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Abstract

Developing a comprehensive theory of open-ended evolution
(OEE) depends critically on understanding the mechanisms
underlying the major evolutionary transitions; such periods
of rapid innovation, such as the Cambrian explosion, have re-
sulted in exactly the kind of diversity and complexity deemed
the hallmarks of strong OEE. This paper introduces a new do-
main for studying major transitions in an evolutionary robotics
context. Inspired by the popular Minecraft video game, the
new Voxelbuild domain centers on agents that evolve the ca-
pacity to build arbitrarily complex block structures with mini-
mal objectives. Initial experiments demonstrate both the rich
expressive potential of the new domain and, intriguingly, the
occurrence of major evolutionary transitions in at least some
runs, thereby providing a unique opportunity to probe how and
why such transitions occur or fail to occur in different runs of
the same system.

Introduction

The emergence of complexity is arguably the most impres-
sive and elusive feature of natural evolution. What exactly
spurs the growth of functional organization from chaos and
simplicity? Szathmary and Maynard Smith (1995) identify
major transitions to help describe and explain the general in-
crease in complexity observed in biological evolution. These
transitions, including the development of eukaryotes from
prokaryotes and later the development of human societies
bound by language, deal primarily with changes in the en-
coding and transmission of information, leading eventually
to increased complexity at the phenotypic level (i.e. tightly-
bound aggregate entities composed of simpler parts). This
phenomenon of complexity-increasing evolutionary mecha-
nisms is central to the idea of open-ended evolution (OEE),
which roughly corresponds to indefinitely scalable evolution-
ary processes. In fact, the presence of a major evolutionary
transition delineates weak from strong OEE (de Vladar et al.,
2017). While artificial life worlds have demonstrated the ca-
pacity for at least some features of OEE, understanding major
evolutionary transitions, and the mechanisms and conditions
that enable them, remains an important open problem for
OEE (Bedau et al., 2000; Taylor et al., 2016).

Over 20 years have passed since Szathmary and May-
nard Smith’s publication on the topic, and in that time the
artificial life and OEE communities have undergone sub-
stantial change. Two important perspective shifts have been
gaining momentum in recent years: (1) there may be many
different kinds or degrees of open-ended evolution, and (2)
open-ended evolution (of some kinds) may be observed in
non-biological domains (such as some artificial life worlds
and even high-level real world systems such as technological
innovation) as well as in traditional biologically-inspired sys-
tems (Taylor et al., 2016). In their original formulation of the
major transitions, Szathmary and Maynard Smith focus on
heredity because it is the biological means for information
to be stored and transmitted. To study artificial life systems,
the concept of the major transitions can thus be beneficially
defined more broadly and may even take forms deviating
largely from that of biological evolution. For this reason, it
makes sense to broaden our interpretation of major transi-
tions to admit mechanisms leading to indefinitely increasing
complexity in non-biological domains as well. That is, it is
conceivable that in other, non-biological domains, the major
transitions that lead to an inevitable increase in complexity
might be defined in a different manner.

Accordingly, this paper follows the alternative model of
major transitions proposed by Koonin (2007) wherein major
transitions are characterized as “brief bursts of innovation”,
or a rapid diversification of novel and complex forms. This
formulation turns out useful for studying evolution in a cross-
disciplinary context (which is ideal for artificial life) because
it admits comparisons of complexity-increasing transitions
in systems that are both biologically inspired and not.

One obstacle to reproducing the phenomenon of major
transitions in biological systems is the sheer amount of time
required. The Cambrian explosion, for instance, occurred
over 3 billion years after the development of the first cell on
Earth (Marshall, 2006). Another difficulty arises from the
lack of controllability of complex biological systems. Ar-
tificial life systems, in contrast, allow us to perform both
tractable and controllable experiments and thereby test with
rigor scientific theories about major open problems in evolu-



tionary theory.

