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ABSTRACT

A major goal for researchers in neuroevolution is to evolve
artificial neural networks (ANNs) that can learn during their
lifetime. Such networks can adapt to changes in their envi-
ronment that evolution on its own cannot anticipate. How-
ever, a profound problem with evolving adaptive systems is
that if the impact of learning on the fitness of the agent is
only marginal, then evolution is likely to produce individuals
that do not exhibit the desired adaptive behavior. Instead,
because it is easier at first to improve fitness without evolv-
ing the ability to learn, they are likely to exploit domain-
dependent static (i.e. non-adaptive) heuristics. This paper
proposes a way to escape the deceptive trap of static policies
based on the novelty search algorithm, which opens up a new
avenue in the evolution of adaptive systems because it can
exploit the behavioral difference between learning and non-
learning individuals. The main idea in novelty search is to
abandon objective-based fitness and instead simply search
only for novel behavior, which avoids deception entirely and
has shown prior promising results in other domains. This
paper shows that novelty search significantly outperforms
fitness-based search in a tunably deceptive T-Maze naviga-
tion domain because it fosters the emergence of adaptive
behavior.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning — connectionism
and neural nets

General Terms
Algorithms
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1. INTRODUCTION

Evolution and learning are two forms of biological adapta-
tion that operate on different timescales. Whereas evolution
produces phylogenetic adaptation, learning gives the indi-
vidual the possibility to react much faster to environmental
changes by modifying its behavior during its lifetime. There
is much evidence that both processes are integral to the suc-
cess of biological evolution [14, 16] and that lifetime learning
can itself help to guide evolution to higher fitness [7], which
is called the Baldwin Effect. Studying the interaction be-
tween evolution and learning can help not only to more fully
understand biological processes but also to more efficiently
create artificial adaptive systems that can learn during their
lifetime. When the environment changes from what was en-
countered during evolution, the agent needs to adapt online
to maintain performance. This paper introduces a method
to make evolving such adaptive behavior significantly more
effective.

One way that agents controlled by artificial neural net-
works (ANNs) can adapt is by allowing them to change their
internal synaptic connection strengths during their lifetime.
This approach resembles the way organisms in nature, which
possess plastic nervous systems, cope with changing and un-
predictable environments [5, 15, 18]. In a recent demon-
stration of the power of this approach, Soltoggio et al. [1§]
evolved adaptive Hebbian networks with neuromodulation,
i.e. some neurons influencing how others change, that ac-
quired the ability to memorize the position of a reward from
previous trials in the T-Maze learning problem first intro-
duced by Blynel and Floreano [2].

Although such results suggest the promise of evolving
adaptive ANNs, experimental domains so far do not ap-
proach the complexity encountered by natural organisms.
One reason for this gap is that learning to learn is highly de-
ceptive with respect to objective performance on the fitness
function. Reaching a mediocre fitness through non-adaptive
behavior is relatively easy, but any further improvement re-
quires sophisticated adaptive behavior with only sparse feed-



back from an objective-based performance measure. Nolfi et
al. [17] also argue that there is no a priori reason to assume
that what the individual learns during its lifetime automat-
ically increases its chances to reproduce. Learning can even
reduce fitness because of its costs (e.g. time, energy, etc.).
It can take many generations for evolution to optimize the
learning process sufficiently to amortize this cost.

Accordingly, this paper argues that domains that require
adaptation are inherently deceptive and therefore evolution
is handicapped when the goal is to evolve learning agents. In
fact, deceptiveness in these domains is even more dramatic
when learning is only needed in a low percentage of trials.
In that case, evolution is trapped in local optima that do
not require learning at all because high fitness values are
achieved in the majority of trials.

Because of the problem of deception in adaptive domains,
prior experiments in evolving adaptive ANNs have needed to
be carefully designed to ensure that no non-adaptive heuris-
tics exist that could potentially lead evolution prematurely
astray. This awkward requirement has significantly limited
the scope of domains amenable to adaptive evolution and sti-
fled newcomers from entering the research area. To remedy
this situation and open up the range of problems amenable
to evolving adaptation, this paper argues that the novelty
search algorithm [12], which abandons the traditional notion
of objective-based fitness, circumvents the deception inher-
ent in such domains.

