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ABSTRACT
In contrast to the conventional role of evolution in evolution-
ary computation (EC) as an optimization algorithm, a new
class of evolutionary algorithms has emerged in recent years
that instead aim to accumulate as diverse a collection of dis-
coveries as possible, yet where each variant in the collection is
as fit as it can be. Often applied in both neuroevolution and
morphological evolution, these new quality diversity (QD)
algorithms are particularly well-suited to evolution’s inherent
strengths, thereby offering a promising niche for EC within
the broader field of machine learning. However, because QD
algorithms are so new, until now no comprehensive study
has yet attempted to systematically elucidate their relative
strengths and weaknesses under different conditions. Tak-
ing a first step in this direction, this paper introduces a
new benchmark domain designed specifically to compare and
contrast QD algorithms. It then shows how the degree of
alignment between the measure of quality and the behavior
characterization (which is an essential component of all QD
algorithms to date) impacts the ultimate performance of
different such algorithms. The hope is that this initial study
will help to stimulate interest in QD and begin to unify the
disparate ideas in the area.

Categories and Subject Descriptors:
I.2.6 [Artificial Intelligence]: Learning;
I.2.6 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms: Algorithms

Keywords: novelty search; non-objective search; quality
diversity; neuroevolution

1. INTRODUCTION
In evolutionary computation (EC), evolution has conven-

tionally played the role of an optimization algorithm, wherein
the performance of the algorithm is judged by how quickly
and how close it comes to reaching an objective [6]. The
idea that evolution can act as an efficient objective opti-
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mizer is inspired by the feats of evolution in nature, where it
appears to have optimized a myriad of complex yet highly
functional forms. While some niche areas of EC deviate from
this objective-driven paradigm (such as open-ended evolu-
tion in artificial life [2, 21, 23]), it has nevertheless broadly
encompassed even newer research areas such as generative
and developmental systems (GDS [25]) and neuroevolution
[8].

One potential downside of this emphasis on objective op-
timization is that it has pitted EC as a direct competitor
to virtually the entire field of machine learning, which simi-
larly focuses largely on the problem of efficient optimization
[1, 16]. While one consequence of this similar emphasis is a
view among some in machine learning that EC is an inferior
optimization algorithm, even if that view is arguably unin-
formed, it still leaves evolution in the position of seemingly
“just another optimization algorithm.”

Yet evolution in nature is clearly not only about optimiza-
tion. It is notable not for solving one particular problem, but
many problems, and in uncountably diverse ways. In this
sense, evolution is not a mere alternative to (for example)
backpropagation [22] or support vector machines [3], which
are not designed to generate a vast diversity of high-quality
solutions. (As explained later, this kind of evolutionary di-
versity is also not the same conceptually as a multi-objective
Pareto front [7] either.) This incongruity between EC in
practice and its natural inspiration suggests a misalignment
between the conventional application of EC and its full po-
tential as a genuinely unique paradigm for search that can
separate it from much of machine learning.

Hints of this broader interpretation of evolution within
EC have begun to emerge with non-objective algorithms
like novelty search (NS) [12, 14], which searches for novelty
without an explicit objective. NS has in turn inspired a
succession of variant algorithms that elaborate on the idea
of a search through novelty alone [9, 13, 18, 19]. Yet even
while this new generation of evolutionary algorithms begins
to deviate from the traditional objective paradigm, such
algorithms are still predominantly evaluated based on their
ability to reach a particular objective [14, 19]. That is, while
they may not function internally through the compass of the
objective, externally they are often still treated merely as
alternatives to objective-driven optimization algorithms.

However, some researchers have begun to take non-objec-
tive search in a different direction. They have instead em-
braced the potential for evolution to collect quality diversity
(QD) [4, 5, 11, 17, 27], which means searching for as many
possible variations (with respect to a chosen characterization)



as possible, but where each such variation is as good as it can
possibly be (with respect to a separate measure of quality).
QD is particularly intriguing as an application of EC because
it is explicitly not what most algorithms in machine learning
are suited to achieving, yet nevertheless well-aligned with
the achievements of evolution in nature. In this way QD is
an opportunity for EC to shine as an essential option for the
kinds of problems that require accumulating a multitude of
diverse yet high-quality alternatives.