However, not all simulations have the capacity to express
the levels of functional organization considered to be the hall-
marks of complexity. This paper introduces a novel domain
called Voxelbuild that, when coupled with an effective evo-
lutionary framework (in this paper, quality diversity (Pugh
et al., 2015, 2016a,b)) does exhibit a major transition in at
least some runs. Interestingly, not all runs exhibit a major
transition, resulting in a promising environment for studying
both the success and failure of hypothesized prerequisites for
such transitions.

Background

Achieving open-ended evolution has challenged the artificial
life community since the field’s inception. Open-endedness
was initially viewed as a detectable property of a certain
class of evolutionary systems; a system can exhibit a capacity
for ongoing innovation on the order of biological evolution
(which has historically been the inspiration for artificial open-
ended systems) or something less productive. This perspec-
tive is reflected in the activity statistics test that aims to detect
signatures of open-endedness (Bedau et al., 1998; Channon,
2003). In recent years, however, a more pluralistic view of
OEE has also emerged, admitting a wider variety of kinds of
open-endedness (Taylor et al., 2016).

Whatever perspective one takes, it seems that no artifi-
cial evolutionary system to date has displayed the capacity
for open-endedness observed in biological and physical sys-
tems (de Vladar et al., 2017). Digital evolution systems such
as Tierra (Ray, 1992) and Avida (Ofria and Wilke, 2004),
in which code-based lifeforms compete for computational
resources on a minimal virtual computer, have proved fruit-
ful for the purposes of studying evolutionary dynamics in
a non-biological context. For example, Lenski et al. (2003)
demonstrate how digital organisms in Avida can learn to per-
form complex logic functions only when some of the simpler
functions that comprise them provide some evolutionary ad-
vantage. However, systems such as Tierra and Avida have
not yet produced definitive explosions of complexity that
might be expected of OEE. Embodied systems such as the
cell-based world Chimera (which in some configurations ex-
hibits phase transitions to primitive multicellularity) (Solé
and Valverde, 2013) and the block-creature worlds of Divi-
sion Blocks (Spector et al., 2007), Evosphere (Miconi and
Channon, 2005), and the seminal work of Karl Sims (Sims,
1994) offer great expressive potential through the individuals
and the environment they inhabit. Yet there too a definitive
open-ended result remains elusive.

It is also difficult to assess most systems’ potential for ma-
jor transitions simply because most published experiments
run for a relatively short amount of time (at least compared to
evolution on Earth). The next section introduces a novel ex-
perimental platform designed to support definitive transitions
that can be identified and tracked.

Voxelbuild

For the purpose of studying evolutionary transitions and long-
term/open-ended evolution in the context of evolutionary
robotics, this paper introduces a new experimental platform
called Voxelbuild, inspired by the Minecraft ! video game
that is well-known for facilitating seemingly boundless cre-
ativity. Voxelbuild, like Minecraft, serves as a sandbox in
which embodied agents can build structures by placing and
removing blocks in a discrete three-dimensional grid-based
world. However, the Voxelbuild world is greatly simplified
from that of Minecraft to facilitate faster evaluation and a
smaller genetic encoding. Additionally, the world imposes
the following physical constraints: (1) agents are subject to
gravity (i.e. they cannot fly), (2) agents cannot walk through
solid blocks, (3) agents may jump on top of blocks, but jump
height is limited to one block, (4) blocks can only be placed
adjacent to other blocks (however, there are no constraints on
block removal and blocks are not subject to gravity, so it is
possible to create “floating” structures by building upwards
and then removing some of the blocks underneath)?, and (5)
block placement is limited to a small radius around the agent
(in this paper, the radius is 5). Subject to these constraints,
building all but the simplest structures is a non-trivial task;
especially difficult is building upwards because the only way
to reach heights outside the block placement radius is to stand
on previously placed blocks (i.e. scaffolding).

