperform original HyperNEAT.

The first scenario is a simple navigation task in which the
agent has to navigate from a starting point to an end point
in a fixed amount of time using only its rangefinder sensors
to detect walls. The fitness in this scenario is calculated as
fnav = 1−d, where d is the distance of the robot to the goal
point at the end of the evaluation scaled into the range [0, 1].
The second scenario is a food gathering task in which a single
piece of food is placed within a square room with an agent
at the center. The agent attempts to gather as much food as
possible within a time limit using only its pie-slice sensors,
which act as a compass towards the food item. Food only
appears at one location at a time and is placed at another
random location once consumed by the agent. The fitness

for the food gathering task is defined by: ffood = n+(1−d)
4

,
where n corresponds to the number of collected food items
(maximum four) and d is the distance of the robot to the
next food item at the end of the evaluation.

The total fitness is calculated as the average performance
on both scenarios. The domain is considered solved when
the agent is able to navigate to the goal point in the first
scenario and successfully collects all four food items in the
second scenario, which corresponds to a fitness of 1.

4.2 Maze Navigation Domain
To evolve controllers for more complicated tasks will re-

quire a neuroevolution method that benefits from previously-
discovered partial solutions to find the final solution. How-
ever, because regular HyperNEAT tends to produce fully-
connected ANNs [3], it likely takes the entire set of ANN
connection weights to represent a partial task solution. On
the other hand, ES-HyperNEAT should be able to elaborate

1.0
Y

X-1.0 1.0

Left Forward Right
Range-
finders

Radar

Hidden Nodes

-1.2

Heading
-1.0

Figure 6: Substrate Configuration and Sensor Lay-
out. The controller substrate is shown at left. Whereas the
number of hidden nodes for the fixed-substrate approach
is determined in advance, ES-HyperNEAT decides on the
positions and density of hidden nodes on its own. The sen-
sors layout is shown on the right. The autonomous agent is
equipped with five distance and four pie-slice sensors.

on existing structure because it can increase the number of
connections in the substrate during evolution.

To test this second hypothesis on when ES-HyperNEAT
provides an advantage, a task is needed in which a solution
is difficult to evolve directly. One such tasks is the deceptive
maze navigation domain introduced in Lehman and Stanley
[9]. In this domain (figure 5b), a robot controlled by an ANN
must navigate in a maze from a starting point to an end
point in a fixed time. The robot has five rangefinders that
indicate the distance to the nearest wall within the maze,
and four pie-slice radar sensors that fire when the goal is
within the pie-slice.

If fitness is rewarded proportionally to how close the robot
ends from the goal, cul-de-sacs in the maze that lead close
to the goal but do not reach it are deceptive local optima.
Therefore, in this paper, the fitness function f rewards the
agent explicitly for discovering stepping stones towards the
goal:

f =

{
10, if the agent is able to reach the goal

n+ (1 − d), otherwise,

where n is the number of passed waypoints (which are not
visible to the agent) and d is the distance of the robot to
the next waypoint scaled into the range [0, 1] at the end
of the evaluation. The idea is that agents that can reach
intermediate waypoints should make good stepping stones
to those that reach further waypoints.

4.3 Experimental Setup
Evolvable and fixed-substrate HyperNEAT use the same

placement of input and output nodes on the substrate in
both experiments (figure 6), which are designed to geomet-
rically correlate senses and outputs (e.g. seeing something
on the left and turning left). Thus the CPPN can exploit
the geometry of the agent. The agent is equipped with five
rangefinder sensors that detect walls and four pie-slice sen-
sors that act as a compass towards the next food item in the
dual task domain or as a compass towards the goal in the
maze navigation domain. All sensor values are scaled into
the range [0,1], where lower activation indicates closer prox-
imity to a wall. At each discrete moment of time, the number
of units moved by the agent is 20F , where F is the forward
effector output. The agent also turns by (L−R)∗18◦, where
L is the left effector output and R is the right effector out-
put. A negative value is interpreted as a right turn.

To highlight the challenge of deciding the location and
number of available hidden nodes, ES-HyperNEAT is com-
pared to four fixed-substrate variants. FS10x1 is the de-
fault setup with a single row of ten hidden neurons in a
horizontal line at y = 0. Similar substrate layouts, like
the one shown in figure 1, have shown good performance in
previous research [10]. For the FS1x10 variant ten hidden
neurons are arranged vertically at x = 0. FS5x5 has a sub-
strate containing 25 hidden nodes arranged in a 5 × 5 grid.
FS8x8 tests the effects on performance of uniformly increas-
ing the number of hidden nodes from 25 to 64 neurons. To
generate such a controller for original HyperNEAT, a four-
dimensional CPPN with inputs x1, y1, x2, and y2 queries
the substrate shown in figure 6, to determine the connection
weights between the input/hidden, hidden/output, and hid-
den/hidden nodes. In contrast, ES-HyperNEAT decides the
placement and density of nodes on its own.