Instead of searching for a final objective behavior, nov-
elty search rewards finding any instance whose behavior is
significantly different from what has been discovered before.
Surprisingly, this radical form of search has been shown to
outperform traditional fitness-based search in deceptive do-
mains [12], making it potentially appropriate to addressing
the problem of deception in evolving adaptive ANNs.

To demonstrate the potential of this approach, this paper
compares novelty search with fitness-based evolution in the
dynamic, reward-based T-Maze scenario introduced by Bly-
nel and Floreano [2] and further studied in the context of
neuromodulated plasticity by Soltoggio et al. [18]. In this
scenario, the reward location is a variable factor in the envi-
ronment that the agent must learn to exploit. By varying the
number of times the reward location changes, the effect of
adaptation on the fitness function can be controlled to make
the domain more or less deceptive for objective-based fit-
ness. Counterintuitively, novelty search always outperforms
regular fitness-based search and is not affected by increased
levels of deception, suggesting a powerful new approach to
evolving adaptive behavior.

2. BACKGROUND

This section first reviews novelty search, which is the pro-
posed solution to deception in the evolution of learning, and
then explains the neuromodulation-based model of adaptive
ANNSs followed in this paper.

2.1 The Search for Novelty

The problem with the objective fitness function in evolu-
tionary computation is that it does not necessarily reward
the intermediate stepping stones that lead to the objective.
The more ambitious the objective, the harder it is to identify
a priori these stepping stones.

This paper hypothesizes that evolving adaptive ANNs is
especially susceptible to missing the essential intermediate
stepping stones for fitness-based search and therefore highly
deceptive. Reaching a mediocre fitness through non-adaptive
behavior is relatively easy, but any further improvement re-
quires sophisticated adaptive behavior with only sparse feed-
back from an objective-based performance measure. Such
deception is inherent in most dynamic, reward-based sce-
narios.

A potential solution to this problem is novelty search,
which is a recent method for avoiding deception based on
the radical idea of ignoring the objective [12]. The idea is to
identify novelty as a proxy for stepping stones. That is, in-
stead of searching for a final objective, the learning method
is rewarded for finding any behavior whose functionality is
significantly different from what has been discovered before.
Thus, instead of an objective function, search employs a
novelty metric. That way, no attempt is made to measure
overall progress. In effect, such a process gradually accumu-
lates novel behaviors.

Although it is counterintuitive, novelty search was actu-
ally more effective at finding the objective than a traditional
objective-based fitness in a deceptive maze navigation do-
main [12]. Thus novelty search might be a solution to the
longstanding problem with training for adaptation.

The next section describes the novelty search algorithm
[12] in more detail.

2.1.1 The Novelty Search Algorithm

Evolutionary algorithms are well-suited to novelty search
because the population that is central to such algorithms
naturally covers a wide range of expanding behaviors. In
fact, tracking novelty requires little change to any evolu-
tionary algorithm aside from replacing the fitness function
with a novelty metric.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, the novelty search rewards di-
verging from prior behaviors. Therefore, novelty needs to
be measured.

There are many potential ways to measure novelty by an-
alyzing and quantifying behaviors to characterize their dif-
ferences. Importantly, like the fitness function, this measure
must be fitted to the domain.

The novelty of a newly generated individual is computed
with respect to the observed behaviors (i.e. not the geno-
types) of an archive of past individuals whose behaviors
were highly novel when they originated. In addition, if the
evolutionary algorithm is steady state (i.e. one individual
is replaced at a time) then the current population can also
supplement the archive by representing the most recently
visited points. The aim is to characterize how far away the
new individual is from the rest of the population and its
predecessors in novelty space, i.e. the space of unique behav-
iors. A good metric should thus compute the sparseness at
any point in the novelty space. Areas with denser clusters
of visited points are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. In-
tuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense



region if the average distance is small. The sparseness p at
point x is given by

(o) = 3 3 disto i), (1)

where p; is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population
and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to
note that this novelty space cannot be explored purposefully,
that is, it is not known a priori how to enter areas of low
density just as it is not known a priori how to construct a
solution close to the objective. Thus, moving through the
space of novel behaviors requires exploration. In effect, be-
cause novelty is measured relative to other individuals in
evolution, it is driven by a coevolutionary dynamic.