In this spirit, the aim of this paper is to begin to in-
troduce a framework for understanding and relating QD
algorithms. While the literature analyzing the nuances of al-
gorithms in EC and elsewhere for the purpose of optimization
is vast, almost no studies to date investigate the tradeoffs
among different approaches to QD. This paper begins such
an enterprise by introducing a domain designed explicitly
to analyze approaches to QD in the context of neuroevolu-
tion, and then compares several leading algorithms in that
new framework, including one new variant algorithm called
MAP-Elites+Novelty, elaborated from the original MAP-
Elites algorithm [5, 17]. The result is fresh insight into the
consequences for different approaches to QD of varying the
degree of alignment of the behavior characterization (which
is essential to all such algorithms so far) with the notion of
quality in the domain: some algorithms perform best when
such alignment is high, while others excel without it. Be-
cause QD is such a promising new direction for EC with
many possible future applications (as discussed in the next
section), this initial investigation of algorithms in this area
helps to lay the groundwork for an emerging new field.

2. BACKGROUND
Early hints of a science of QD within EC first appeared

in the 1990s with work on multimodal function optimization
(MMFO); a good review is provided by Mahfoud [15]. MMFO
aims to discover as many high-scoring (though not neces-
sarily global) optima within a fitness landscape as possible.
While MMFO spawned a number of important diversity-
preservation mechanisms (mainly focusing on genetic diver-
sity), a shift more than ten years later towards methods
focused on behavioral diversity [12, 14, 18, 19] revived inter-
est in the potential for diversity to transform the application
of EC. This new wave of algorithms, starting with novelty
search [12], differed from the older work on MMFO in partic-
ular in its focus on discovering the full spectrum of possible
behaviors within a particular domain, often represented by
evolved neural networks. While much work in this area cen-
tered on the possibility that a side effect of seeking behavioral
diversity is sometimes the discovery of very high performers,
another view that emerged is that the diversity of discoveries
itself is a desirable byproduct.

Unlike in multi-objective optimization [7], where the aim
is to collect a Pareto front of performance trade-offs, these
diversity-collecting algorithms focus instead on sampling the
full behavior space as comprehensively as possible without
concern for objective performance. In some cases a collec-
tion of diverse behaviors on its own offers direct practical
value; for example the recent divergent discriminative fea-
ture accumulation (DDFA) algorithm [28] accumulates a vast
collection of diverse feature detectors that are then aggre-
gated into a neural network for later training in classification
problems.

However, for many applications a collection of diverse

behaviors on its own is not enough because the ideal outcome
would be that each variant is not only unique but also as high-
performing as it can be. For example, merely discovering
that self-ambulating pogo sticks exist in the morphology
and behavior space of virtual creatures is not as good as
discovering the best possible self-ambulating pogo sticks, in
addition to the best possible behaviors of all the other viable
morphologies that exist [11]. Note that this notion of QD
is not the same as finding the highest-fitness subset of all
conceivable creatures because even the very best pogo stick
may have significantly lower fitness than e.g. quadrupeds
and bipeds. However, the point is that we still want to find
that pogo stick and see how well it can do. The diversity
components in QD also still differ from the separate objectives
in multi-objective optimization because individual diversity
components include no intrinsic ranking – for example, all
morphologies in the space of creatures are equally of interest
as long as they can walk at all.

To empower evolution to collect QD, a new breed of al-
gorithms have appeared in recent years that augment al-
gorithms like novelty search to push each unique variant
towards its best possible performance, opening up new appli-
cations. For example, Lehman and Stanley [11] introduced
the novelty search with local competition (NSLC) algorithm
to evolve a wide diversity of successful ambulating creatures
in a single run. Similarly, Szerlip and Stanley [27] collect a
diversity of high-performing behaviors in a Sodarace-inspired
two-dimensional creature domain. In an intriguing foreshad-
owing of future applications, Cully and Mouret [4] show that
QD once collected can be aggregated into a useful behavioral
repertoire, in this case a collection of diverse robot motion
skills.