In this paper the world size is bounded for computational
efficiency to 21 x 21 x 12 blocks. At the beginning of each
evaluation, the environment contains only a single layer of
grassy blocks. The agent is placed in the center of this envi-
ronment and allowed up to 10,000 ticks to perform combi-
nations of six discrete actions: (1) turn left 90 degrees, (2)
turn right 90 degrees, (3) move forward, (4) move backward,
(5) place a crate block, or (6) remove a grassy block or crate
block. Importantly, a trial is terminated early if the agent
requests an illegal move or enters a loop (e.g. moving back
and forth or spinning in a circle); in this way, actual trial
length varies widely according to how well each agent obeys
the physical constraints of the world.

Agent Configuration

The discrete nature of time and space in Voxelbuild facilitates
controlling agents through artificial means. In this paper,
agents are controlled by evolved neural networks. Agents
sense the world around them with an 11 x 11 x 11 array
of block sensors (1,331 sensors total), which extends as far
as the maximum distance for block placement and removal
(distance 5). Sensor values are determined according to the
type of block present at the corresponding location (1 — crate
or grassy block, O — boundary block, -1 — no block). The

!Copyright (c) 2011 Mojang

?Unlike in Minecraft, block placement and removal is not re-
stricted by line-of-sight, although this restriction can be added to
increase problem difficulty.



control network takes the block sensor values as input and
outputs six action selector values where the highest value
determines which action is taken by the agent. Ties between
action selector values are resolved in order of the following
priority: move forward, move backward, remove block, place
block, turn left, turn right. In the case of the remove block
and place block actions, the block location is decided by an
11 x 11 x 11 output array (ties are resolved deterministically
with preference for closer locations). The exact network
configuration including hidden layers is depicted in figure 1.

Action Selectors:
Movement

(4)

Hidden: Action
(3x3x3)

Action Selectors:
Place/Remove

(2)

Block Sensors
(11x11x11)

Hidden: Location
(3x3x3)

Block Location
(11x11x11)

Figure 1: Network configuration. All connected layers are
fully connected: there are 108,027 connections in total. Con-
nection weights are evolved with HyperNEAT. Neurons in
each neuron group are spread evenly across three dimensions
bounded between —1 and 1 on each axis.

Approach

The approaches in this section combine in Voxelbuild to allow
a diversity of block placement strategies to evolve.

HyperNEAT

Agent control networks in this paper are evolved by Hyper-
NEAT (Stanley et al., 2009; Gauci and Stanley, 2010), which
is itself an extension of the popular NEAT (Neuroevolution of
Augmenting Topologies) (Stanley and Miikkulainen, 2002)
method for evolving neural networks. NEAT networks begin
with minimal complexity and gradually increase in complex-
ity over time by adding neurons and connections through ran-
dom mutations. Unlike NEAT, HyperNEAT is an indirect en-
coding wherein connection weights in a substrate are decided
by a compositional pattern producing network (CPPN) (Stan-
ley, 2007) that is itself evolved by NEAT. Figure 2 depicts an
example of how HyperNEAT determines connection weights
in the substrate. Through its indirect encoding, HyperNEAT
is able to evolve large networks with hundreds of thousands
or even millions of connections, making it ideal for evolving
Voxelbuild controllers, which have over 100,000 connections.
HyperNEAT neurons are embedded in a three-dimensional
substrate at locations that correspond to the relative loca-
tions of each of their respective sensors and effectors on the
agent. In this way, HyperNEAT takes advantage of problem
geometry (e.g. the geometric relationship between block sen-
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Figure 2: HyperNEAT example. Neurons in the example
substrate (left) are assigned (x,y) coordinates. For each
connection in the substrate, the NEAT-evolved CPPN (right)
takes the coordinates of the source and target neuron as in-
puts and outputs the connection weight. While this example
substrate is two-dimensional, HyperNEAT can easily be ex-
tended to support three or more dimensions by adding two
additional coordinate inputs per extra dimension (e.g. sub-
strates in this paper are three-dimensional and thus have six
coordinate inputs). To express regularities such as symmetry
and repetion, neurons in the evolved CPPN can have acti-
vation functions other than the usual sigmoid (Sig) such as
Gaussian (G), linear (L), or sine (Sin).

sors) and evolved networks display biologically important
regularities such as symmetry and repetition.