4.4 Experimental Parameters
Because HyperNEAT differs from original NEAT only in

its set of activation functions, it uses the same parame-
ters [14]. All experiments were run with the HyperSharp-
NEAT Simulator and Experimental Platform v1.0 (available
at http://eplex.cs.ucf.edu). The size of each population was
300 with 10% elitism. Sexual offspring (50%) did not un-
dergo mutation. Asexual offspring (50%) had 0.94 proba-
bility of link weight mutation, 0.03 chance of link addition,
and 0.02 chance of node addition. The NEAT coefficients for
determining species similarity were 1.0 for nodes and con-
nections and 0.1 for weights. The available CPPN activation
functions were sigmoid, Gaussian, absolute value, and sine,
all with equal probability of being added. Parameter set-
tings are based on standard SharpNEAT defaults and prior
reported settings for NEAT [14, 16]. They were found to
be robust to moderate variation through preliminary exper-
imentation. As in previous work [17] all CPPNs received
the length of the queried connection as an additional input.
Iterated ES-HyperNEAT had an initial and maximum res-
olution of 8 × 8. The band pruning threshold was set to
0.3. The variance and division threshold were set to 0.03.
Finally, the iteration level was 1.

5. RESULTS
All results are averaged over 20 runs. Figure 7a,b shows

the training performance over generations for the Hyper-
NEAT variants on both domains. ES-HyperNEAT solves
the dual task domain in all runs and took on average 33
generations (σ = 31), whereas the best performing fixed-
substrate variant, FS5x5, finds a solution in only 13 out of
20 runs. The difference in average final performance is sig-
nificant (p < 0.001 according to the Student’s t-test). These
results suggest that the dual task domain benefits from ES-
HyperNEAT’s ability to generate networks with limited con-
nectivity. Interestingly, the average CPPN complexity of
solutions discovered by FS5x5 is 9.7 hidden nodes (σ =
6.7), almost six times higher than CPPN solutions by ES-
HyperNEAT, which have 1.65 nodes on average (σ = 2.2).
This difference is significant (p < 0.05) and indicates that
dictating the location of the hidden nodes a priori makes it
harder for the CPPN to represent the correct pattern.

ES-HyperNEAT also performed significantly better than
the other variants in the maze navigation domain (p < 0.001)
(figure 7b) and finds a solution in 19 out of 20 runs in 238

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

Generation

Av
er

ag
e

P
er

fo
rm

an
ce

ES
FS 10x1
FS 1x10
FS 5x5
FS 8x8

(a) Dual Task Training

0 200 400 600 800 1000
2

4

6

8

10

Generation

A
ve

ra
ge

P
er

fo
rm

an
ce

ES
FS 10x1

FS 1x10
FS 5x5
FS 8x8

(b) Maze Navigation Training

0

0.2

0.4

0.6

0.8

1

10x1 1x10 5x5 8x8 ESFr
ac

tio
n

of
Ru

ns
Su

cc
es

sf
ul

HyperNEAT Variant
(c) Successful Maze Runs

Figure 7: Average Performance. The average best fitness over generations is shown for the dual task (a) and maze
navigation domain (b) for the different HyperNEAT variants, which are averaged over 20 runs. The fraction of 20 runs that
successfully solve the maze navigation domain is shown in (c) for each of the HyperNEAT variants after 1,000 generations.
The main result is that ES-HyperNEAT significantly outperforms all other approaches in both domains.

generations on average when successful (σ = 262). The dif-
fering performance of evolvable- and fixed-substrate Hyper-
NEAT can also be appreciated in how frequently they solve
the problem perfectly (figure 7c). ES-HyperNEAT signifi-
cantly outperforms all fixed-substrate variants and finds a
solution in 95% of the 20 runs. The conclusion is that evolv-
ing the substrate significantly increases performance in tasks
that require incrementally building on stepping stones.

To give a sense of the computational savings from the it-
erated version of ES-HyperNEAT compared to the original
version, every substrate from 20 iterated runs of the maze
navigation task was generated by both versions. Iterated
ES-HyperNEAT takes on average 0.09 seconds (σ = 0.03)
and original ES-HyperNEAT takes 0.19 seconds (σ = 0.06)
to generate a single substrate on the same CPU, a signifi-
cant (p < 0.001) speedup of over two times, confirming the
computational advantage of the iterated approach.

