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Abstract—Evolved representations in evolutionary computa-
tion are often fragile, which can impede representation-dependent
mechanisms such as self-adaptation. In contrast, evolved repre-
sentations in nature are robust, evolvable, and creatively exploit
available representational features. This paper provides evidence
that this disparity may partially result from a key difference
between natural evolution and most evolutionary algorithms:
Natural evolution has no overarching objective. That is, nature
tends to continually accumulate novel forms without any final
goal, while most evolutionary algorithms eventually converge to
a point in the search space that locally maximizes the fitness
function. The problem is that individuals that maximize fitness
do not need good representations because a representation’s
future potential is not reflected by its current fitness. In contrast,
search methods without explicit objectives that are consequently
divergent may implicitly reward lineages that continually diverge,
thereby indirectly selecting for evolvable representations that
are better able to diverge further. This paper reviews a range
of past results that support such a hypothesis from a method
called novelty search, which explicitly rewards novelty, i.e.
behaviors that diverge from previously encountered behaviors.
In many experiments, novelty search demonstrates significant
representational advantages over traditional fitness-based search,
such as evolving more compact solutions, uncovering more evolv-
able representations, and more fully exploiting representational
features. The conclusion is that divergent evolutionary algorithms
like novelty search may exert selection pressure towards higher
quality representations than traditional convergent approaches
to search.

Index Terms—Evolutionary computation, neural nets, heuristic
methods

I. INTRODUCTION

The representations of organisms evolved in nature are
notable for their significant robustness and evolvability [3, 15].
In contrast, the representations uncovered by evolutionary al-
gorithms are often fragile [11, 15]. The significant potential of
representational mechanisms such as self-adaptation are often
therefore unrealized in practice [2, 5, 13]. Thus an important
question in evolutionary computation is what causes such a
noticeable disparity. This question is particularly significant to
the field of neuroevolution [10, 14, 17], i.e. evolving artificial
neural networks (ANNs), where the domain itself may induce

fragility [6] and poor evolvability can hinder efforts to evolve
complex behaviors [6, 18].

One hypothesis is that the representational disparity between
nature and EC results from a key difference between the
dominant reward schemes in EC and natural evolution: The
fitness-based search paradigm in EC often rewards progress
towards a fixed objective, while natural evolution instead
accumulates phenotypically diverse solutions to the problems
of life with no overall final objective. In this way, evolution
can be viewed as a divergent process, while the fitness-based
abstraction of evolution common in evolutionary computation
is often convergent.

This difference is important to representation because it
can indirectly impact the kinds of representations that are
rewarded. In particular, a divergent search like natural evo-
lution may implicitly reward lineages better at diverging (e.g.
genes that enable new species to emerge are less likely to
go entirely extinct). The critical factor is that in a divergent
search a representation that continually facilitates diverging
from the past can distinguish itself over time from a less
evolvable representation. Put another way, more evolvable rep-
resentations correlate with continuing phenotypic divergence.
As a result, divergent searches also may often incentivize
exploiting representation-dependent features like mutational
self-adaptation because such features can enhance the ability
to diverge. That is, they can better align reproduction with
representation to more consistently produce novelty. For ex-
ample, self-adaptation in an ANN might limit mutations to
connections critical to functionality and exaggerate mutations
on connections that can effectively modulate behavior. The
idea is that this kind of elegant self-adaptive outcome might
evolve when using a divergent search for the very reason that
it is more likely to create further divergence.

While it might seem like a similar argument could be
made for convergent fitness-based search (it may reward
lineages better at generating higher fitness), that argument is
undermined by two fundamental problems. First, relatively
high fitness in a population does not necessarily correlate



with ability to further increase fitness, because fitness in
evolutionary algorithms (with a static fitness function) is
absolute. That is, unlike evolutionary novelty, a high-fitness
individual has high fitness no matter when it is discovered. So
the tendency to stay fit (a static property) does not reflect
as much about underlying representation as the tendency
to produce change. The second counterargument to fitness
is that because fitness-based search tends to converge, by
definition it will demonstrate a natural tendency to eliminate
representational variation. Without such variation there cannot
be any indirect selection on representation at all. Thus when
converged to a local optimum a fitness-based search will
likely become fixated on an arbitrary representation. Escaping
from the local optimum is then predicated on modifying this
arbitrary representation to increase fitness further, which may
require ad-hoc, patchwork-like changes [16]. In other words,
such convergence to a single representation and subsequent
pressure to shoehorn that representation towards higher fitness
may often oppose elegant or evolvable solutions, and may
only be able to exploit representation-dependent features like
self-adaptation to the extent that they can greedily increase or
maintain fitness.

