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ABSTRACT
While evolutionary algorithms (EAs) have long offered an
alternative approach to optimization, in recent years back-
propagation through stochastic gradient descent (SGD) has
come to dominate the fields of neural network optimization
and deep learning. One hypothesis for the absence of EAs in
deep learning is that modern neural networks have become
so high dimensional that evolution with its inexact gradient
cannot match the exact gradient calculations of backpropa-
gation. Furthermore, the evaluation of a single individual in
evolution on the big data sets now prevalent in deep learning
would present a prohibitive obstacle towards efficient opti-
mization. This paper challenges these views, suggesting that
EAs can be made to run significantly faster than previously
thought by evaluating individuals only on a small number
of training examples per generation. Surprisingly, using this
approach with only a simple EA (called the limited evalua-
tion EA or LEEA) is competitive with the performance of
the state-of-the-art SGD variant RMSProp on several bench-
marks with neural networks with over 1,000 weights. More
investigation is warranted, but these initial results suggest
the possibility that EAs could be the first viable training al-
ternative for deep learning outside of SGD, thereby opening
up deep learning to all the tools of evolutionary computa-
tion.
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1. INTRODUCTION
Artificial neural networks (ANNs) have witnessed a re-

naissance in recent years within the field of machine learn-
ing through the rise of deep learning [6, 22, 27, 33]. The
main ideas behind this new approach encompass a range of
algorithms [5, 22], but a key unifying principle is that an
ANN with multiple hidden layers (which make it deep) can
encode increasingly complex features in its upper layers. In-
terestingly, ANNs were historically trained through a simple
algorithm called backpropagation [40], which in effect applies
stochastic gradient descent (SGD) or one of its variants to
the weights of the ANN to reduce its overall error, but un-
til about 2006 it was widely believed that backpropagation
would lose its gradient in a deep network. Yet discoveries
in the last few years have proven that in fact with suffi-
cient training data and processing power backpropagation
and SGD turn out to be surprisingly effective at optimizing
massive ANNs with millions or more connections and many
layers [8, 21, 27]. This realization has in turn led to substan-
tive records being broken in many areas of machine learning
through the application of backpropagation in deep learning
[8, 21, 27], including unsupervised feature learning [4].

The success of a principle as simple as SGD in achieving
record-breaking performance is perhaps surprising. After
all, in a space of many dimensions, SGD should be suscep-
tible to local optima, and unlike an evolutionary algorithm,
all its eggs are essentially in a single basket because it works
in effect with a population of one. Yet it turns out empiri-
cally that SGD is penetrating farther towards optimality in
networks of thousands or millions of weights than any other
approach. Attempting in part to explain this phenomenon,
Dauphin et al. [11] make the intriguing argument that in
fact very high-dimensional ANN weight spaces provide so
many possible escape routes from any given point that local
optima are actually highly unlikely. Instead, they suggest
that the real stumbling blocks for SGD are saddle points, or
areas of long, gradual error plateaus. This insight has both
helped to explain why SGD might not get stuck, and also
to improve it to move faster along such saddle points in the
search space. There are also variants of SGD such as RM-
SProp [48] that help to extricate it from similar situations.

While such analyses may help to explain the success of
SGD, they also raise an important question for evolutionary
computation (EC): If there are indeed so many paths to-
wards relative optimality in a high-dimensional ANN weight
space, then why would not the very same benefits received
from this scenario by SGD also apply to EC? In fact, maybe
evolutionary algorithms (EAs) should even have an ad-



vantage. After all, a population is perhaps better suited
than a single individual to a situation with many promising
branches, and simple EAs are agnostic about the rate of de-
scent with respect to the slope of the gradient, which could
in principle avoid the kind of saddle-point problem contem-
plated by Dauphin et al. [11]. In short, the arguments for
why SGD can succeed in extremely high-dimensional spaces
seem on the face of it to support or even favor EAs as well.

