Investigating Biological Assumptions through
Radical Reimplementation

Joel Lehman and Kenneth O. Stanley
To appear in: Artificial Life journal. Cambridge, MA: MIT Press, 2014.

Abstract

An important goal in both artificial life and biology is uncovering the most
general principles underlying life, which might catalyze both our understanding
of life and engineering life-like machines. While many such general principles
have been hypothesized, conclusively testing them is difficult because life on
Earth provides only a singular example from which to infer. To circumvent
this limitation, this paper formalizes an approach called radical reimplementa-
tion. The idea is to investigate an abstract biological hypothesis by intentionally
reimplementing its main principles to diverge mazimally from existing natural
examples. If the reimplementation successfully exhibits properties resembling
biology it may better support the underlying hypothesis than an alternative
example inspired more directly by nature. The approach thereby provides a
principled alternative to a common tradition of defending and minimizing de-
viations from nature in artificial life. This work reviews examples that can be
interpreted through the lens of radical reimplementation to yield potential in-
sights into biology despite having purposefully unnatural experimental setups.
In this way, radical reimplementation can help renew the relevance of compu-
tational systems for investigating biological theory and can act as a practical
philosophical tool to help separate the fundamental features of terrestrial biology
from the epiphenomenal.
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1 Introduction

A jet engine is not among the endless forms crafted by natural evolution, but its
absence is not surprising. Biological evolution is not an engineer, but a tinkerer
constrained to tweak previous designs incrementally rather than holistically revise
them [47]. Thus it is natural that the attractors for biological design, even across
divergent lineages, differ from those of more directed design methodologies such as
human engineering. Furthermore, while evolution expands to fill reachable niches
[90, 13], it is unlikely to exhaustively explore every possible way of filling them [47,
63, 13]. In this way, historical contingency may lead natural evolution to converge
to a solution for a particular biological problem, leaving other plausible possibilities
unrealized [10, 6]. In total, the effect of these constraints biases evolution to evolve
solutions from a systematically reduced subset of all that are possible. Interestingly,
because of this systematic bias in how nature generates solutions to biologically-
relevant problems, features that are merely incidental to a deeper phenomenon may
appear ubiquitous. The result is that inferences based on observing only biological
examples may be misleading [53, 101, 85].

This insight is a central motivation for the field of artificial life (alife; [53, 11]),
which aims to synthesize and explore life in all possible instantiations, thereby shed-
ding light on the general regularities of life. A common approach is to seed compu-
tational simulations with simple self-replicating organisms in the hope of facilitating
open-ended evolution of increasingly complex and diverse organisms [53, 86]. Yet a
danger in such an approach is that directly transplanting the mechanisms of terrestrial
life into computational mediums may not help isolate the most general principles of
life. The problem is that the transplanted mechanisms themselves might be incidental
to biological evolution rather than universal across all possible forms of evolution. In
other words, artificial life may sometimes not be artificial enough.

As a helpful analogy, consider an isolated man on an island trying to understand
flight. One avenue towards such understanding would be inference from biology. If
he observed only birds, the man might conclude that flappable wings with feathers
are essential to flight. However, after seeing a bat flying, that same man could safely
conclude that because bats do not have feathers, feathers must not be essential after
all. Yet it might still seem to him that flappable wings are [65]. Thus even with
multiple examples of the same phenomenon, direct inference can remain deceptive.

To validate his understanding of flight, the man might synthesize a flying object
made of inorganic material from his current best understanding of flight’s principles
(i.e. flight as a result of flapping wings). Yet even if such synthesis was successful, it
would not isolate the general principles of flight, which run deeper than wings. To
take this particular example to its logical conclusion, imagine instead that the man
was able to synthesize a working helicopter. The helicopter’s mechanism of flight, by
its radical divergence from previously observed examples, provides evidence that the
man has arrived at an understanding of flight deeper than wings.

This example illustrates the value of divergent implementations for isolating and
validating basic principles. Importantly, inferring the deeper principles of aerodynam-
ics, which is easier given the helicopter, helps to unify understanding of all artificial
and biological instances of flight. At the same time, the helicopter also serves to vali-



date aerodynamics by demonstrating what engineering with such knowledge enables:
agile powered flight for human transportation.