If novelty is sufficiently high at the location of a new
individual, i.e. above some minimal threshold pmin, then
the individual is entered into the permanent archive that
characterizes the distribution of prior solutions in novelty
space, similarly to archive-based approaches in coevolution
[11]. The current generation plus the archive give a compre-
hensive sample of where the search has been and where it
currently is; that way, by attempting to maximize the nov-
elty metric, the gradient of search is simply towards what is
new, with no other explicit objective.

It is important to note that novelty search resembles prior
diversity maintenance techniques (i.e. speciation) popular in
evolutionary computation [4, 6, 8, 9, 13]. The most well
known are variants of fitness sharing [4, 6]. These also in
effect open up the search by reducing selection pressure.
However, in these methods, as in Hutter’s fitness uniform
selection [10], the search is still ultimately guided by the
fitness function. Diversity maintenance simply keeps the
population more diverse than it otherwise would be. (Also,
most diversity maintenance techniques measure genotypic
diversity as opposed to behavioral diversity [4, 13].) In con-
trast, novelty search takes the radical step of only rewarding
behavioral diversity with no concept of fitness or a final ob-
jective, inoculating it to traditional deception.

It is also important to note that novelty search is not a
random walk; rather, it explicitly maximizes novelty. Be-
cause novelty search includes an archive that accumulates
a record of where search has been, backtracking, which can
happen in a random walk, is effectively avoided in behavioral
spaces of any dimensionality.

The novelty search approach in general allows any behav-
ior characterization and any novelty metric. Although gen-
erally applicable, novelty search is best suited to domains
with deceptive fitness landscapes, intuitive behavioral char-
acterization, and domain constraints on possible expressible
behaviors.

Changing the way the behavior space is characterized and
the way characterizations are compared will lead to differ-
ent search dynamics, similar to how researchers now change
the fitness function to improve the search. The intent is
not to imply that setting up novelty search is easier than
objective-based search. Rather, once novelty search is set

up, the hope is that it can find solutions beyond what even a
sophisticated objective-based search can currently discover.
Thus, the effort is justified in its returns.

The evolutionary algorithm that evolves neuromodulated
plastic networks (explained in the next section) through nov-
elty search in this paper is NeuroEvolution of Augmenting
Topologies (NEAT) [22], which offers the ability to discover
minimal effective adaptive topologies. The ANN topologies
in NEAT start minimally and gradually add new structure,
allowing it to find the right level of complexity for the task.
NEAT has proven successful in diverse control and decision-
making domains [1, 21, 22]. Also, importantly for this pa-
per, novelty search is designed to work in combination with
NEAT [12].

In particular, once objective-based fitness is replaced with
novelty, the NEAT algorithm operates as normal, selecting
the highest scoring individuals to reproduce. Over genera-
tions, the population spreads out across the space of possible
behaviors, continually ascending to new levels of complexity
(i.e. by expanding the neural networks in NEAT) to create
novel behaviors as the simpler variants are exhausted. Thus,
through NEAT, novelty search in effect searches not just for
new behaviors, but for increasingly complex behaviors.

The next section details the model for adaptive ANNs in
this paper.

2.2 Artificial Evolution of
Neuromodulated Plasticity

Adaptive neural networks can learn by changing their in-
ternal synaptic connection strengths following a Hebbian
learning rule that modifies synaptic weights based on pre-
and postsynaptic neuron activity. The generalized Hebbian
plasticity rule [15] takes the following form:

Aw =1 [Azy + Bz + Cy + D], (2)

where 7 is the learning rate, x and y are the activation levels
of the presynaptic and postsynaptic neurons and A-D are
the correlation term, presynaptic term, postsynaptic term,
and constant, respectively.

Floreano and Urzelai [5] demonstrated the power of this
approach by evolving only specific forms of local Hebbian
learning rules for each synapse. The evolved adaptive con-
trollers were compared to fixed-weight networks in turning
on a light on one side of the environment and then navi-
gating to a gray square area on the other side. The local
learning rules in the evolved networks facilitated the policy
transition from one task to the other.