In this paper, HyperNEAT networks (figure 1) are embed-
ded in a multi-spatial substrate (Pugh and Stanley, 2013),
which means that each functionally distinct neuron group
exists in a separate three-dimensional coordinate space and
connection weights between each connected pair of neuron
groups are determined by a separate CPPN output. Multi-
spatial substrates allow multiple sensor and effector modal-
ities to coexist in the same substrate without imposing geo-
metric relationships between them.

Novelty Search with Local Competition

While traditionally evolutionary algorithms are driven by
incremental progress on a heuristic fitness function, it is
well-known that, through a phenomena called deception, fol-
lowing the path of increasing fitness does not always lead
to the best possible performance (Goldberg, 1987). Even
when evolution is pursued more organically as a competition
among interacting individuals for scarce resources (a prac-
tice common in artificial life systems), a deceptive fitness
gradient may be imposed. An alternative evolutionary algo-
rithm called novelty search (NS) (Lehman and Stanley, 2008,
2011a) attempts to circumvent deceptive fitness landscapes
by ignoring the fitness function altogether, instead search-
ing for novelty in a space of possible behaviors (a behavior
is a vector of numbers that captures some aspects of how
an agent acted during its trial). Novelty search proceeds by



maintaining an archive of previously-encountered behaviors,
and new genomes are rewarded according to how different
their behavior is from those stored in the archive, with the
most novel genomes receiving the highest scores.

NS alone is powerful for exploring a space of possible
behaviors (e.g. finding many different kinds of structures in
Voxelbuild). However, because it ignores fitness altogether,
NS does not necessarily find the best possible structures at
each region of structure space.

A new class of evolutionary algorithms, called quality
diversity algorithms, attempt to find a wide diversity of highly
performing individuals, which requires a careful balance
between the drive for novelty and standard fitness pressure.
One such QD algorithm, called novelty search with local
competition (NSLC) (Lehman and Stanley, 2011b) achieves
this balance by allowing fitness competition only within local
niches, while simultaneously exploring as broadly as possible
across the space of possible behaviors. Specifically, NSLC is
a multiobjective formulation where one objective is novelty
and the other objective is performance relative to a local
behavioral neighborhood. In this way, NSLC discovers strong
candidates in all regions of the behavior space, even those
regions that are lower-performing than others.

Grid-free QD Collection

While NSLC encounters a diversity of high-performing in-
dividuals over the course of evolution, it is often infeasible
to simply return everything that is discovered (e.g. over a
long run that evaluates hundreds of thousands of individuals).
Instead, a set of results called the QD collection should be
returned to the user, where the QD collection represents the
best performers across the entire behavior space. However,
there are different ways to best choose which individuals to
include in this collection.

When the dimensionality of behavior vectors is low (under
10), it is possible to divide the entire behavior space into
discrete bins and simply remember the best performing indi-
vidual encountered in each bin (Pugh et al., 2015, 2016b) (this
idea is central to a QD algorithm called MAP-Elites (Mouret
and Clune, 2015; Cully et al., 2015)). However, for higher
dimensional behavior vectors (such as those featured in this
paper), this strategy is impractical or even impossible because
the number of bins grows exponentially with the dimension-
ality of the behavior vector.

Several strategies have been explored in the literature for
returning a QD collection without discretizing the behavior
space. The simplest such strategy is to return the population
or the novelty archive at the end of the run (Lehman and Stan-
ley, 2011b). However, the population or archive at any given
point in a run (including the last generation) is not necessarily
representative of everything that has been explored over the
entire run.