Returning from the analogy, the implication is that synthesis of life in divergent
media may not always illuminate general principles of life beyond only what has
been observed on Earth; indeed, synthesized models often include many mechanisms
directly imported from biology. These insights thus motivate an approach to investi-
gating biological principles through alife that can be called radical reimplementation.
The main idea in radical reimplementation is to craft an abstract hypothesis about
the crux of a given biological principle, and then to test this hypothesis by reimple-
menting the abstraction in a way that is maximally different from how it exists in
nature, yet that still exhibits biological similarity in its effects. Just as a helicopter’s
significant divergence from a bird yields valuable perspective on the nature of flight,
a successful radical reimplementation of any other biologically-relevant principle may
also more clearly expose the core of the underlying phenomenon than would consid-
ering additional biological examples; hence the need for investigations outside nature.

While alife is a relevant field of research for such investigations, a difficulty for alife
researchers seeking to be relevant to biology is to demonstrate that their models relate
convincingly to biological truth [101, 11, 45]. To achieve such relevance, researchers
often argue that the abstractions made by their models are principled, i.e. that the
biological details filtered out through abstraction were non-essential. In other words,
alife researchers often minimize and defend deviations from nature [106, 29].

Thus another way to view radical reimplementation is as a principled alterna-
tive to the tradition within alife of minimizing deviations from nature. While the
differences in models derived from nature must usually be well-motivated, explicitly
mazimizing divergence can be equally as principled as minimizing and justifying it.
Interestingly, although an unofficial motto of alife is “life-as-it-could-be,” to explore
beyond “life-as-it-is-known,” this “could-be” is not often a radical departure from
natural mechanisms.

In this way, the advantage of the radical reimplementation approach is that it
escapes the underlying restrictiveness of attempting to mimic nature directly. It is not
necessary to claim that a model is intrinsically biologically plausible; instead the idea
is to provide radically novel examples of phenomena usually associated with biology.
In short, the radical reimplementation approach challenges researchers to maximize
the divergence from the workings of terrestrial biology while instantiating qualitatively
similar output. When successful, such reimplementations indirectly provide evidence
for the underlying principles guiding their creation.

While some reimplementations may be guided only by domain-specific principles
(e.g. a child folding a paper airplane is unlikely to be inspired by the core mechanisms
of flight), if such underlying principles are general enough also to encompass natural
examples, they can provide a hypothesis about the root mechanism of a biological
phenomenon. Radical reimplementations can then provide evidence for or against the
underlying hypothesis. That is, a maximally-divergent reimplementation of a plausi-
ble yet entirely false biological hypothesis is unlikely to produce results qualitatively
similar to biology purely by coincidence. For example, incorrectly inferring rules of
flight from birds is unlikely to lead to engineering a passenger jet. In this way, beyond
providing an additional and less-biased example from which to infer general biological



principles, a well-motivated radical reimplementation may itself also provide abstract
evidence for a particular biological hypothesis.

In this paper the radical reimplementation approach is illustrated by reviewing
four examples of existing research in the spirit of radical reimplementation. Examples
are guided by abstractions general enough to explain both biological and artificial
instances of a particular biological phenomenon. In this way, the reviewed examples
can be interpreted as counterexamples designed to probe the validity of fundamental
biological assumptions.

In particular, the examples review radical reimplementations of diverse biological
phenomena, including intelligence, self-reproduction, development, and evolution. In
each case, the radical reimplementation perspective allows exploration of biological
questions through biologically implausible models. In this way the examples showcase
the ability of radical reimplementation to ask questions about seemingly fundamental
biological phenomena and to potentially help to illuminate the most general truths
underlying specific biological processes on Earth. Importantly, deeper understanding
and progress in science often results from reassessing and overturning widely-accepted
assumptions. Thus new philosophical tools for investigating such assumptions in a
principled way, like radical reimplementation, may facilitate such progress.

2 Background

To better understand the context motivating the radical reimplementation approach,
the traditional approach to alife and its reception within the field of biology are
reviewed in the next sections.