In fact, supporting such an idea and the hypothesis presented
in this paper, evidence is accumulating that divergent searches
in evolutionary computation may often benefit representation
[1, 6, 8, 9, 12, 16]. To examine such evidence in more detail,
this paper reviews past results from a representative example
of divergent search called novelty search [7, 8] that explicitly
rewards behavioral novelty (i.e. diverging from behaviors
previously seen during search). Many of these experiments
compare novelty search to a more traditional fitness-based
search in either neuroevolution or genetic programming. The
idea is to isolate the effect of changing the reward scheme
from a convergent search for an objective to a divergent search
for behavioral novelty. In a wide range of experiments such
novelty search has proven beneficial to evolved representa-
tions. Thus instead of focusing as usual on the quality of
the solutions, this paper focuses instead on the quality of the
representations, even in cases when both approaches can find
solutions.

II. NOVELTY SEARCH

This section briefly reviews novelty search; for a more
comprehensive introduction see Lehman and Stanley [8]. In
contrast to most evolutionary algorithms, which tend to con-
verge, novelty search is a divergent evolutionary technique. It
is inspired by natural evolution’s drive towards novelty, and
directly rewards novel behavior instead of progress towards a
fixed objective [7, 8].

The main idea in novelty search is to quantify a new
individual’s divergence from past behaviors. The greater the
divergence from the past, the more promising an individual
is considered by novelty search. To facilitate measuring such
divergence, each individual (e.g. an ANN or evolved program
tree) is mapped to a point in behavior space through a
domain-specific characterization of behavior. A good behavior
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(a) Fitness-based Search (b) Novelty Search

Fig. 1: Reward Scheme in Novelty Search. The gradients of
improvement (illustrated by arrows) from a particular behavior (the
filled circle) instantiated by (a) convergent fitness-based search and
(b) novelty search are shown for a simplified representation of a
two-dimensional behavior space. The solid lines indicate behavioral
constraints that mutation cannot cross and the objective of the search
is represented by an “X”. For novelty search, the open circles
represent previously explored behaviors. Note that novelty search’s
gradients diverge (and can be explored by diverging evolutionary
lineages) while fitness-based search in this scenario is driven to
converge towards a local optimum in the direction of the objective.

characterization should succinctly capture the dimensions of
behavioral variation that are fundamental to a particular do-
main in the hope of reflecting an intuitive distance between
evolved behaviors. In this way, the motivation is to align the
algorithmic idea of novelty with our own intuitions on what
the concept means.

After an individual is mapped into the behavior space, its
novelty is measured as the sparseness of its neighborhood
within that space. This sparseness is approximated in practice
by measuring a new individual’s average distance to its closest
neighbors among the current population and an archive of
individuals whose behaviors were judged highly novel when
they were first encountered. Once objective-based fitness is
replaced with novelty, the underlying evolutionary algorithm
operates as normal, selecting the most novel individuals to
reproduce. In effect, novelty search is driven to explore the
behavior space. The gradient of search is simply towards what
is new, with no other explicit objective. Over generations, the
population spreads out across the space of possible behaviors.
Figure 1 illustrates how this drive towards novelty differs from
more traditional reward schemes in evolutionary computation.

Interestingly, although novelty search applies no direct pres-
sure to accomplish any particular objective, it has often proven
to benefit the search for the objective in deceptive domains
[8, 9, 12]. However, the performance of novelty search is
not the focus of this paper. Instead, the next section reviews
empirical results that demonstrate novelty search’s tendency
to benefit evolved representation.

III. EMPIRICAL IMPACT OF NOVELTY SEARCH ON
REPRESENTATION

To provide evidence that novelty search generally encour-
ages better representations than a more conventional fitness-
based search for the objective, this section reviews results in
which novelty search discovers more elegant solutions [8, 9],



(a) Maze Domain (b) Biped Robot

Fig. 2: Example Domains. In the maze domain shown in (a), an
ANN controls a maze-navigating robot that starts each evaluation at
the location marked by the larger circle. The aim is to discover an
ANN that can navigate the robot to the target location within the
maze (marked by the smaller circle). Fitness-based search rewards
minimizing the distance from the target location to the robot’s
location at the end of its evaluation. In contrast, novelty search
incentivizes robots to end in novel locations within the maze. The
goal in the biped domain is to evolve an ANN that can control the
biped robot shown in (b) to walk as far as possible during the ANN’s
evaluation in a three-dimensional physically-realistic simulation. For
fitness-based search, the reward function is the distance traveled by
the robot before it falls, while novelty search instead incentivizes
ANNs that generate walking trajectories different from those seen
before during search.

more general solutions [1, 12], solutions that better exploit
representation-dependent features [6], and more evolvable
solutions [6].