Adaptive ANNs have also been successfully evolved to
simulate robots in a dangerous foraging domain [21]. Al-
though this work also showed that recurrent fixed-weight
networks can be more effective and reliable than adaptive
Hebbian controllers in some domains, previous studies [15,
18, 19] suggest that both network types reach their limits
when more elaborate forms of learning are needed. For ex-
ample, classical conditioning seems to require mechanisms
that are not present in most current network models. To
expand to such domains, following Soltoggio et al. [18], the
study presented in this paper controls plasticity through
neuromodulation.

In a neuromodulated network, a special neuromodulatory
neuron can change the degree of potential plasticity between
two standard neurons based on their activation levels (fig-



Figure 1: Neuromodulated plasticity. The weight of
the connection between standard neurons n1 and ns is mod-
ified by a Hebbian rule. Modulatory neuron m determines
the magnitude of the weight change.

ure 1). In addition to its standard activation value a;, each
neuron % also computes its modulatory activation m;:

a; = Z Wsj * Oj, (3)

jeEStd

mi= Y wi-oj (4)

jEMod

where w;; is the connection strength between presynaptic
neuron j and postsynaptic neuron ¢ and o; is calculated as
0j(a;) = tanh(a;/2). The weight between neurons ¢ and j
then changes following the m;-modulated plasticity rule

Awj; = tanh(m;/2) -n- [Azy + Bx + Cy+ D].  (5)

The benefit of adding modulation is that it allows the ANN
to change the level of plasticity on specific neurons at specific
times. This property seems to play a critical role in regu-
lating learning behavior in animals [3] and neuromodulated
networks have a clear advantage in more complex dynamic,
reward-based scenarios: Soltoggio et al. [18] showed that
networks with neuromodulated plasticity significantly out-
perform fixed-weight and traditional adaptive ANNs with-
out neuromodulation in the double T-Maze domain, and
display nearly optimal learning performance.

Few modifications to the standard NEAT algorithm are
required to also encode neuromodulated plasticity. NEAT’s
genetic encoding is augmented with a new modulatory neu-
ron type and each time a node is added through structural
mutation, it is randomly assigned a standard or modulatory
role. The neuromodulatory dynamics follow equations 2-5.

Thus the main idea is to evolve neuromodulatory ANNs
with NEAT through novelty search, which we hypothesize
should help to escape the deception inherent in many adap-
tive domains. The next section describes such a domain,
which is the basis for testing this hypothesis.

3. THE DECEPTIVE T-MAZE DOMAIN

An appropriate domain for testing novelty search should
have a deceptive fitness landscape [12]. In such a domain,
an algorithm that follows the fitness gradient is susceptible
to local optima.

How does deception arise in a dynamic, reward-based sce-
nario in which the goal is to evolve adaptive agents? The
problem occurs when the impact of learning on the fitness of
an individual is only marginal. For example, an individual
that performs well in the 99 out of 100 trials wherein learning
is not required and only fails in the one trial that requires
learning will most likely score a high fitness value. Thus

Figure 2: The T-Maze. In this depiction, high reward is
located on the left and low reward is on the right side, but
these positions can change over a set of trials. The goal of the
agent is to navigate to the position of the high reward and
back home to its starting position. The challenge is that the

agent must remember the location of the high reward from
one trial to the next.

such a search space is highly deceptive to evolving learning
and the stepping stones that ultimately lead to an adaptive
agent will not be rewarded. The problem is that learning
domains often have the property that significant improve-
ment in fitness is possible by discovering hidden heuristics
that avoid lifetime adaptation entirely, creating a patholog-
ical deception against learning to learn.

The domain in this paper is based on experiments per-
formed by Soltoggio et al. [18] on the evolution of neuro-
modulated networks for the T-Maze learning problem. The
single T-Maze (figure 2) consists of two arms that either
contain a high or low reward. The agent begins at the bot-
tom of the maze and its goal is to navigate to the reward
position and return home. This procedure is repeated many
times during the agent’s lifetime. One such attempted trip
to a reward location and back is called a trial. A deploy-
ment consists of a set of trials. The goal of the agent is to
maximize the amount of reward collected over deployments,
which requires it to memorize the position of the high re-
ward in each deployment. When the position of the reward
sometimes changes, the agent should alter its strategy ac-
cordingly to explore the other arm of the maze in the next
trial. In Soltoggio’s original experiments [18], the reward
location changes at least once during each deployment of an
agent, which fosters the emergence of learning behavior.