However, because the population in an EA is in effect an
approximation of the gradient, it may seem that EAs could
be significantly disadvantaged by the fact that they do not
compute exact gradients, which is precisely what SGD does.
However, results have been reported to suggest that the ex-
actitude of the gradient in SGD is not the crux of its success.
For example, recalling the application of mutation in EAs,
Lillicrap et al. [31] report the surprising discovery that the
error signal in a deep network can be multiplied by random
synaptic weights (entirely breaking the precision of the gra-
dient computation) with little detriment to learning. This
result suggests that in fact there are so many viable paths
in the high-dimensional space that exactitude is not the key
causal explanation for reaching near-optimality. Further-
more, given that any search space can be deceptive [18, 49],
it is likely often the case that the steepest descent at any
given point is not on the shortest path to the optimum any-
way. Perhaps it would be even better to maintain a popu-
lation of options to avoid any premature committal to the
best-looking path of the moment.

In fact, the smooth application of SGD in deep learning
remains a work in progress. Many tricks have been devel-
oped to improve its performance, such as the introduction of
rectified linear units (ReLUs) for activation functions, which
improves the passing of the gradient from layer to layer over
sigmoidal units [38]. Yet even then, researchers continue
to observe challenges with finding the right parameters to
make such structures learn smoothly, leading to complicated
work-arounds like interpolating between different architec-
tures over the course of learning [1] and the recent highway
networks architecture of Srivastava et al. [43] that in effect
turns some neurons on and off over the course of learning,
which is reminiscent of evolutionary algorithms that learn
structure like NEAT [44]. Thus there remains ample room
for new approaches, yet few have considered that such new
approaches might come from outside SGD.

Perhaps one reason simple EAs have not yet been applied
widely to optimizing the weights of deep networks is that
most problems in deep learning encompass a large number
of training examples. Just as an example, the MNIST image
classification database [28] includes 60,000 training exam-
ples. While SGD can cycle through these examples on its
single learner and adjust its weights based on every individ-
ual example, in an EA every individual in the population at
every generation must seemingly be evaluated on all the ex-
amples to assess its fitness on the training set. Thus a single
generation of e.g. 100 individuals would process six million
examples only to facilitate a single step of the search algo-
rithm.

However, the algorithm introduced in this paper, called
the limited evaluation evolutionary algorithm (LEEA), is
based on a novel insight into the analogy between EAs and
SGD that implies that in fact just as an iteration of SGD
does not necessitate passing through the entire training set,
neither does a generation of an EA. Instead, consider that if

SGD can compute an error gradient from a single instance
(or a small batch of them) then a generation of evolution
can be tasked with doing precisely the same. That is, a gen-
eration of the EA can be considered analogous to a single
iteration of SGD, aiming merely to adjust the weights of
the best current approximation(s) to improve with respect
to a single instance or small set of them. In this view, the
population of 100 might only need to process 100 instances
in one generation (instead of six million), which with simple
parallelization could in principle be done in the same time it
takes to process a single example (and no backpropagation
of error need be computed either). Thus the EA begins to
look computationally comparable to SGD.

Experiments in this paper on high-dimensional optimiza-
tion of ANNs will indeed reveal the surprising conclusion
that a simple EA appears about as effective as backprop-
agation through state-of-the-art SGD in problems of over
1,000 dimensions. The competitive performance of the EA
in these problems suggests that further research in higher-
dimensional neural network optimization is warranted be-
cause of the potential for an alternative training strategy
in deep learning. This possibility is not just about leveling
the playing field with SGD. Rather, it is exciting because
EAs bring with them an entirely new toolbox that suddenly
becomes applicable to the field of deep learning. Whereas
in deep learning researchers apply tricks like regularization
for sparsity [16] or dropout [42], EAs have distinctly differ-
ent options completely unavailable to SGD such as archi-
tecture evolution like in NEAT [44], diversity maintenance
techniques like novelty search [29], or indirect encodings for
ANNs like in HyperNEAT [15, 47]. Thus the entrance of
EAs as an alternative to SGD in deep learning would carry
with it a broad set of new possibilities.

2. BACKGROUND
The application of EAs to optimizing neural networks is

often called neuroevolution by its practitioners [12, 44]. As
documented in reviews such as by Yao [53] and later Flore-
ano et al. [12], the field of neuroevolution originated in the
1980s (e.g. Montana and Davis [34]), at a time when back-
propagation was on the rise [40]. Interest in neuroevolution
really picked up in the 1990s, during which a wide variety of
approaches were introduced [53]. In these early years, many
researchers focused on the intriguing idea (now for the most
part long abandoned) that evolution might in fact exceed
the capabilities of backpropagation.