An alternate strategy is to pare down the dimensionality of
the behavior vectors post-hoc via principal component analy-

sis (PCA) (Szerlip and Stanley, 2013). However, PCA does
not always work well for high dimensional vectors (John-
stone and Lu, 2009); additionally, this strategy requires sav-
ing all individuals encountered during a run which may be
prohibitive because of memory or disk space limitations.

Cully and Mouret (2013) introduces a variant of NSLC’s
novelty archive wherein archive members are continually
replaced by better-performing individuals as they are encoun-
tered during search. One concern with this approach is that
polluting the archive with fitness pressure may leave NSLC
subject to deception and thus interfere with its ability to
explore the behavior space.

This paper modifies the original idea of the behavioral
repertoire so that the QD collection does not interfere with
evolution. This process, called grid-free QD collection, pro-
ceeds by maintaining a small QD collection on the side that
will serve as the set of results to return to the user. As in-
dividuals are encountered in evolution, they participate in
insertion tournaments to decide whether they enter the QD
collection. For every new individual encountered during
evolution, a tournament is held between the new individ-
ual and a number of randomly selected members of the QD
collection. The tournament participants each calculate their
novelty scores against the QD collection in the same way
that NS computes novelty against the archive: by calculating
their behavioral distance against all members of the QD col-
lection then summing the 20 smallest distances. Then, the
participant with the lowest novelty score compares its fitness
against its closest neighbor and the individual with higher
fitness is allowed into the QD collection while the lower fit-
ness individual is removed or discarded. In this way, the QD
collection continually expands its coverage of the behavior
space while simultaneously /ocally improving fitness. This
approach is similar to the behavioral repertoire in Cully and
Mouret (2013) except that the QD collection here runs in the
background and does not interfere with evolution in any way.

Experiment

The world of Voxelbuild is designed to facilitate experiments
in open-ended creativity through the evolution of intelligent
agents that construct diverse and complex structures. Of
particular interest in this paper is the phenomenon of evolu-
tionary transitions wherein skills are acquired by the gene
pool that enable the production of fundamentally different
and more complex artifacts. To study such transitions, it is
necessary that the task contains a substantial level of diffi-
culty such that major transitions are observed in some, but
not all, evolutionary runs. That way successful runs can be
compared against unsuccessful runs to identify how and why
these transitions occur. Thus, building in Voxelbuild is de-
signed to be nontrivial — agents are bound by the physical
constraints of the world and must learn how to move and act
within the world without violating its rules.

While Voxelbuild supports the construction of an effec-



tively endless array of unique structural artifacts, not all
structures are possible without first acquiring certain funda-
mental skills, each of which corresponds to a major evolu-
tionary transition. During preliminary runs, it was observed
that agents have a difficult time building vertically; more
accurately, some runs find agents that learn vertical building
and thus achieve better results, while agents in other runs
continue building only at ground level. Considering only
the physical constraints of the world, two major evolution-
ary transitions in Voxelbuild are conceivable, each of which
opens the door to building increasingly complex structures.
The first such transition is vertical building. Before learning
vertical building, agents effectively build two-dimensional
(ground-level) artifacts. Once agents learn to place blocks at
heights above ground level, new types of structures become
possible that utilize all three dimensions. The second major
evolutionary transition stems from agents’ inability to place
blocks outside of a small local radius. Faced with this restric-
tion, it is impossible for agents to build structures taller than
their block placement radius without first moving on top of
a previously placed block. The process of placing a block
and then moving on top of it is called scaffolding, a major
evolutionary transition that enables agents to build structures
of unlimited height. Because blocks must be placed adjacent
to other blocks and agents cannot jump higher than one block
at a time, climbing via scaffolding is an advanced behav-
ior requiring careful coordination. Besides vertical building
and scaffolding, there may be still more major transitions
in Voxelbuild that enable the building of different kinds of
structures not possible in the pre-transition landscape.