However, the deceptiveness of this domain with respect to
the evolution of learning can be increased if the reward lo-
cation is not changed in all deployments in which the agent
is evaluated. If adaptation is thus only required in a small
subset of deployments, the advantage of an adaptive individ-
ual over a non-adaptive individual (i.e. always navigating to
the same side) in fitness is only marginal. The hypothesis is
that novelty search should outperform fitness-based search
with increased domain deception.

4. EXPERIMENT

To compare the performance of NEAT with fitness-based
search and NEAT with novelty search, each agent is evalu-
ated on ten deployments, each consisting of 20 trials. The
number of deployments in which the high reward is moved
after ten trials varies among one (called the 1/10 scenario),
five (called the 5/10 scenario), and ten (called the 10/10
scenario), effectively controlling the level of deception. The
high reward always begins on the left side at the start of
each deployment.

Note that all deployments are deterministic, that is, a
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Figure 3: ANN topology. The network has four inputs,
one bias, and one output neuron [18]. Turn is set to 1.0 at
a turning point location. M-F is set to 1.0 at the end of the
maze, and Home is set to 1.0 when the agent returns to the
home location. The Reward input returns the level of reward
collected at the end of the maze. The bias neuron emits a
constant 1.0 activation that can connect to other neurons in
the ANN. Network topology is evolved by NEAT.

deployment in which the reward does not switch sides will
always lead to the same outcome with the same ANN. Thus
the number of deployments in which the reward switches
is effectively a means to control the proportional influence
of adaptive versus non-adaptive deployments on fitness and
novelty. The question is whether the consequent deception
impacts novelty as it does fitness.

Figure 3 shows the inputs and outputs of the ANN. The
Turn input is set to 1.0 when a turning point is encountered.
M-FE is set to 1.0 at the end of the maze and Home becomes
1.0 when the agent successfully navigates back to its starting
position. The Reward input is set to the amount of reward
collected at the maze end. An agent crashes if it does not (1)
maintain a forward direction (i.e. activation of output neu-
ron between —0.3 and 0.3) in corridors, (2) turn either right
(0> 0.3) or left (0 < —0.3) when it encounters the junction,
or (3) make it back home after collecting the reward. If the
agent crashes then the current trial is terminated.

The fitness function for fitness-based NEAT (which is iden-
tical to Soltoggio et al. [18]) is calculated as follows: Collect-
ing the high reward has a value of 1.0 and the low reward
is worth 0.2. If the agent fails to return home by taking a
wrong turn after collecting a reward then a penalty of 0.3 is
subtracted from fitness. On the other hand, 0.4 is subtracted
if the agent does not maintain forward motion in corridors
or does not turn left or right at a junction. The total fitness
of an individual is determined by summing the fitness values
for each of the 20 trials over all ten deployments.

Novelty search on the other hand requires a novelty met-
ric to distinguish between different behaviors. The novelty
metric for this domain distinguishes between learning and
non-learning individuals and is explained in more detail in
the next section.

4.1 Measuring Novelty in the T-Maze

The aim of the novelty metric is to measure differences in
behavior. In effect, it determines the behavior-space through
which the search explores. Because the goal of this paper
is to evolve adaptive individuals, the novelty metric must
distinguish a learning agent from a non-learning agent. Thus
it is necessary to characterize behavior so that different such
behaviors can be compared.

Trial Outcome
Name Collected Reward Crashed

Pairwise Distances

[ NY none yes |
LY low yes } 1 } 2
HY high yes 3
LN low no } 1 } °
HN high no

Figure 4: The T-Maze novelty metric. FEach trial
is characterized by (1) the amount of collected reward (2)
whether the agent crashed. The pairwise distances (shown
at right) among the five possible trial outcomes, NY, LY,
HY, LN, and HN, depend on their behavioral similarities.