In fact, a number of early studies showcase neuroevolution
through a variety of EAs matching [51] or even outperform-
ing backpropagation in classification problems [17, 34, 39].
In fact, in these early years enthusiasm was high in part be-
cause the future potential of evolving topology along with
connection weights seemed to some a significant possible ad-
vantage for neuroevolution. As Mühlenbein [37] put it, “We
conjecture that the next generation of neural networks will
be genetic neural networks which evolve their structure.”
Many researchers echoed this enthusiasm [7, 10]. Others
touted the potential for combining topology evolution with
backpropagation [3, 50].

However, as computational capabilities increased over the
ensuing decade, researchers began to recognize that the ap-
parent advantages of neuroevolution on relatively simple,
low-dimensional problems (i.e. requiring relatively small net-
works) with small amounts of data might be eclipsed as the



amount of data and size the neural networks increases. For
example, even before deep learning really began to showcase
the power of SGD with big data, Mandischer [32] begins to
articulate the more negative outlook (focusing on Evolution
Strategies, or ESs, which are a kind of EA):“We will see that
ESs can only compete with gradient-based search in the case
of small problems and that ESs are good for training neural
networks with a non-differentiable activation function.” (It
is important to note of course that researchers at the time
had not tried the idea in the present paper of only evaluating
on a very small number of instances per generation.)

As SGD and backpropagation increasingly dominated the
world of classification, especially after the advent of deep
learning [5, 22], a significant shift in attention away from
classification took hold in the neuroevolution literature. Re-
searchers began to focus on types of problems where back-
propagation is more challenging to apply, such as reinforce-
ment learning problems requiring recurrent connections and
specialized architectures [2, 13, 20, 35]. As the focus in
neuroevolution largely shifted towards reinforcement learn-
ing and away from classification, a new generation of neu-
roevolution algorithms such as NEAT [44, 46], HyperNEAT
[15, 47], and a modified CMA-ES [25] gained popularity
in part by focusing on the daunting challenge of finding
the right architecture for complicated control and decision-
making problems, for which SGD provides little answer.
Thus the aspiration of EAs to compete directly with SGD
in training neural networks for state-of-the-art classification
and supervised learning has gradually become only a mem-
ory.

Nevertheless, the classic results from the 1990s where
neuroevolution does outperform SGD on simple supervised
problems [17, 34, 39] remain an intriguing prelude to the
ensuing decades of SGD dominance in supervised learning.
Despite the seeming clarity of SGD’s subsequent dominance
in deep learning, the question of why the early promising
results of neuroevolution so dramatically fizzled out is actu-
ally not well understood. It may seem that neuroevolution is
simply definitively not suited to high-dimensional optimiza-
tion (even with statistical approaches such as in CMA-ES
[25] or EDAs [26], which still do not compute exact error
gradients), but the support for such a hypothesis is largely
speculative because we do not fully understand how or why
the structure of neural network search spaces is necessarily
vastly more favorable to SGD, which faces its own perils
with local optima and saddle points [11]. In short, why
should an approximation of the gradient (provided by an
EA’s population) be any less useful than the single exact
gradient computation of a single individual in SGD, which
is subject to deception? Both must be imperfect, but given
that SGD still succeeds despite the danger of deception, the
high-dimensional landscape of neural optimization appears
to offer a forgiving landscape of many viable paths, which
might be similarly favorable to evolution. This paper there-
fore revives the old hope from the 1990s that even simple
neuroevolution can compete with SGD.

3. APPROACH
A key property of SGD is that the gradient does not have

to be calculated for the network over the entire training
set. Instead, the gradient can be calculated for a single or
very few training examples at a time, which greatly reduces
computational cost compared to training on all training ex-

amples at once and reduces the chance of becoming stuck in
local optima. Interestingly, this ability to adjust weights af-
ter very few examples is not necessarily exclusive to gradient
descent. Rather, it can in principle apply to any algorithm
that traditionally evaluates its solutions against an entire
training set, such as EAs.

LEEA implements this idea for the first time in a very
simple traditional generational EA. Instead of evaluating the
population against the entire training set each generation,
the population is evaluated against only a limited number
of training examples each generation. This lean approach to
evaluation greatly relieves the computational load, particu-
larly on large training sets.