5.1 Example Solution Lineage
To gain a better understanding of how an indirect encod-

ing like ES-HyperNEAT elaborates a solution over genera-
tions, additional evolutionary runs in the maze navigation
domain were performed with sexual reproduction disabled
(i.e. every CPPN has only one ancestor). This change facil-
itates analyzing the lineage of a single champion network.
Disabling sexual reproduction did not result in a significant
performance difference.

An example of four milestone ANNs in the lineage of a
solution is shown in figure 8. All ANNs share common geo-
metric features: most prominent are the symmetric network
topology and denser regions of hidden neurons resembling
the shape of an “H” (except the second ANN). Between gen-
erations 24 and 237 the ANN evolves from not being able
to reach the first waypoint to solving the task. The solution
discovered at generation 237 shows a clear holistic resem-
blance to generation 106 despite some general differences.
Both networks have strong positive connections to the three
output neurons that originate at slightly different hidden
node locations. This slight shift is due to a movement of in-
formation within the hypercube for which ES-HyperNEAT
can nevertheless compensate. The number of connections
gradually increases from 184 in generation 24 to 356 in gen-
eration 237, indicating the incremental elaboration on exist-
ing ANN structure. Interestingly, the final ANN solves the
task without feedback from its pie-slice sensors.

Figure 8 also shows that ES-HyperNEAT can encode large
ANNs from compact CPPN representations. The solution
ANN with 40 hidden neurons and 356 connections is encoded
by a much smaller CPPN with only 5 hidden neurons and
18 connections.

In contrast to direct encodings like NEAT [14, 16], geno-
typic CPPN mutations can have a more global effect on the
expressed ANN patterns. For example, changes in only four
CPPN weights are responsible for the change in topology
from the second to the third ANN milestone. Other solu-
tions followed similar patterns but single neuron or connec-
tion additions to the substrate do also sometimes occur.

6. DISCUSSION
Previous work showed that ES-HyperNEAT and the orig-

inal HyperNEAT exhibit similar performance in a simple
navigation domain [10]. However, in the more complicated
navigation domain presented here, the best fixed-substrate
HyperNEAT method FS10x1 succeeds in only 45% of runs.
How can this poor performance be explained?

Because of the increased complexity of the domain, it re-
quires incrementally building on previously discovered step-
ping stones. While direct encodings like NEAT [14, 16] can
complexify ANNs over generations by adding new nodes and
connections through mutation, the indirect HyperNEAT en-
coding tends to start already with fully-connected ANNs
[3], which take the entire set of ANN connection weights
to represent a partial task solution. On the other hand, ES-
HyperNEAT is able to elaborate on existing structure in the
substrate during evolution (figure 8). This results is impor-
tant because the more complicated the task, the more likely
it will require a neuroevolution method that benefits from
previously discovered stepping stones.

These results also explain why uniformly increasing the
number of hidden nodes in the substrate does not neces-
sarily increase HyperNEAT’s performance. In fact, FS8x8
performs significantly worse than FS5x5, which is likely due
to the increased crosstalk that each neuron experiences.

The convention in HyperNEAT of the last several years
was that the user would simply decide a priori where the
hidden nodes belong. Yet, as the results presented here
show, dictating that hidden nodes must exist at specific po-
sitions creates an unintentional constraint that any pattern
of weights encoded by the CPPN must intersect those hid-
den node positions precisely with the correct weights. While

(a) Gen 24. ANN: 30 n, 184 c,
CPPN: 2 n, 9 c, f=0.85)

(b) Gen 30 (ANN: 52 n, 280 c,
CPPN: 3 n, 10 c, f=0.93)

(c) Gen 106 (ANN: 42 n, 310
c, CPPN: 3 n, 10 c, f=5.96)

(d) Gen 237 (ANN: 40 n, 356
c, CPPN: 5 n, 18 c, f=10.00)

Figure 8: ANN Milestones From a Single Maze Solution Lineage. Four ANN milestones are shown together with
the number of hidden neurons n and connections c in the ANN and in the underlying CPPN. Fitness f is also shown. Inputs
(bottom) and outputs (top) are displayed in black. Hidden nodes are shown in white. Positive connections are dark whereas
negative connections are light. Line width corresponds to connection strength. The gradual increase of connections indicates
an increase of information in the hypercube, which in turn leads to an increase in performance.

ES-HyperNEAT can compensate for movement of informa-
tion within the hypercube by expressing the hidden nodes at
slightly different locations (e.g. figure 8c,d), representing the
correct pattern for the original HyperNEAT is more difficult,
resulting in more complex CPPNs. The significantly reduced
performance of the vertical node arrangement FS1x10 in the
maze navigation domain (figure 7a) confirms this hypothe-
sis and shows that the more complex the domain the more
restrictive it is to have nodes at fixed locations.