Cully et al. [5] later introduced an alternative algorithm
for collecting QD called MAP-Elites, which showcased yet
another intriguing application of behavioral diversity: a
collection of ambulation strategies becomes a source of means
to alter ambulation in the event of damage. Yet another
application of QD is demonstrated by Nguyen et al. [20], who
generate with MAP-Elites a diverse collection of high-quality
spoof images that fool deep networks. This breadth of early
applications of such QD algorithms suggests an important
new research area with many applications yet to be realized.

The aim of this paper is to begin to understand the factors
that contribute to successfully collecting QD under different
conditions. A common component of all modern QD algo-
rithms is the behavior characterization (BC), which formal-
izes the behavior of a candidate individual in the population
and is used to determine its eligibility for selection [5, 11].
However, different approaches to QD treat the BC in differ-
ent ways, and the consequences of these choices are currently
poorly understood. For example, while novelty favors indi-
viduals with the most novel BC, MAP-Elites discretizes the
behavior space into unique bins from which (when occupied)
selection is equally probable. This paper focuses in particular
on the trade-offs created by such differing treatments and
begins to explore the possibility of hybridizations that may
combine the benefits of different approaches.

3. EXPERIMENT
To effectively tease out the differences between competing

quality diversity (QD) algorithms, a test domain is needed
with both (1) a concrete measure of quality, and (2) a diver-
sity of legitimate solutions. No standard such benchmark



domain yet exists in the area of QD, and thus one of the con-
tributions of this paper is to propose one suited specifically
to the concerns of QD.

The first experiments with novelty search [12, 14] intro-
duced a domain called HardMaze that has since become
popular within the literature because of its explicit visual
depiction of deception within a fitness landscape. The catch
in HardMaze is that for a robot to navigate to the goal point
of the maze it is necessary first to navigate away from the
goal multiple times along the path. Additionally, there is
an easily-reachable cul-de-sac that is close to the goal in
terms of Euclidean distance but is actually farther away
from the goal in terms of distance along the correct path.
Importantly, searching for behavioral novelty alone (i.e. nov-
elty search) in the HardMaze solves the maze much faster
than a conventional objective-based search wherein fitness
is the Euclidean distance to the goal point at the end of a
trial (which, unlike novelty search, is easily drawn into the
cul-de-sac). Thus, in HardMaze, Euclidean distance serves
as a concrete measure of quality. However, HardMaze only
contains one correct path through the maze (i.e. the diversity
of legitimate solutions is limited), diminishing its utility for
testing QD algorithms that seek many solutions.

Instead of HardMaze, in this paper, we augment the idea
of a maze navigation domain that uses Euclidean distance as
a concrete measure of quality to also encompass a diversity of
possible solutions to the maze. This new domain, QD-Maze
(figure 1), still contains several deceptive traps (albeit less
difficult than those in HardMaze: all algorithms tend to
find at least one solution) while also allowing many possible
“correct paths” to the goal, thus allowing an explicit diversity
of paths to the goal.

Aside from the change in map configuration, the setup
for QD-Maze is identical to HardMaze. A robot agent is
given a fixed time to move around the maze before the
trial ends and the agent’s quality is scored according to the
Euclidean distance between its final position and the goal
point (the score is maximum if the goal point is reached).
Reaching the goal point prematurely ends the trial. Agents
are equipped with a set of six rangefinders, five of which
are equally spaced across the front-facing 180 degrees and
the sixth facing the rear. Additionally, four pie slice sensors
(front, right, rear, and left -facing) detect the direction of the
goal by activating the pie slice facing the goal with maximal
value. In all experiments in this paper, agents are driven by
evolved neural networks.

3.1 Behavior Characterizations (BCs)
The nature of the “diversity of solutions” available for

discovery within the search depends heavily on how behaviors
are characterized. In the original HardMaze experiments [12],
agent behaviors are characterized according to their final
position at the end of the trial (EndpointBC). This BC is
notable for its strong alignment with the implicit objective
of a maze. In other words, the neighborhood of behaviors
around any particular trajectory endpoint generally share
a similar level of quality, thereby aligning behavior with a
notion of quality. Under the pressure of a strongly-aligned
BC, searching for novelty alone may often be enough to
find not only diversity, but also high-quality solutions to the
domain, without even the need to explicitly optimize each
behavioral neighborhood independently. To investigate the
effect on different approaches to QD of varying the degree
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Figure 1: Quality diversity maze (QD-Maze). Indi-
viduals start at the point S and the highest quality solutions
navigate to point G. While the maze is deceptive enough to
challenge objective-based algorithms, it also contains a vari-
ety of solutions and thus serves as a benchmark for combining
quality with diversity.

of the BC’s alignment with the objective, three alternative
BCs are also tested, each less aligned than the previous:
FullTrajectoryBC, HalfTrajectoryBC, and DirectionBC.