However, one potential weakness of LEEA is that perfor-
mance on a single example may not correspond to perfor-
mance across all examples. In SGD, this problem of de-
ceptive examples is tempered by the learning rate and the
fact that the population of in effect one individual is never
“replaced” by a defective mutant, which prevents the net-
work from shifting too far towards a globally poor configu-
ration during any given evaluation. In contrast, an EA does
not inherently contain such safeguards against such decep-
tive training examples. For example, in the EA, a species
well suited to only the present example could displace one
that had mastered all the examples before. Two strategies
in LEEA mitigate this problem. The first is simple: the
population is evaluated against more than one example per
generation, though still very few. This strategy reduces the
potential damage caused to the population by a single de-
ceptive training example.

It should be noted that while the technique of evaluating
the population against a small set of examples each genera-
tion may appear to be analogous to a technique employed by
SGD called “mini-batching” [9], its motivation in LEEA is
different. SGD employs mini-batches primarily to better uti-
lize parallel computational resources, while LEEA employs
these mini-batches for more stable population dynamics.

The way the examples are selected for each mini-batch
naturally can influence the effectiveness of the algorithm.
If all of the examples selected for a given mini-batch hap-
pen to have a similar expected output, then even degener-
ate networks that output a constant value may achieve a
high fitness. Instead, if the examples are selected so that
they have a diversity of expected outputs, then networks
will only be highly rewarded when they can also produce a
diversity of outputs that match the expected values. This
approach thereby prevents degenerate networks from ever
achieving a high fitness and rewards networks that exhibit
heterogeneous behavior.

Even with carefully selected mini-batches, LEEA might
still lose individuals who are relatively fit in a global sense,
but weak on the examples encountered during any single
mini-batch. This danger is particularly acute during early
evolution, when the best individuals may only succeed on
a small percentage of all examples. To further combat this
complication, the second key strategy in LEEA is that fitness
is calculated based on both the performance on the current
mini-batch and the performance of the individual’s ancestors
against their mini-batches. As long as each step of evolution
is not changing the behavior of each network in a radical
way, this fitness inheritance builds up for those individuals
who are more likely to be more globally fit than their peers,
regardless of how they performed on the current mini-batch.



It is important to note that this form of fitness inheritance
is inspired by though differs from previous approaches to
fitness inheritance that aimed to avoid directly evaluating
a portion of the population [14, 41]. To implement fitness
inheritance in LEEA, the fitness for individuals produced by
sexual reproduction and asexual reproduction, respectively,
is given by

f ′ =
fp1 + fp2

2
(1− d) + f, and (1)

f ′ = fp1(1− d) + f, (2)

where f ′ is the individual’s modified fitness, f is the fitness
of the individual against the current mini-batch, fpn is the
fitness of parent n, and d is a constant decay value.

The introduction of output-diverse mini-batching and fit-
ness inheritance enables LEEA to take advantage of the com-
putational benefits of SGD within the framework of evo-
lutionary computation. Other than these two strategies,
LEEA is just a simple generational EA with a mutation
power decay (which is analogous to learning rate decay in
SGD):

Algorithm 1 LEEA

1: while gen < maxGenerations do
2: select mini-batch of training examples
3: evaluate population
4: modify fitnesses based on fitness inheritance
5: select parent(s) from a truncated list with roulette

wheel selection

6: create offspring – sexual reproduction with uniform
crossover (without mutation) or asexual reproduc-
tion with uniformly distributed mutation

7: reduce maximum mutation power by multiplying by
decay constant

8: gen = gen+ 1
9: end while

This algorithm contains only the bare essentials required
for a more traditional EA to work, along with the modi-
fications necessary to combat the complications caused by
limited evaluations per generation.