2.1 Artificial Life

The field of alife is diverse; it studies the potential for creating novel forms of life
in all mediums. Its ambitious aims are to study “artificial systems that exhibit be-
havior characteristic of natural living systems,” to explain “life in any of its possible
manifestations,” and ultimately to “extract the logical form of living systems [53].”
Interestingly, biologists, especially philosophers of biology, also have aimed to un-
cover the most general rules governing life and its evolution. However, while alife
aims to synthesize new life to illustrate such rules, biologists generally proceed in-
stead by extrapolating from terrestrial organisms. A potential obstacle to accurate
extrapolation is known as the N = 1 problem [101, 53]: From a statistician’s point
of view, biologists must infer general rules for life everywhere based on a sample size
of only one (life on Earth), which may be misleading. As an analogy, for someone
unfamiliar with a deck of playing cards it would be impossible to infer the structure
of the entire deck, i.e. all of the various suits and ranks, from only observing the
four of diamonds. The implication is that if life varies dramatically over its possi-
ble realizations, our observation of Earth alone may not be sufficient to extrapolate
life’s general structure. In this sense, alife offers a means of expanding this sample
size through synthesis: “The ideal experimental evolutionary biology would involve
creation of multiple planetary systems, some essentially identical, others varying by a



parameter of interest, and observing them for billions of years. A practical alternative
[...] is to create synthetic life in a computer [85].”

This idea of synthesizing and simulating life within a computer is one of the
central threads within alife, underpinning such experiments as self-reproducing com-
putational entities [52], three-dimensional virtual creatures [93], and simulated petri
dishes of digital organisms [19, 79, 62]. The general approach is to craft algorithmic
abstractions of biological systems, to run virtual experiments, and then to investigate
the products. One advantage of computational alife is that it is not limited to mathe-
matically tractable models, which often force unrealistic assumptions onto models in
fields such as theoretical biology. Thus some propose that alife is best applied in the
spirit of biological models but with such unrealistic assumptions relaxed [75].

Yet this approach to alife, by constraining it to be like life as it is on Farth, in-
herently conflicts with one of alife’s central objectives: to be the science of “life as it
could be” [53]. Indeed, a common dismissal of some alife experiments is that they are
too engineered [104], i.e. not feasible to have emerged naturally. This criticism of en-
gineered approaches overlooks the potential advantage of testing hypotheses through
situations impossible in nature and through counterexamples. While if too much is
engineered with a top-down approach, the results may have little to do with natural
emergence, they might yet still imply much about life. That is, designating an al-
ife model to be biologically relevant only when a similar system could have feasibly
arisen on its own from nature is unnecessarily limiting: Human-engineered life may
operate in vastly different ways than naturally occurring life without loss of general-
ity. After all, diverse examples of a phenomenon may more easily reveal the deepest
principles underlying it than more homogeneous examples; this observation motivates
considering engineered alife approaches as a means of probing fundamental questions
about life. Thus radical reimplementation can be seen as a rationale and defense
for engineering-based alife, which is often dismissed as biologically implausible. For
example, a traditional alife approach might show that if specific conditions similar to
those observed in nature are met, that an evolutionary algorithm will lead to the evo-
lution of cooperation. In contrast, an engineering-oriented radical reimplementation
might instantiate conditions entirely divergent from nature yet in which cooperation
also evolves.

Of course, many of the grand philosophical questions alife seeks to answer were
investigated first by philosophers of biology. Furthermore, the achievement of alife’s
most ambitious goals would deeply impact our understanding of biology. Because
of this synergistic overlap, one might expect the study of alife to be generally well-
received and perceived as important within biology. However, as reviewed in the next
section, there is continuing controversy in biology over alife’s relevance.

2.2 Perception of Artificial Life within Biology

The opinions of scientists in a particular field about the rigorousness or importance of
the science done in other fields may sometimes derive from implicit generalizations.
For example, one relevant such criterion is whether the object of study is physically
real or if it is instead abstract or simulated. Scientists studying “real” phenomena
may be skeptical of experimental results from simulations or abstract models because



while the simulated result is dependent upon the integrity of the designed simulation,
the integrity of the real world itself is rarely in question. In other words, an extra
step is necessary to justify simulated results.

It may be for this reason that many researchers in biology who are accustomed
to measuring physical quantities associated with real organisms tend to criticize alife,
which often measures quantities that are the result of a computational simulation.
This sentiment is illustrated by a quote from John Maynard Smith: “I discuss below
a particular example of a dynamic system, ‘Turing’s morphogenetic waves,” which
gives rise to just the kind of structure that, as a biologist, I want to see. But first
I must explain why I have a general feeling of unease when contemplating complex
systems dynamics. Its devotees are practicing fact-free science. A fact for them is,
at best, the output of a computer simulation: it is rarely a fact about the world.
[70]” Dawkins has similarly discussed the difficulty involved in creating biologically
accurate simulations, although he concludes with more optimistic comments on the
ultimate prospects of alife [29].