Under FullTrajectoryBC, the agent’s position is sampled
at three points throughout its trial: one-third, two-thirds,
and at the end of the trial, and all three (x, y) points are
concatenated together to form the six-dimensional BC vector.
This BC is less strongly aligned with the notion of quality
than EndpointBC because only the final sampled point has
a strong correlation to the final score within the domain.
Even less aligned again is HalfTrajectoryBC, wherein the
agent’s position is sampled at three points throughout only
the first half of its trial. The second half of the trial leaves
sufficient time for an agent to reach the goal from any loca-
tion within the maze, rendering HalfTrajectoryBC even less
aligned with the objective than FullTrajectoryBC. Highlight-
ing this point, in theory, every behavior under HalfTrajecto-
ryBC can potentially achieve a maximum quality score (i.e.
ultimately solving the maze).

The final and least-aligned BC, DirectionBC, samples
the direction the robot is facing on each tick (north, east,
south, or west) and divides the duration of the trial into
five equal-length time slices. The BC then consists of five
dimensions, each corresponding to the direction that the
agent was facing most often during each of the five time slices
(north = 0.125, east = 0.375, south = 0.625, west = 0.875).
This characterization is almost completely agnostic to the
notion of quality because the goal point of the maze can be
approached from any direction and the agent is free to wander
around the maze and face any direction at any time. Under
DirectionBC, every possible behavior in the behavior space
can potentially achieve a maximum score on the objective of
reaching the goal and there is little to no correlation between
quality and behavioral neighborhoods.

3.2 QD Algorithms
A variety of algorithms can collect QD in a given domain,

some designed explicitly to do so and some more as a side



effect. In this paper, we compare the performance of three
existing algorithms (novelty search, novelty search with lo-
cal competition, and MAP-Elites), the latter two designed
explicitly for QD, and a new variant of MAP-Elites (MAP-
Elites+Novelty). A conventional fitness-based search (which
is not expected to excel at QD) also serves as a baseline for
performance.

To normalize comparisons across the algorithms as much
as possible, the SharpNEAT [10] distribution of the NEAT
algorithm [24] serves as the underlying neuroevolution plat-
form for all of them. Therefore, the neural networks are able
to evolve increasing complexity, a central feature of NEAT.
However, except in the pure fitness-driven baseline runs, to
minimize potentially confounding factors, the conventional
genetic diversity component of NEAT (also called speciation)
is excluded. That way, the diversity facet of QD is exclusively
focused on behavior, which is the focus of the majority of
recent innovation in non-objective search algorithms and has
exhibited significantly more impact on performance in such
algorithms than genetic diversity [19]. Furthermore, because
of preliminary experimental evidence that generational evolu-
tion can lead to instability or “jumping around the behavior
space” in non-objective search populations, all algorithms are
run in steady state mode, which means that a subset of the
population (in this case 32 individuals evaluated in parallel)
is replaced at a time instead of a whole generation (which is
similar to the rtNEAT [26] variant of NEAT). In total five
algorithms are compared:

The classic novelty search (NS) [12, 14] algorithm only
searches for behavioral diversity with no notion of quality.
It rewards behaviors that are maximally distant from pre-
viously discovered behaviors. However, if the BC is aligned
with a notion of quality, then it is possible that NS without
any special augmentation can itself collect QD effectively, a
possibility thereby investigated in this experiment.