Reward Switch Fitness
Agent1 [LN HN LN HN! HN LN HN LN[48]

distn(a1,ag=1 + 0+ 1 + 0+ 1T+ 0+1+0=40

Agent2 |HN HN HN HN ! LN LN LN LN|48
Agent3 |[HN HN HN HN | LN HN HN HN|7.2

»
>

Time

Figure 5: Three sample behaviors. These learning
and non-learning individuals all exhibit distinguishable be-
haviors when compared over multiple trials. Agent three
achieves the desired adaptive behavior. The vertical line in-
dicates the point in time that the position of the high reward
changed. While agents one and two look the same to fitness,
novelty search notices their difference, as the distance cal-
culation (inset line between agents 1 and 2) shows.

The behavior of an agent in the T-Maze domain is charac-
terized by a series of trial outcomes (i.e. 200 trial outcomes
for ten deployments with 20 trials each). It is necessary to
include multiple trials because an agent that learns can only
be distinguished from one that does not by observing its
behavior before and after the reward switch.

Each trial outcome is characterized by two values: (1)
the amount of reward collected (high, low, none) and (2)
whether or not the agent crashed. These outcomes are as-
signed different distances to each other depending on how
similar they are (figure 4). In particular, an agent that col-
lects the high reward and returns home successfully with-
out crashing (HN) should be more similar to an agent that
collects the low reward and also returns home (LN) than
to one that crashes without reaching any reward location
(NY). The novelty distance metric distnoveiry is ultimately
computed by summing the distances between each trial out-
come of two individuals over all deployments.

Figure 5 depicts outcomes over several trials of three ex-
ample agents. The first agent always alternates between the
left and the right T-Maze arm, which leads to oscillating
low and high rewards. The second agent always navigates
to the left T-Maze arm. This strategy results in collecting
the high reward in the first four trials and then collecting
the low reward after the reward switch. The third agent
exhibits the desired learning behavior and is able to collect
the high reward in seven out of eight trials. (One trial of
explorative behavior is needed after the reward switch.)

Interestingly, because both agents one and two collect



the same amount of high and low reward, they achieve the
same fitness, making them indistinguishable to fitness-based
search. However, novelty search discriminates between them
because distnoveity(agenti,agents) = 4.0.

Importantly, fitness and novelty both use the same infor-
mation (i.e. the amount of reward collected and whether or
not the agent crashed) to explore the search space, though
in a completely different way. Thus the comparison is fair.

4.2 Generalization Performance

The goal of the comparison between fitness and novelty is
to determine which learns to adapt most efficiently in differ-
ent deployment scenarios, e.g. 1/10, 5/10, and 10/10. Thus
it is important to note that, because performance on differ-
ent scenarios will vary based on the number of trials in which
the reward location switches, for the purpose of analyzing
the results there is a need for an independent measure that
reveals the overall adaptive capabilities of each individual.

Therefore, to test the ability of the individuals to gener-
alize independently of the number of deployments in which
the position of the high reward changes, they are tested for
20 trials on each of two different initial settings: (1) high
reward starting left and (2) high reward starting right. In
both cases, the position of the high reward changes after 10
trials. An individual passes the generalization test if it can
collect the high reward and return back home in at least 18
out of 20 trials from both initial positions. Two low reward
trials in each setting are necessary to explore the T-Maze at
the beginning of each deployment and when the position of
the high reward switches.

The generalization measure does not necessarily correlate
to fitness. An individual that receives a high fitness in the
1/10 scenario can potentially perform poorly on the gener-
alization test because it does not exhibit adaptive behavior.
Nevertheless, generalization performance does follow a gen-
eral upward trend over evaluations and reveals the ultimate
quality of solutions.

4.3 Experimental Parameters

NEAT with fitness-based search and novelty search run
with the same parameters in the experiments in this paper.
The steady-state real-time NEAT (rtNEAT) package [20] is
extended to encode neuromodulatory neurons. The popula-
tion size is 500, with a 0.001 probability of adding a node
(uniformly randomly chosen to be standard or modulatory)
and 0.01 probability of adding a link. The weight mutation
power is 1.8. Runs last up to 125,000 evaluations. They are
stopped when the generalization test is solved. The number
of nearest neighbors for the novelty search algorithm is 15
(following Lehman and Stanley [12]). The novelty thresh-
old is 2.0. This threshold for adding behaviors to the archive
dynamically changes every 1,500 evaluations. If no new indi-
viduals are added during that time the threshold is lowered
by 5%. It is raised by 20% if the number of individuals
added is equal to or higher than four. The novelty scores of
the current population are reevaluated every 100 evaluations
to keep them up to date (the archive does not need to be
reevaluated).