4. EXPERIMENT
To assess the effectiveness of LEEA as an alternative to

more traditional neural network optimization methods, per-
formance is tested in three domains against a traditional
generational EA (TGEA), SGD, and RMSProp, which is a
cutting-edge variant of gradient descent based on the idea
that following shallow gradients can often be as useful as
following steep ones [48]. The TGEA works like LEEA,
but with all training examples evaluated in each genera-
tion (instead of a mini-batch), and no fitness inheritance
mechanism. In RMSProp, the enhancement to SGD, the
current gradient information is divided by a running aver-
age of recent gradients. This technique allows the algorithm
to escape from plateaus with tiny gradients more quickly.
All three domains are chosen because they can benefit from
a neural network of moderate dimensionality, i.e. over 1,000
connection weights that must be optimized. In general it is

not a common view that a simple EA is suited to optimiz-
ing so many parameters in a neural network as effectively
as SGD. Therefore these experiments demand an unusual
ability for EAs that is rarely contemplated in deep learning
literature.

Sample data from each domain is divided into a training
set, a validation set, and a test set. All algorithms evalu-
ate performance against the validation set to test for over-
fitting. The evolution-based algorithms additionally require
this validation performance data to determine which indi-
vidual from the population is selected for evaluation against
the test set. All reported results are thus based on perfor-
mance against the test set and for evolution the individual
tested is the one that performed best against the validation
set.

The first domain, with 800 training examples, is a func-
tion approximation task, where the function is given by the
equation

f(x, y) =
sin(5x(3y + 1)) + 1

2
. (3)

Preliminary tests indicate that the surface generated by this
function is sufficiently difficult to approximate that networks
with over 1,000 connections have an advantage over smaller
networks, thus making a good test for the effective use of
high dimensions.

The second domain is a time series prediction task with
1,200 training examples where the time series is generated
using the Mackey-Glass chaotic time series equation

dx

dt
= β

xr
1 + xrn

− γx, γ, β, n > 0 (4)

where γ = 1, β = 2, r = 2, n = 9.65, x0 = 1.1, and x1 = 1.2.
The prediction for time t is based on values at t− 6, t− 12,
t−18, and t−24. This task has been employed to test neural
networks in the past [24], and is also sufficiently complex to
potentially benefit from over 1,000 connections.

The third domain is the California housing dataset, which
is a housing value prediction task with 10,000 training exam-
ples also previously given to neural networks [24, 30]. This
task contains observations of housing data where each ob-
servation consists of eight input attributes for a particular
block of housing (median income, median house age, etc.)
and one output for the median house value.

All learning algorithms train with the same network topol-
ogy, which contains two hidden layers with 50 nodes in the
first layer and 20 nodes in the second layer, as well as a single
output. Because of differences in the number of inputs, the
resultant networks have 1,170, 1,270, and 1,470 connections
for the first, second, and third domains, respectively (net-
works include also a bias node). LEEA and TGEA are both
evolved using a direct encoding (i.e. one floating-point gene
per connection in the network) with no ability to change the
network topology.

To evaluate the effectiveness of each algorithm, they are
exposed to the same total number of examples during train-
ing. That way, the number of generations given to TGEA
equals the number of epochs given to SGD and RMSProp,
while LEEA is given a proportionately higher number of
generations (which of course still means the same number of
evaluations) than TGEA based on the ratio of total training
examples to the number of examples evaluated per genera-
tion. Because the EAs must evaluate all members of their



Function Approximation Time Series California Housing
TGEA 0.1643± 0.0121 0.2068± 0.0107 0.1216± 0.0013
LEEA 0.0711± 0.0116 0.1080 ± 0.0340 0.1147± 0.0020
SGD 0.0539 ± 0.0087 0.1336± 0.0380 0.1097± 0.0016
RMSProp 0.0636± 0.0138 0.1227± 0.0410 0.1092 ± 0.0007

Table 1: RMSE with standard deviation for each algorithm on each domain averaged over 10 runs. (Lower
is better.)

population, on a single processor their execution time be-
comes greater proportionally to the population size. How-
ever, parallelization can potentially benefit EAs to a greater
degree because each such evaluation is independent. As the
capacity for parallelization increases, the instrumental issue
thus shifts from population size to the ability to effectively
learn from each training example, which is why performance
is measured here based on the number of examples evalu-
ated.

Parameters for all algorithms were selected through a pa-
rameter sweep on the first domain. There were two key
differences found between the ideal parameters of LEEA
compared to TGEA. For LEEA, the ideal starting muta-
tion power (the maximum size of a weight mutation) is 0.03,
compared to 0.1 for TGEA. This difference reflects that it is
better to take smaller steps when evaluating individuals on
a small set of training examples. In addition, while TGEA
performs best with fitness sharing-based speciation [19] in
the spirit of NEAT [44] based on genetic similarity (which
maintains diversity), LEEA performs best without any spe-
ciation. This observation makes sense because the changing
mini-batch in each generation is a force for diversity on its
own.