Investigating the presence of and circumstances surround-
ing evolutionary transitions requires several runs of evolution
where some observe transitions and others do not. In this
experiment, 10 runs of evolution are given the same amount
of CPU time over a period of two weeks on a 160-core com-
puting cluster. Due to the large variance in trial duration
(trials may last up to 10,000 ticks, but most terminate in un-
der 200 ticks due to agents attempting illegal actions such as
moving through a wall), there is a corresponding variance in
the number of evaluations completed by each run.

Experiment Parameters

Voxelbuild agents are evolved by HyperNEAT? with the fol-
lowing CPPN mutation rates: 5% add connection, 5% delete
connection, 1% add neuron, 1% delete neuron. NSLC popu-
lation size is 128 with a batch size of 32, where the lowest
Pareto rank fitness individuals are deleted from the popula-
tion after each batch. Maximum novelty archive size is 512,
enforced by drawing random tournaments of size 3 and delet-
ing the participant with the lowest novelty score. The QD
collection holds 128 individuals and is dumped to file every

3The HyperNEAT implementation in this paper is a modified
version of SharpNEAT 1.0 (Green, 2006).

1,000 epochs (32,000 evaluations), allowing pre-transition
collections to be compared to those after a transition.

Fitness and Behavior Characterization

As a QD algorithm, NSLC requires both a fitness function
to measure the quality of individuals and a behavior char-
acterization that describes which aspects of an individual
should be considered when calculating novelty. Fitness is cal-
culated as follows, where b,,.; is the total number of blocks
placed minus the number of blocks removed and A, is the
maximum height at which a block is placed:

fitness = bpet X Amag -

This formulation rewards larger structures while emphasizing
those that utilize the z-axis so that taller structures correspond
to substantially higher scores. This approach makes it easy
to identify when vertical building or scaffolding transitions
occur but does not necessarily reflect the quality of structures.
Behaviors are characterized by a vector of 5,292 values for
each location in the final state of the world, where a value of
1 means a block exists at the corresponding location and 0
means no block exists at that location.

Results

To illustrate when major evolutionary transitions occur, Fig-
ure 3 graphs the best fitness over the course of ten separate
runs of evolution, where transitions correspond to abrupt in-
creases in fitness caused by agents learning to build vertically.
In two runs, vertical building is learned early (before the first
QD collection dump at 32,000 evaluations). However, in two
other runs, vertical building is learned later, allowing the state
of the QD collection to be examined both before and after the
evolutionary transition occurs. Six runs do not successfully
transition in the given time frame, indicating the difficulty of
transitioning.
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Figure 3: Best fitness over time. Graphing the best fitness
over time for each run allows isolating when major transitions
occur. High scores (above 200-250) correspond to achieving
the vertical building transition. Out of the four successful
runs (denoted by dashed lines), two runs transition early,
while two other runs transition later. Tick marks on the x-
axis indicate when the QD collection is dumped to file.



Upon examination of the QD collections before and after
major transitions are observed, a clear pattern of progression
emerges, consistent across all runs.

Agents first learn to build chaotic structures (figure 4),
where blocks are placed haphazardly. These structures are
often quite small, suggesting that the lack of organization
makes it difficult for agents to survive very long without per-
forming an illegal move. Unsuccessful runs never progress
beyond chaotic structures.

Runs that eventually succeed in learning vertical building
(a major evolutionary transition) first learn to place blocks in
an organized manner (figure 5). In these structures, blocks
are placed in straight lines or rectangles, with fewer gaps and
less apparent randomness.

Four out of ten runs eventually gain the ability to build
vertically. Structures at this point continue to exhibit a high
degree of organization, facilitating the construction of larger
and more complex structures with features such as repeated
motifs and some blocks placed above ground level (figure 6).
Sometimes, agents employ primitive forms of scaffolding
when placing blocks above ground level (e.g. agents build a
large sheet at ground level, then stand on top of it to continue
building on the next level up).