The coefficients of the generalized Hebbian learning rule
used by all evolved neuromodulated networks are A = 0.0,
B =0.0,C = —0.38, D = 0.0 and n = —94.6, resulting in
the following m;-modulated plasticity rule:

Awj; = tanh(m;/2) - 35.95y. (6)
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Figure 6: Comparing generalization of novelty

search and fitness-based search. The change in perfor-
mance over evaluations on the generalization test is shown
for NEAT with novelty search and fitness-based search in
the 1/10 and 10/10 scenarios. All results are averaged over
20 runs. The main result is that novelty search learns a
general solution significantly faster.

These values worked well for a neuromodulated ANN in the
T-Maze learning problem described by Soltoggio et al. [18].
Therefore, to isolate the effect of evolving based on novelty
versus fitness, they are fixed at these values in the experi-
ment in this paper. However, modulatory neurons still affect
the learning rate at Hebbian synapses as usual. For a more
detailed description of the implications of different coeffi-
cient values for the generalized Hebbian plasticity rule see
Niv et al. [15].

5. RESULTS

Because the aim of this experiment is to determine how
quickly a general solution is found by both methods, an
agent that can solve the generalization test described in Sec-
tion 4.2 counts as a solution.

Figure 6 shows the average performance of the current
best-performing individuals on the generalization test across
evaluations for novelty search and fitness-based search, de-
pending on the number of deployments in which the reward
location changes. Novelty search performs consistently bet-
ter in all scenarios. Even in the 10/10 domain that resem-
bles the original experiment [18], it takes fitness significantly
longer to reach a solution than novelty search. The fitness-
based approach initially stalls, followed by gradual improve-
ment, whereas on average novelty search rises sharply from
early in the run.

Figure 7 shows the average number of evaluations over 20
runs it took fitness-based and novelty-based NEAT to solve
the generalization test in the 1/10, 5/10, and 10/10 sce-
narios. If no solution was found within the initial 125,000
evaluations, the current simulation was restarted. This pro-
cedure was repeated until a solution was found, counting all
evaluations over all restarts.

Both novelty and fitness-based NEAT were restarted three
times out of 20 runs in the 10/10 scenario. Fitness-based
search took on average 90,575 evaluations (o = 52,760)
while novelty search was almost twice as fast at 48,235 eval-
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Figure 7: Average evaluations to solution for novelty
search and fitness-based search. The average number
of evaluations over 20 runs that it took novelty search and
fitness-based search to solve the generalization test is shown.
Novelty search performs significantly better in all scenarios
and fitness-based search performs even worse when decep-
tion is high. Interestingly, novelty search performance does
not degrade at all with increasing deception.

uations on average (o = 55,638). This difference is sig-
nificant (p < 0.05). In the more deceptive 1/10 scenario,
fitness-based search had to be restarted six times and it took
124,495 evaluations on average (o = 81,789) to find a so-
lution. Novelty search only had to be restarted three times
and was 2.7 times faster (p < 0.001) at 45,631 evaluations
on average (o = 46, 687).

Fitness-based NEAT performs worse with increased do-
main deception and is 1.4 times slower in the 1/10 scenario
than in the 10/10 scenario. It took fitness on average 105,218
evaluations (o = 65,711) in the intermediate 5/10 scenario,
which is in-between its performance on the 1/10 and 10/10
scenarios, confirming that deception increases as the number
of trials requiring adaptation decreases. In contrast, novelty
search is not significantly affected by increased domain de-
ception: The performance differences among the 1/10, 5/10,
and 10/10 scenarios is insignificant for novelty search.

6. DISCUSSION AND FUTURE WORK

Interestingly, novelty search not only outperforms fitness-
based search in the highly deceptive 1/10 scenario but also
in the intermediate 5/10 scenario and even in the 10/10 sce-
nario in which the location of the reward changes every de-
ployment. Fitness-based search gradually deteriorates with
increased domain deception (figure 7) while novelty search
is not significantly affected because it explores the space of
possible behaviors in a completely different way.