Parameters in common between LEEA and TGEA are
population size (1,000), mutation power decay (0.99), mu-
tation rate (0.04), selection proportion (0.4), and sexual re-
production proportion (0.5). Selection proportion refers to
the ratio of individuals (sorted by fitness) that are eligible
for reproduction.

Ideal mini-batch size in LEEA was determined experimen-
tally to be 2. In all three domains, there is no notion of
output classes, but rather a single real number output in
the range {0, 1}. To apply the idea of diversity in mini-
batches, the output range is divided into two equally sized
sections, and examples selected so that each mini-batch con-
tains one example for both sections of the range. A new
mini-batch is randomly generated at the beginning of each
generation (while ensuring the diversity of the expected out-
puts). The ideal fitness inheritance decay rate for LEEA was
determined experimentally to be d = 0.2.

SGD and RMSProp were implemented as online learning
(i.e. one example at a time). Mini-batching with these meth-
ods is not included in the comparison because there is not
a consensus on an empirical advantage for mini-batching on
a per-epoch basis, and some have even suggested perhaps a
slight disadvantage [52]. Therefore, the online case serves as
a more transparent baseline that avoids introducing any con-
founding factors that might come with mini-batching. The
training examples are reshuffled at the start of each epoch.
The initial learning rate for SGD and RMSProp is 0.3 and
0.001, respectively. The learning rate is decayed exponen-
tially by 0.0001 per epoch for both SGD and RMSProp.
RMSProp maintains a queue of 250 recent magnitudes for

each parameter for calculating the per-parameter learning
rate.

All neurons in every setup are sigmoidal based on the
function f(x) = 1

1+e−x . That way, all methods are com-
pared in equivalent conditions. Of course it is known that
other functions like rectified linear units [38] can sometimes
help deep networks under SGD, but the aim here is to estab-
lish how these methods behave under equivalent controlled
conditions to get a sense of their relative capabilities in gen-
eral. Source code for the experiments in this paper can be
found at http://eplex.cs.ucf.edu/uncategorised/software.

5. RESULTS
Table 1 shows testing results for each algorithm on each

domain. Overall test performance in the table is measured
as the root mean square error (RMSE) of the individual
who performs best against the validation set across the run,
where individuals are tested against the validation set at reg-
ular intervals based on the number of training examples in
the domain (every 4,000 samples for function approximation,
every 6,000 samples for the time series, and every 30,000
samples for California Housing). The individual tested in
the evolutionary runs is the one who performs best on vali-
dation from the population at the current generation. It is
important to note that overall, each algorithm experiences
precisely the same number of examples before each valida-
tion check, so the amount of training data experienced is al-
ways equivalent. Test performance is averaged over 10 runs
for each algorithm/domain combination. Some results did
not exhibit a normal distribution, so significance between
results is calculated with the Mann-Whitney U test. On
the function approximation domain, LEEA’s performance is
not statistically significantly different from RMSProp, but
it performs slightly though significantly worse than SGD
(p < 0.01) and significantly better than TGEA (p < 0.01).
On the time series domain, though LEEA performs best by
a small margin, there is no statistical difference between
LEEA, SGD, and RMSProp, and all three algorithms per-
form significantly better than TGEA (p < 0.01). On the
California housing domain, LEEA performs slightly though
significantly worse than SGD and RMSProp (p < 0.01) and
significantly better than TGEA (p < 0.01). As a whole,
comparing results between LEEA and TGEA in all the do-
mains confirms that EA performance can be significantly
enhanced by evaluating a limited number of examples per
generation. They also show that differences between LEEA,
SGD, and RMSProp range from very small to insignificant,
with LEEA even performing best (though insignificantly)
in one domain, supporting the conclusion that LEEA is a
viable option for training neural networks.