NS is augmented to explicitly seek QD in the novelty
search plus local competition (NSLC) [11, 27] algo-
rithm. In this variant, a multi-objective formulation imple-
mented through NSGA-II [7] casts classic novelty as one
objective and local competition (LC), which means a quality
rank relative only to those with a similar BC, as another. The
LC component encourages unique behaviors to improve in
quality within their local behavioral neighborhoods, thereby
aligning the search explicitly with the notion of QD. The
LC approach contrasts with the idea of combining novelty
with a global competition objective (NSGC), which has been
previously shown less effective than NSLC for discovering
a diversity of solutions within a search space [11] because
global competition explicitly prunes out diversity, and is
therefore not considered in this paper.

Unlike NS and NSLC, the recent MAP-Elites (ME)
algorithm [5, 17, 20] divides the behavior space of the BC
into discrete bins. Each bin then remembers the fittest (elite)
genome ever to occupy it, and only one genome occupies
any given bin at one time. Thus the elites within each
bin capture the notion of quality and the whole set of bins
capture the notion of diversity. In the classic formulation
of ME, selection is very simple: the chance of producing an
offspring is equal for each filled bin. Thus search effort tends
to be spread uniformly across the known behavior space
(rather than explicitly biased by novelty). One technical
limitation of ME is that the BC must be constrained to a
low number of dimensions because the total number of bins

grows exponentially with BC dimensionality; for this reason
and to keep the comparisons fair, none of the BCs in this
paper includes more than six dimensions.

While the simplicity of selection in ME is appealing, its
effect is that evolution is more likely to concentrate resources
in regions of the behavior space already filled (i.e. because
that is where most of the bins are occupied). This approach
proved effective in ME applications so far, but it is easy to
augment ME with pressure to concentrate effort on more
novel regions by adding novelty pressure. In this MAP-
Elites+Novelty (ME-Nov) variant tested for the first
time here, the probability of selecting an occupied bin for
reproduction is proportional to its novelty, creating a stronger
pressure towards diversity than in the original ME. However,
once all the bins are filled in ME-Nov, it collapses back to
an approximation of regular ME. The question is whether
the added initial pressure towards novelty might enhance
ME’s drive towards QD. Also, while ME has effectively filled
most bins in experiments published so far [5, 20], in future
domains in which some bins require very advanced solutions
and therefore are unlikely all to be filled, the additional
novelty pressure in ME-Nov could prove instrumental in
covering as much of the space as possible.

Finally, a regular fitness-based search (fitness) (im-
plemented as NEAT [24]) simply searches for objectively
superior performance (though with NEAT’s conventional ge-
netic speciation fitness-sharing mechanism to give it at least
some hope of maintaining diversity). This variant, which is
susceptible to the trap of deception [14] and has no behav-
ioral diversity mechanism, helps to highlight the need for
specialized approaches to the problem of QD.

3.3 MAP-Elites as a QD assessment mecha-
nism

To compare the ability of competing QD algorithms to
collect quality diversity, a quantitative measure of quality
diversity is needed. Interestingly, the MAP-Elites style of
discretized behavior space can be collected for all variant
algorithms, even those that are not MAP-Elites. As long as
there are not too many dimensions in the BC (as is true in
BCs in this paper), the best behavior found for every bin in
the behavior space (regardless of through which method it
was found) can simply be stored for later analysis.

For this purpose, for each BC, the behavior space is dis-
cretized into an appropriately small number of bins (i.e. small
enough that MAP-Elites itself can be run efficiently and with
a breeding pool of the same order of magnitude as the size of
the breeding population in the NS, NSLC, and fitness-based
algorithmic treatments): 900 bins for EndpointBC, 729 for
FullTrajectoryBC and HalfTrajectoryBC, and 1,024 for Di-
rectionBC. For each algorithmic treatment, all individuals
are checked for eligibility in this MAP-Elites-style grid as
they are evaluated. The performance (QD score) of each
algorithm at any given point during the run is then mea-
sured as the total fitness across all filled grid bins within the
QD collection grid (where higher fitness or quality means a
final robot position closer to the goal). Throughout a run,
algorithms therefore improve their QD score by either (1) dis-
covering higher quality solutions for existing bins (increasing
quality) or (2) discovering more bins (increasing diversity).
To achieve the highest QD scores (which is possible in this
domain), an algorithm must therefore excel with respect to
both quality and diversity.