Discussion

Initial experiments reveal the first major evolutionary tran-
sitions in the world, the ability to place blocks vertically,
preceded by an apparently necessary yet unanticipated pre-
liminary transition: the discovery of organization. While
vertical building is specific to Voxelbuild, its precursor, or-
ganized building, captures a principle that may generalize
to other open-ended simulations and artificial life worlds:
organization precedes complexity. Chaos in such simulations
is sometimes celebrated as a sign of complexity (when we
do not understand exactly what is going on in a system, we
may assume there are advanced strategies at play), but it is
possible that in many cases chaos is actually a sign of evolu-
tionary stagnation. In Voxelbuild, all runs begin with agents
that place blocks haphazardly and no evolutionary trajecto-
ries are observed where chaotic building leads directly into

Figure 4: Chaotic structures. Chaotic structures are marked
by haphazard, disorganized block placement and are the first
types of structures that agents learn to build.

Figure 5: Organized structures. Primitive organization is
marked by placing blocks in straight lines or rectangular
shapes. This building strategy is the precursor for more
advanced structures.

Figure 6: Post-transition structures. After learning orga-
nized block placement, larger and more complex structures
become possible, including the ability to build vertically. In
these examples, some blocks are placed at heights 2 and 3.

vertical building, suggesting that organized behavior is an
important stepping stone to more advanced behaviors. Sim-
ilarly, deliberate and principled behavior, while sometimes
less exciting to observe, may eventually lead to higher levels
of complexity in other open-ended domains.

In Voxelbuild, agents must operate within the physical
constraints of their world, which includes the stipulation that
blocks must be placed adjacent to other blocks. Placing
blocks at ground level easily satisfies this constraint because
every location at height 1 is adjacent to the blocks that consti-
tute the ground (at height 0). However, all positions at height
2 are initially illegal, requiring first placing a block nearby
(usually underneath). Agents that place blocks seemingly at
random (i.e. chaotic placement) have a difficult time building
upwards because they have not learned how to satisfy the ad-
jacency constraint. On the other hand, organized placement
is characterized by contiguous lines and rectangles, signify-
ing that agents have learned to place blocks adjacent to each
other at ground level and thus they also have an easier time
satisfying adjacency in the vertical direction.

The principle of organization preceding complexity can be
observed in nature. For example, early forms of life consisted
of prokaryotes — single-celled organisms whose components
are not membrane-bound but rather all float together in the
cytoplasm. Later in Earth’s evolutionary timeline, eukary-



otes (organisms with cells whose specialized components are
clearly separated into organelles by thin membranes) began
to appear (Ridley, 2004). The separation of cellular com-
ponents into functionally distinct organelles represents an
advancement in organization that perhaps opened the door
to multicellular organisms and in turn to the diversity of
complex life that we observe today.

Interestingly, de Vladar et al. (2017) characterize innova-
tions as “the population stepping into pre-existing but unoc-
cupied dimensions of the embedding trait space”, echoing
Kauffman’s theory of the ever-expanding adjacent possi-
ble (Kauffman, 2000). They further suggest that innovations
may occur concomitantly with “new ways of interacting with
the environment.” The observed evolved behavior of con-
structing straight lines and platforms (the latter of which
sometimes functions as a primitive form of scaffolding) to
build larger and more complex structures clearly constitutes
a new way of interacting with the environment, thereby qual-
ifying as an innovation in this sense. Furthermore, the rapid
diversification and complexification of structures built fol-
lowing this particular innovation indicates that it signifies a
major evolutionary transition, opening the door for new kinds
of behaviors that were previously difficult or impossible.