To provide further insight into these results, figure 1 shows
average testing accuracy across whole runs, with the x-axis
normalized such that all algorithms are evaluated against an
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Figure 1: Average root mean square error on the
test set over time (lower is better). The average perfor-
mance over total training examples seen so far as measured
against the test set is displayed for each algorithm on the (a)
function approximation, (b) time series, and (c) California
housing domains. The main result is that the performance
of LEEA closely matches that of SGD and RMSProp.

equal number of training examples on the same problem at
the same point along x. For the evolution-based algorithms,
the whole population is evaluated against the validation set
at each measurement interval and the individual with the
best validation performance is selected for testing. While
TGEA learns more slowly and converges to a less optimal
solution than SGD and RMSProp, LEEA exhibits a qual-
itatively similar training curve to these conventional deep
learning training algorithms. This observation provides fur-

ther evidence that LEEA offers an evolution-based alterna-
tive for training complex neural networks that is potentially
competitive with the state of the art.

6. DISCUSSION AND CONCLUSION
The results suggest that a simple EA with limited evalu-

ations in each generation (the LEEA) can optimize neural
networks of over 1,000 dimensions about as effectively and
in about the same number of iterations as gradient descent
algorithms that currently dominate the field of deep learn-
ing. While these results do not prove that such EAs will
continue to work well on the neural networks of millions or
more weights that now feature in the most cutting-edge re-
sults in deep learning [21], they are an intriguing hint that
the potential for EAs in this area may be greater than pre-
viously believed. At the least it suggests that investigation
of such algorithms on larger networks is warranted.

The core question on much larger networks is whether
somehow the gradient over the high number of dimensions
becomes too hard to approximate for the EA. For example, if
such high-dimensional optimization requires effectively sam-
pling changes along nearly every dimension, the EA popu-
lation might fail to sample densely enough. Yet if it is true
that there are many paths to near-optimality as has been
argued even in deep learning literature [11], it may not ulti-
mately be essential to sample even a large proportion of the
possible paths. In fact, sparse sampling could be a winning
trade-off as the price to gain diversity, which conventional
SGD lacks. In any case, only further empirical investigation
on more complex domains such as MNIST [28] can settle
this question.

Interestingly, even if sampling is ultimately too sparse,
there is always the option of expanding the population size.
Continuing advances in hardware and the availability of
graphics processing units (GPUs) foreshadow the possibil-
ity of parallelizing much larger populations in the future.
While GPUs have recently been celebrated for their paral-
lelism largely in the context of SGD within deep learning,
EAs where individuals can be evaluated separately are par-
ticularly suited to large-scale parallelization. In the future,
GPUs and EAs could present a particularly powerful mar-
riage. Furthermore, performance might be improved in the
future also by refining the method for computing fitness in-
heritance.

The potential for EAs to offer an alternative to SGD for
training neural networks is compelling because EAs are a
genuinely different paradigm for specifying a search problem.
That is, the real payoff of such a novel option is not that it
might perform better in some scenario, but that it allows
researchers to approach problems in entirely different ways
and capitalize on different forms of regularization, thereby
greatly expanding the toolbox available to neural network
researchers.

For example, expressing the loss function for SGD to tar-
get precisely the desired behavior can be harder than for a
fitness function. Consider a two-class classification problem
where a factory product is either working or defective. While
it is relatively straightforward to configure SGD to minimize
error on the classification, it would be much harder to min-
imize monetary cost for making different kinds of mistakes:
misclassifying a defective product as working might be a
lot more expensive than misclassifying a working product
as defective. The advantage of the fitness function is that



it can directly minimize even an indirect cost because it is
intrinsically more expressive.

Furthermore, EAs offer options unavailable to SGD like
diversity maintenance [36], the evolution of topology [44],
and indirect encoding [15, 45]. These can all act as powerful
regularizers different from those in SGD. Problems facing
SGD in backpropagation like vanishing gradients through
multiple layers or through recurrence also would not even
exist for neuroevolution through EAs, perhaps enabling rad-
ically different architectures to be learned than the ones de-
signed for SGD like LSTMs [23], or even autoencoders [4].

The possibility of such a dramatically different training
paradigm is intriguing, and the empirical evidence in this
paper offers a hint that it is at least sufficiently conceivable
to warrant further serious investigation. The properties of
search spaces with millions of dimensions are still not fully
understood, leaving open the chance that something quite
different than backpropagation can play a constructive role
in such spaces as well.
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