There is no obvious deception in the 10/10 scenario that
resembles Soltoggio’s original experiment [18]; however the
long plateaus in fitness common to all scenarios (figure 6)
suggest a general problem for evolving learning behavior in
dynamic, reward-based scenarios.

Agents initially learn to always navigate to one arm of
the maze and back, resulting in collecting 20 high rewards
(i-e. ten high rewards for each of the two starting positions)
on the generalization test. Yet because the reward location

changes after ten trials for both initial settings, to be more
successful requires the agents to exhibit learning behavior.
The problem is that evolving the right neuromodulated dy-
namics to be able to achieve learning behavior is not an
easy task. There is little information available to incentivize
fitness-based search to pass this point, making it act more
like random search. In other words, the stepping stones that
lead to learning behavior are hidden from the objective ap-
proach behind long plateaus in the search space.

While in some domains the fitness gradient can be im-
proved, i.e. by giving the objective-based search clues in
which direction to search, such an approach might not be
possible in dynamic, reward-based scenarios. The problem
in such domains is that reaching a certain fitness level is rel-
atively easy, but any further improvement requires sophisti-
cated adaptive behavior to evolve from only sparse feedback
from an objective-based performance measure. That is, nov-
elty search returns more information about how behavior
changes throughout the search space.

In this way, novelty search removes the need to carefully
design a domain that fosters the emergence of learning be-
cause novelty search on its own is capable of doing exactly
that. The only prerequisite is that the novelty metric is
constructed such that learning and non-learning agents are
separable, which is not necessarily easy, but is worth the
effort if objective-based search would otherwise fail.

In fact, because NEAT itself employs the fitness sharing
diversity maintenance technique [6, 22], the significant dif-
ference in performance between NEAT with novelty search
and NEAT with fitness-based search also suggests that tra-
ditional diversity maintenance techniques do not evade de-
ception as effectively as novelty search.

Novelty search’s ability to build gradients that lead to
stepping stones is evident in figure 6. The increase in gener-
alization performance is steeper than for fitness-based NEAT,
indicating a more efficient climb to higher complexity behav-
iors. In effect, by abandoning the objective, the stepping
stones come into greater focus [12]. Although it means that
the search is wider, as Lehman and Stanley [12] write, “It is
better to search far and wide and eventually reach a summit
than to search narrowly and single-mindedly yet never come
close.”

Of course, there are likely domains for which the repre-
sentation is not suited to discovering the needed adaptive
behavior or in which the space of behaviors is too vast for
novelty search to reliably discover the right one. In some
cases, novelty search might search to within the vicinity of
the answer but it may not sufficiently fine-tune the results.
On the other hand, because higher fitness may often be as-
sociated with novel behavior, it is likely that novelty search
will sometimes implicitly fine-tune fitness.

Characterizing when and for what reason novelty search
fails is an important future research direction. Yet its per-
formance in this paper and in past research [12] has proven
surprisingly robust. While it is not always going to work
well, this paper suggests that it is a viable new tool in the
toolbox of evolutionary computation to counteract the de-
ception inherent in evolving adaptive behavior.

Thus the results in this paper are important because re-
search on evolving adaptive agents has been hampered large-
ly as a result of the deceptiveness of adaptive tasks. Yet the
promise of evolving adaptive ANNs is among the most in-
triguing in artificial intelligence. After all, our own brains



are the result of such an evolutionary process. Therefore, a
method to make such domains more amenable to evolution
has the potential to further unleash a promising research
direction that is only just beginning.

To explore this opportunity, a promising future direction
is to apply novelty search to other adaptive problems with-
out the need to worry about mitigating their potential for
deception.

7. CONCLUSIONS

This paper showed how novelty search, which abandons
the objective to search only for novel behaviors, can facilitate
the evolution of adaptive behavior. Results on a T-Maze
domain demonstrated that novelty search can significantly
outperform objective-based search and fosters the emergence
of adaptive individuals. It also performed consistently under
varying levels of domain deception. The main conclusion
is that it may now be more realistic to learn interesting
adaptive behaviors that have been heretofore seemingly too
difficult. Furthermore, the results presented in this paper
add to the growing body of evidence [12] that novelty search
can overcome the deception inherent in a diversity of tasks.
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