However, while validating alife experiments requires an additional step not often
needed in biology experiments, this additional burden in itself is not sufficient to
dismiss alife outright. That is, it would be parochial to suggest that how science is
done in one’s particular field must necessarily imply that any deviation is wrong. For
example, a physicist could similarly criticize biology on the same grounds because
physics experiments generally do not depend on geography, but a biologist’s results
could, due to different distributions of wildlife. So a biologist’s results might require
an additional step (from the physicist’s view) of normalization or justification. The
particular methodology, as long as it is sound, is not the core of the issue. Ultimately
what is important about any scientific experiment, regardless of the field, is whether
it is rigorous and principled; rules of thumb like physicality versus simulation thus
should not displace less formulaic human analysis of the quality of the experiment.

Indeed, a stronger attack on the relevance of alife is that its researchers potentially
generally practice sloppy science. Alife’s reliance on simulations may make conducting
principled experiments more difficult because of the challenge in justifying and vali-
dating such simulations. That is, there may be hundreds of parameters in a simulation
that must be carefully chosen and defended. Yet it is not impossible: Dawkins has ar-
gued the merits of the NetSpinner models [29], and the Avida models of computational
organisms are generally well-received within biology [62, 61, 36, 22, 23, 79, 19, 106].
Furthermore, the use of simulations derives from the use of models in general, which
are prevalent in theoretical biology. The main difference is that alife simulations are
almost always too complex for rigorous mathematical analysis. However this com-
plexity is becoming less problematic: Increases in computational power have enabled
empirical analysis of alife simulations through large numbers of independent trials
with varying parameters [1, 78]. Such large-scale experiments can help demonstrate
the robustness of results, i.e. that the conclusions of the experiment do not result
trivially from overtuning of specific parameter settings.

However, it is true that some work in alife, just as in other fields, might fall
prey to the temptation to promote conclusions overreaching the true implications of
the presented evidence [101]. Such overreach is particularly easy in a field like alife
in which there is often no inherent hard grounding of the science to reality. For



example, alife researchers can make abstract claims about what the results from their
simulations represent, while a scientist who claims to have a method for real-world
robotic bipedal locomotion would eventually have to back such claims with an actual
walking robot.

In conclusion, the overall difficulty facing researchers in alife seeking relevance to
biology is in producing relevant conclusions and sufficiently justifying their simulations
and conclusions in a convincing way. Oftentimes the simplifications and assumptions
made in complex alife systems have a particularly ad-hoc feel. While the results of
such models may still be interesting and thought-provoking, the link to reality and
biology is easily seen as tenuous, especially within the field of biology; it is unclear
how the results should be interpreted or what (if anything) they generally imply.
However, one unorthodox way to circumvent this issue is not to claim that a model
reflects terrestrial biology or that it is biologically plausible. That is, a model might
shed light on hypotheses related to biology even if its mechanisms are implemented in
a way unrelated to or inconsistent with biology. While this step might seem a strange
path towards establishing biological relevance, the next section explores heuristics for
judging abstractions by this kind of indirect evidence.

3 Heuristics for Evaluating Abstractions and Reim-
plementations

Because a central motivation of this paper is to aid the search for deep and elegant
abstractions of natural phenomena, it is important to describe clearly what criteria
are considered to evaluate them. In addition, because the radical reimplementation
approach requires reimplementations to diverge significantly from nature, it is also
important to describe what constitutes radical divergence.

3.1 Evaluating Abstractions

Intuitively, a deep abstraction concisely captures the crux or essence of a phenomenon.
It neither abstracts away what is essential nor includes details that merely coincide
with examples of the phenomenon. In contrast, a more superficial abstraction focuses
on non-causal (but perhaps seductively intuitive) features of a phenomenon that may
mask more general principles.

An alternative way of viewing a deep abstraction is as a hypothesis for a root
causal mechanism that underlies all examples of a particular phenomenon. For exam-
ple, lift, a deep abstraction of flight, can also be seen as an abstract mechanism that
potentially unifies all biological and artificial instances of flight. That is, whatever
the specific concrete mechanism, wherever lift overpowers gravity’s pull, the result
is flight. Importantly, because an overly coarse abstraction might trivially unify ex-
amples of a phenomenon, the value of an abstraction or root mechanism cannot be
judged only by its ability to unify examples, but also by how well it captures the
crux of the phenomenon. However, quantifying this intuitive concept is difficult. To
circumvent such difficulty, the approach in this paper is motivated by the idea that



synthesis through engineering can demonstrate understanding. In this way, engineer-
ing can enable indirect empirical investigation of the quality of a proposed highly
abstract mechanism.