3.4 Experimental setup
Each of the methods (NS, NSLC, ME, ME-Nov, fitness)

was combined with each of the behavior characterizations
(EndpointBC, FullTrajectoryBC, HalfTrajectoryBC, Direc-
tionBC) to comprehensively test the effects of both factors
on QD. Except for the DirectionBC variants, each combi-
nation was evaluated over 20 runs capped at 250,000 eval-
uations. Because the DirectionBC variants converge to sta-
ble scores significantly more slowly (collecting QD across
such a poorly-aligned BC is harder), they were capped at
750,000 evaluations. The population size was 500 for NS,
NSLC, and fitness; NS and NSLC also keep an associated
novelty archive of maximum size 2,500, after which the least
novel is removed when a new entry is added. For MAP-
Elites, as is standard the population at any given time was
the size of the number of occupied bins. To enable par-
allel evaluation, steady state evolution is implemented in
batches of 32 offspring at one time. Following the settings in
the original novelty search experiments [14], the probabili-
ties for mutating connections was 60%, for adding connec-
tions was 10%, and for adding neurons was 0.5%. Evolved
networks are constrained to be strictly feedforward. All
other settings follow standard SharpNEAT 1.0 defaults [10].
Source code for the entire experimental setup is available at
http://eplex.cs.ucf.edu/uncategorised/software#QD

Performance for each method and BC combination was
measured according to the total fitness across all filled grid
bins (Section 3.3). Results were averaged across twenty runs
for each of the 20 method-BC combinations (a total of 400
separate runs were performed). Additionally, pairwise com-
parisons were performed after every 160 evaluations to deter-
mine when exactly there are significant differences between
methods. Tukey’s test (with p < 0.05) was used to establish
significance instead of the Student’s t-test to account for the
statistical problem of multiple pairwise comparisons.

4. RESULTS
Figures 2 through 5 show for each BC the total quality

diversity (QD) discovered so far by each method over the
course of 20 averaged runs for each method. Higher QD is
better. Fitness runs, which are included only as a baseline,
are unsurprisingly significantly below all other runs. Among
the other four methods, a yellow bar at the top of each graph
highlights the period during which significant differences are
observed between the best and worst performing methods
among those four. Note that in terms of both QD and signif-
icance testing, numerical comparisons are only meaningful
between methods within the same BC because the total
possible QD score depends on the BC. The main result is
that the ranking of methods depends on the alignment of the
BC with the notion of quality, suggesting that choosing a
QD method for a particular problem can potentially become
a principled decision in the future, though some methods are
more generally robust across different BCs than others.

With the EndpointBC (figure 2), which is highly aligned
with the notion of quality (i.e. closeness to the endpoint),
the novelty search-based methods (NS and NSLC) signifi-
cantly outperform all other methods for most of the run,
with NS ending significantly (though only slightly) above
NSLC. ME-Nov also significantly outperforms original ME,
though is still significantly below NS and NSLC. (It is im-
portant to note that the differences between the methods
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Figure 2: EndpointBC (very high alignment). In this
performance comparison and others in this paper, the average
QD (taken over 20 runs) for each variant method is shown
across a run. The yellow strip at the top indicates the period
during which there is a significant difference at least between
the top and bottom method (exlcuding fitness, which is
always significantly worse than all other methods). The
method labels are color coded to match with their respective
curves and are shown from top to bottom in the their rank
order during the period of significance. Note that because
of the large QD scale, sometimes significant differences exist
even when not visually apparent. For EndpointBC, NS
performs best, followed by NSLC.

as they converge near the end of the run can be difficult to
perceive in the figures, but the QD scale is actually vast, so
significant difference actually do persist in some cases where
it is difficult to perceive visually.) The fact that novelty
alone (NS) does so well highlights the fact that when the BC
is aligned with fitness, additional sophisticated machinery
designed to simultaneously reward quality and diversity is
potentially unnecessary (perhaps depending on the difficulty
of the domain), and in such situations novelty alone becomes
a powerful force for QD.