Finally, while on simple tasks it may sometimes incorpo-
rate more structure than necessary, such a capability may
prove essential in more complex domains.

7. CONCLUSIONS
This paper presented a revision to ES-HyperNEAT that

iteratively discovers the placement and density of the hid-
den nodes starting from the inputs and simultaneously from
the outputs of the ANN based on implicit information in
an infinite-resolution pattern of weights. The new approach
significantly outperforms the original HyperNEAT with in-
creased domain complexity because it can evolve ANNs with
limited connectivity, elaborate on existing ANN structure,
and compensate for movement of information within the hy-
percube. The main conclusion is that domains that require
traversing many stepping stones that were too complex for
regular HyperNEAT may now come within reach.

Acknowledgments
This research was supported by DARPA under grant HR0011-
09-1-0045 (Computer Science Study Group Phases II).

References
[1] J. C. Bongard. Evolving modular genetic regulatory net-

works. In Proceedings of the 2002 Congress on Evolutionary
Computation, 2002.

[2] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock.
Evolving coordinated quadruped gaits with the HyperNEAT
generative encoding. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC-2009) Special Section
on Evolutionary Robotics, NJ, USA, 2009. IEEE Press.

[3] J. Clune, B. E. Beckmann, P. McKinley, and C. Ofria. In-
vestigating whether hyperneat produces modular neural net-
works. In GECCO ’10: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 635–642, New
York, NY, USA, 2010. ACM.

[4] R. Finkel and J. Bentley. Quad trees: A data structure for re-
trieval on composite keys. Acta informatica, 4(1):1–9, 1974.

[5] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution:
from architectures to learning. Evolutionary Intelligence, 1
(1):47–62, 2008.

[6] J. Gauci and K. O. Stanley. A case study on the critical role
of geometric regularity in machine learning. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence (AAAI-2008), Menlo Park, CA, 2008. AAAI Press.

[7] J. Gauci and K. O. Stanley. Autonomous evolution of to-
pographic regularities in artificial neural networks. Neural
Comput., 22:1860–1898, 2010.

[8] G. S. Hornby and J. B. Pollack. Creating high-level compo-
nents with a generative representation for body-brain evolu-
tion. Artificial Life, 8(3), 2002.

[9] J. Lehman and K. O. Stanley. Exploiting open-endedness to
solve problems through the search for novelty. In S. Bullock,
J. Noble, R. Watson, and M. Bedau, editors, Proceedings
of the Eleventh International Conference on Artificial Life
(Alife XI), Cambridge, MA, 2008. MIT Press.

[10] S. Risi, J. Lehman, and K. O. Stanley. Evolving the place-
ment and density of neurons in the hyperneat substrate. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2010), pages 563–570, 2010.

[11] A. Rosenfeld. Quadtrees and pyramids for pattern recogni-
tion and image processing. In Proc. of the 5th Int. Conf. on
Pattern Recognition, pages 802–809. IEEE Press, 1980.

[12] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez,
A. Campbell, and K. O. Stanley. Picbreeder: Evolving pic-
tures collaboratively online. In CHI ’08: Proc. of the twenty-
sixth annual SIGCHI conf. on Human factors in computing
systems, pages 1759–1768, NY, USA, 2008. ACM.

[13] K. O. Stanley. Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and
Evolvable Machines Special Issue on Developmental Sys-
tems, 8(2):131–162, 2007.

[14] K. O. Stanley and R. Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary Com-
putation, 10:99–127, 2002.

[15] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130, 2003.

[16] K. O. Stanley and R. Miikkulainen. Competitive coevolution
through evolutionary complexification. Journal of Artificial
Intelligence Research, 21:63–100, 2004.

[17] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based indirect encoding for evolving large-scale
neural networks. Artificial Life, 15(2):185–212, 2009.

[18] P. Strobach. Quadtree-structured recursive plane decompo-
sition coding of images. IEEE Transactions on Signal Pro-
cessing, 39:1380–1397, 1991.

[19] X. Yao. Evolving artificial neural networks. Proceedings of
the IEEE, 87(9), September 1999.

	Introduction
	Background
	Neuroevolution of Augmenting Topologies
	HyperNEAT

	Iterated ES-HyperNEAT
	Foundational Idea: ES-HyperNEAT
	Iterated Network Completion

	Experiments
	Dual Task Domain
	Maze Navigation Domain
	Experimental Setup
	Experimental Parameters

	Results
	Example Solution Lineage

	Discussion
	Conclusions