As in Voxelbuild, the evolution and complexification of
life on Earth is often characterized by a stepwise (not grad-
ual) pattern (Eldredge and Gould, 1972; Schuster, 2016). In
fact, de Vladar et al. (2017) argues that such steps, each
corresponding to major transitions, are impossible to define
completely a priori because many innovations arise from
exaptations (traits that are evolved for one purpose but later
used for another purpose). In Voxelbuild, the appearance
of primitive scaffolding is itself an exaptation because it is
not evolved for any particular purpose but will be necessary
later for building structures more than six blocks tall. Framed
another way, the nondeterminism and nonalgorithmic nature
of evolution may make it impossible to guarantee any partic-
ular outcome in sufficiently high-dimensional spaces (though
it is also argued by de Vladar et al. (2017) that we can get
close enough for practical purposes). Given this inherent
lack of strict order, it is not surprising that only some runs
exhibited the organized style of building that is prerequisite
to the vertical building major transition.

In open-ended evolution, which strives for an effectively
endless progression of meaningful complexification, major
transitions represent evolutionary bottlenecks where progress
may seem to stall. However, these bottlenecks are to be
expected and may even be necessary for many of the most
important innovations. In Voxelbuild, as on Earth, the road to
more advanced behaviors and artifacts is marked not by incre-
mental progress, but rather by sudden bursts of development
following the discovery of important traits that introduce fun-
damentally new ways of interacting with the world. With this
in mind, it is likely inappropriate to drive OEE solely by some
concrete measure of fitness; while chasing ever-increasing fit-

ness may be suitable for adaptation, it does little to encourage
exaptations — the impetus for true innovation. Instead, chas-
ing adaptations towards a predefined target may actually take
search in the wrong direction, where it can become trapped in
an evolutionary dead end (a phenomenon commonly known
in the evolutionary computation community as deception). In
fact, the very presence of a fitness function generally assumes
that there is an end goal in mind. However, true OEE should
continuously generate interesting new artifacts and behaviors
beyond what can be conceived of a priori. Just as a silent
observer of Earth four billion years ago would not have been
able to imagine the eventual development of modern plant
and animal life, open-ended evolution should not constrain
the search process with preconceptions about what is possible
or desirable, but rather should leave evolution free to explore
and discover, not strictly pursuing what is regarded as “better’
but instead pursuing what is different.

In this initial study into evolutionary transitions in Voxel-
build, some runs succeed in transitioning in the allotted time
frame, while others do not. This raises an important question:
given more time, will unsuccessful runs eventually reach a
major transition, or are they stuck forever in the space of sim-
ple behaviors? Relatedly: given more time, will successfully
transitioned runs continue on to cross the threshold of still
more major transitions, thus producing increasingly complex
and interesting behaviors? To answer these questions, we
must consider that evolutionary runtime is limited by avail-
able computation power. However, in this experiment as in
many others, the bulk of computational power is spent run-
ning multiple rounds of evolution in parallel to be sure that
at least some successful runs are observed, severely limiting
the duration of each individual run. Studies like this one
of the circumstances surrounding evolutionary transitions,
especially of the factors that either promote or impede inno-
vation, are therefore important because they may inspire new
approaches that can more reliably achieve such milestones.
Then it becomes more realistic to devote with confidence all
available computation to a single evolutionary run, allowing
substantially deeper exploration into the hidden possibilities
of open-ended domains such as Voxelbuild.

7

Conclusion

This paper introduces a new domain for open-ended evolution
(OEE) called Voxelbuild, a world in which embodied agents
move and build structures out of blocks, similarly to in the
popular Minecraft video game. Initial experiments in this
domain reveal the presence of major evolutionary transitions
where agents learn fundamentally new ways of interacting
with the world, thus unlocking more complex behaviors than
were previously possible. Evolutionary transitions can be
found in Earth’s evolutionary timeline — most notably in
the Cambrian explosion, where primitive multicellular life
rapidly developed into the vast diversity of complex species
observable today — and are likely an important hallmark of



strong OEE. This work offers insight into such transitions
and their evolutionary precursors, including some principles
that may be shared across other OEE domains, such as the
importance of organized behavior. A greater understanding of
evolutionary transitions in OEE will potentially inform more
sophisticated approaches that more reliably transition into
progressively more complex behaviors, opening the door for
longer and more interesting OEE experiments in the future.
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