However, as the alignment of the BC with quality re-
duces, the story changes. In the FullTrajectoryBC (figure 3),
which is still fairly aligned with the notion of quality (i.e. be-
cause trajectories that lead to the goal are high quality), NS,
NSLC, and ME-Nov are tied (i.e. not significantly different)
throughout most of the run. For this BC, only ME performs
significantly below the other methods. Thus NS retains its
utility as a top choice, but no longer holds an advantage
over NSLC or ME-Nov. ME is not well suited to BCs with
high alignment because it is agnostic with respect to novelty,
leading to a relative delay compared to novelty-driven ap-
proaches (including ME-Nov) in exploiting promising areas
of behavior space.

The HalfTrajectoryBC (figure 4) aligns with quality even
less, which leads to an interesting phenomenon seen only
with this BC: After a very brief period at the start of the
run, all methods effectively perform the same (although ME
is still a bit below, the difference is not significant). In effect,
HalfTrajectoryBC hits just the right level of misalignment
that the advantages and disadvantages of respective meth-
ods become a wash. Surprisingly, even NS alone remains
competitive, despite its lack of an explicit quality component.

Finally, DirectionBC (figure 5), which tracks facing di-
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Figure 3: FullTrajectoryBC (high alignment). For
this BC, which is slightly less aligned with quality than
EndpointBC, NS, NSLC, and ME-Nov are effectively tied,
with ME significantly behind.
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Figure 4: HalfTrajectoryBC (modest alignment). All
the methods except fitness are tied for the vast majority of
the run for this BC, which is even less aligned than FullTra-
jectoryBC.

rection only, aligns least with quality because it is largely
detached from trajectory. For example, agents can arbitrarily
spin around whenever they want without impacting their
trajectory. Note that such low alignment is not unprece-
dented in serious applications. For example, an algorithm
might search for diversity in terms of the height and mass of
virtual creatures, which is hardly predictive of their quality
as walkers [11]. The results with DirectionBC suggest that
such a complete loss of alignment can significantly upend the
utility of NS as a QD mechanism. In this scenario, NS drops
to the bottom of the ranking, performing significantly below
other approaches (each of which have quality-seeking compo-
nents). Furthermore, while NSLC exceeds NS significantly
(showing that the LC component of NSLC can indeed provide
an advantage in QD), both ME and ME-Nov significantly
outperform NSLC. In fact, ME alone effectively ties with
ME-Nov, suggesting that in cases of high misalignment, the
advantage of the novelty pressure is eclipsed by the advan-
tage of a strong elitist mechanism that pushes towards higher
quality.
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Figure 5: DirectionBC (low alignment). With an al-
most complete lack of alignment in this BC, ME and ME-Nov
tie for first place, and NS trails far behind.

4.1 Visualizing Behavior Spaces
Recall that for all variant search algorithms, the highest-

performing genomes are collected in a discretized behavior
space “grid” (inspired by the MAP-Elites grid). Collecting
elite behaviors in this way enables a convenient visualization
of each algorithm’s ability to collect QD within the domain.
The visualization technique, proposed by Cully et al. [5], uses
two dimensions to display an entire behavior space grid by
nesting two-dimensional grids within other two-dimensional
grids, each two-dimensional grid representing two dimensions
of the behavior space. As an example, figures 6 through 8
depict the final state of the QD collection grid at the end of
one typical run of Fitness, ME, and NS in the FullTrajecto-
ryBC. These visualizations reveal that: (1) Fitness (figure 6)
and MAP-Elites (figure 7) exhibit a diminished ability to fill
the grid for this BC (corresponding to a diminished pressure
towards diversity) while the highest performing algorithm
(on FullTrajectoryBC), NS (figure 8), is able to fill the grid
almost entirely after 250,000 evaluations. The visualizations
also expose (2) the relatively strong alignment of the behavior
space with the fitness measure through the smooth gradient
in the outer two dimensions from low fitness at the top of
the grid towards high fitness at the bottom-middle of the
grid.