First, in several experiments novelty search has evolved
significantly more compact solution ANNs or programs than
fitness-based search [8, 9], even when both methods solve the
same problem. This observation is important because a smaller
solution may more elegantly capture the regularities of the
domain or be further modified more easily [16]. In particular,
Lehman and Stanley [8] demonstrated that neuroevolution with
novelty search evolved smaller solution ANNs than fitness-
based search in two domains with different ANN models. Note
that these first domains are shown in more detail in figure 2 as
illustrative examples. In the first domain (figure 2a), a robot
controlled by a plain ANN had to navigate a maze in a fixed
time limit. Evolved continuous time recurrent neural networks
controlled a biped robot (figure 2b) in the second domain
with the goal of walking far. Similarly, Lehman and Stanley
[9] applied genetic programming to maze navigation and the
artificial ant domain [4] (where an artificial ant controlled by
an evolved program must navigate a trail of food) and found
that in all four experiments (two different mazes and two
different ant trails) novelty search evolved smaller solution
programs and was less susceptible in general to the significant
problem in genetic programming of program bloat.

Additionally, some experiments have hinted that novelty
search may lead to solutions that generalize better than those
crafted by fitness-based search [1, 12]. Generalization is
significant because a more general solution can be applied in
contexts not explicitly encountered during evolution, avoiding
the need to re-run evolution. In Risi et al. [12], plastic neural
networks able to generalize were evolved faster by novelty

search than by fitness-based search in a T-maze domain
requiring ANNs controlling wheeled robots to learn from
experience (similar to T-mazes used for testing the learning of
live rats). Furthermore, genetic programs evolved by novelty
search in Doucette [1] were more likely to generalize to solve
random variations of artificial ant trails than those from fitness-
based search.

Another aspect of representation is exploiting
representation-dependent features such as self-adaptation (i.e.
encoding reproductive parameters within a genome). Ideally,
an evolutionary algorithm would fully exploit such parameters
because they create greater potential for discovering a broad
range of possible evolved behaviors. Lehman and Stanley
[6] accordingly illustrated three neuroevolution domains
where self-adaptation of probability and strength of mutations
for ANN connections was exploited by novelty search but
hindered fitness-based search (because it accelerated search’s
ability to converge to local optima [15]).

Finally, Lehman and Stanley [6] explicitly investigated the
impact of novelty search on evolved ANNs’ evolvability, i.e.
the ability of an individual to further evolve [3, 15]. Evolv-
ability is important because it may underlie our appreciation
of natural organisms’ significant ability to adapt to changing
environments [3, 15]. Furthermore, investigating evolvability
directly may most fundamentally test the hypothesis that se-
lecting for divergence may encourage representations’ ability
to diverge. In Lehman and Stanley [6], when applied to maze
navigation and biped walking, and compared to fitness-based
evolution, novelty search uncovered more evolvable solutions.
It also demonstrated higher evolvability on average across
evolved populations.

Thus across a wide range of domains and in both neu-
roevolution and genetic programming, novelty search has been
shown to benefit evolved representation, which supports the
hypothesis that divergent search may be a key ingredient in the
disparity in representational robustness between evolutionary
computation and natural evolution.

IV. DISCUSSION

The results reviewed in this paper suggest that applying
convergent evolutionary algorithms is often detrimental to
evolved representation, supporting the argument in Woolley
and Stanley [16]. While this insight is consistent with the
ubiquity of divergence and creativity in natural evolution,
the lesson remains important because of the near-ubiquity
in evolutionary computation of convergent evolution through
static fitness functions.

Finally, the success of novelty search at exploiting
representation-dependent features like self-adaptation suggests
the need to reevaluate previous results in which the promise
of a representation-dependent feature was not met by fitness-
based search [2, 5, 13]. The true potential of such a feature
may not be reflected by the ability of convergent search to
exploit it. For experiments comparing or modifying represen-
tations in particular it may be important to apply some form
of divergent search or to otherwise encourage representational



quality. Otherwise, the conclusions reached could be deceptive
and poorly reflect a representation’s true potential.

V. CONCLUSIONS

This paper argues the hypothesis that divergent search,
i.e. search that branches towards many continually-diverging
goals, may generally encourage better representations than the
dominant approach in evolutionary computation of fitness-
based search towards a fixed target. This hypothesis was
supported by reviewing previous experiments with novelty
search, a divergent evolutionary algorithm that often demon-
strates representational advantages over fitness-based search.
The general conclusion is that exploratory divergent search
processes like novelty search may often prove beneficial for
representation.
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