This paper is also accompanied by a website where sample
interactive behavior space visualizations (including the ability
to browse through the discovered behaviors within each bin)
are available for all 20 method-BC combinations (including
the three shown here):
http://eplex.cs.ucf.edu/QD/GECCO-15/compare.html

5. DISCUSSION
The main insight to emerge from the experiment concerns

the two key forces operating in QD algorithms: the push for
novelty and the push for quality. If the BC, which supplies
the main push for novelty, is sufficiently aligned with a
notion of quality, then novelty-based approaches are most
effectively empowered. In contrast, if the BC is orthogonal
to a notion of quality, a strong push for quality (as in the
elitism of ME) becomes the more instrumental factor in QD
performance. The apparent ability under some BCs for NS
alone to succeed, even without any explicit push for quality,
and ME alone in other BCs to succeed without any explicit



Figure 6: Fitness in the FullTrajectoryBC. In this
example grid, the six-dimensional behavior space (FullTra-
jectoryBC) (discretized into three bins per dimension for a
total of 729 bins) is visually depicted as a series of nested
two-dimensional grids (each of which are 3× 3). The color of
each grid box corresponds to the quality of the solution found
by the search algorithm after 250,000 evaluations: yellow
corresponds to low quality, dark red to high quality, and
white to unfilled bins. Fitness finds very few of the possible
behaviors for this BC.

push for novelty, highlights just how profoundly this apparent
principle applies. Yet it also appears that augmenting these
most simple methods with a component to cover what they
lack, e.g. augmenting NS with LC and ME with novelty,
carries generally little risk. In fact, in some cases it improves
their results, especially when they are being applied in their
respectively less ideal alignment circumstances, hinting that
aiming for “best of both worlds” is not unrealistic and may
even be attainable for future QD algorithms yet unrealized.

However, the results in this initial study should be qualified
by the observation that the QD-Maze domain is relatively
easy; all methods except for fitness eventually find diverse
solutions. Because more ambitious applications of QD in the
future are likely significantly more challenging (imagine e.g.
much more challenging parallel mazes), a natural question is
whether the results here will extend to future experiments.
While of course further empirical research is necessary and
this study is only a first step, there is still good reason to
believe that the results reported here are at least somewhat
general: First, even in much harder domains, as the length
of runs approaches infinity, all methods are likely eventually
to find most QD. The experiment here is simply shorter
because the domain is less difficult. Yet the stratification of
different methods observed during the course of these short
runs can conceivably emerge similarly in more challenging
domains, though simply over longer timescales. Second, the
fact that the ranking of methods in QD-Mazes matches well
our expectations for each method (i.e. that those more reliant
on a separate measure of quality do better when the BC is
poorly aligned with fitness) further supports the credibility
of the results.

Of course, there are some other considerations outside QD

Figure 7: MAP-Elites in the FullTrajectoryBC. Com-
pared to Fitness (figure 6), ME discovers far more QD under
FullTrajectoryBC. Some bins remain unfilled (white), corre-
sponding to the lack of pressure towards diversity within the
ME algorithm.

Figure 8: Novelty Search in the FullTrajectoryBC.
Of the five compared algorithms, NS performs the best under
the FullTrajectoryBC (featuring relatively high alignment
between the BC and the objective) because it focuses exclu-
sively on pursuing diversity. This conclusion is supported
in the QD collection grid by almost all bins being filled (i.e.
non-white).

performance alone that may arise in specific domains. For
example, because it divides behavior space into discrete bins,
ME (and ME-Nov) becomes increasingly difficult to apply to
higher-dimensional BCs, an issue not present for NS or NSLC.
Yet beyond its use as a method, the ME grid also turns out
an excellent mechanism for collecting and measuring QD
results, even for methods that are not ME. We anticipate
that the results of future QD algorithms even unrelated to
ME will ultimately often be visualized and quantified by
placing them within in a classic ME grid.



6. CONCLUSION
The aim of this paper was to help to unify the emerg-

ing quality diversity (QD) research area by beginning to
introduce benchmarks and principles for analyzing and con-
trasting methods in the area. For this purpose a new domain
with many parallel solutions called the QD-Maze was intro-
duced, and several QD methods (including a new variant
called MAP-Elites+Novelty) were compared under different
behavior characterizations in QD-Maze. The results begin
to establish initial principles for understanding QD, namely
that the alignment of the behavior characterization with the
notion of quality significantly influences which QD methods
will be most effective in a particular setup. This insight
gives hope that an even broader understanding of QD can be
reached in the future, thereby helping to expand the reach
and impact of evolutionary computation.
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