More concretely, the suggested approach for evaluating abstractions relies on
simultaneously maximizing two competing criteria: A deep abstraction of a phe-
nomenon (1) facilitates thorough exploitation of that phenomenon through human
design and (2) elegantly unifies natural and artificial examples of the phenomenon.
The first criterion suggests that an abstraction’s quality can be judged by the en-
gineering possibilities enabled through exploiting it, relative to other abstractions.
For example, understanding aerodynamics hints at powered flight beyond the natural
example, like passenger jets, which are not similarly enabled by viewing flight as a
product of flapping wings. In a similar way, engineering or synthesizing divergent ex-
amples of other biological principles concretely demonstrates deeper understanding by
grounding the guiding abstractions in reality. The second criterion is that a deeper ab-
straction will concisely explain more examples of that phenomenon (both natural and
artificial) when compared to competing abstractions. Importantly, the requirement
of ranking highly on both heuristics circumvents limitations in each taken separately.
For example, abstracting away too much detail may trivially unify all examples of a
phenomenon, and yet exploiting such an uninformative abstraction is unlikely to lead
to greater engineering possibilities. Conversely, if a particular engineering approach
enables new possibilities but does not also explain biological examples, the implication
is that there may exist a yet deeper principle underlying both.

In this way, existing biological examples and divergent engineered ones can to-
gether provide evidence that a phenomenon is well-understood and that the abstrac-
tion exploited to accomplish such engineering is deep. Naturally, engineering-based
exploitation of abstractions typically serves to bend the underlying phenomenon to
meet human needs. Thus the quality of a particular abstraction may be estimated by
the degree to which it facilitates such bending in many contexts while also explaining
natural instances of the phenomenon. Note that if a particular phenomena has no
practical implications, it can still potentially be bent through human engineering to
demonstrate that its cause is well-understood.

3.2 Evaluating Divergence between Implementations

An important practical consideration for the radical reimplementation approach is
defining what constitutes radical divergence between implementations. While intu-
itively one can appeal to the difference between biological flight and a helicopter as an
example of what is meant by radical divergence, more explicit definitions can serve
to reduce subjectivity and clarify basic assumptions. For this reason, this section
elucidates such measures of divergence.

Such elucidation should help to clarify a central claim of this paper, that alife
reimplementations of biological phenomena may often not diverge significantly enough
from terrestrial example to provide insight into universal biological principles. In
particular, a common strategy in alife is to abstract biological systems into simpler,
more tractable models. As more details are abstracted away, the model increasingly
differs from the underlying system being modeled. In this way, a model’s level of



abstraction can be viewed as one dimension of distance between the model and its
biological inspiration: A more abstract model of a system diverges further from the
underlying system than does a more concrete one.

The motivation for abstract models is to filter away as much non-essential detail
from the underlying biological system as possible, in order to isolate its essential
features. Importantly, such an approach may isolate the essential features of the
particular studied biological system while still failing to isolate the essential features
of the underlying general phenomenon. In terms of the flight analogy, one might
isolate and understand the specific principles of winged animal flight without grasping
the greater generalities of universal flight.

To take an example more relevant to alife, artificial neural networks (ANNSs) are
computational abstractions of biological brains that apply simplified models of neu-
rons [71]. The idea is to realize intelligent behavior by interconnecting many instances
of the simplified neuron models. One popular ANN model abstracts a biological neu-
ron as a weighted-sum unit [71], ignoring many specific biological features such as ion
channels and neuromodulatory chemicals. In this way, such a model further diverges
from biological example than does a model with greater biological detail. However,
a weighted-sum unit abstraction of a neuron still implements key features directly
imported from biological neural networks (e.g. neural networks are a collection of
interconnected simple processing units), which naturally limits the generality of ques-
tions about universal biology that such a model can reliably help answer. Thus, any
ANN model would likely be poorly suited to investigate assumptions about the ne-
cessity of neural networks for facilitating animal-like intelligence in life of any form,
e.g. are neural networks a key feature of all possible evolved intelligences, or are they
merely an artifact of the particular evolutionary trajectory taken by Earth’s biology?

The problem is that appealing only to an ANN model to explore a question that
encompasses both ANN models and other alternatives ignores the existence of the
other possibilities: ANNs cannot address whether substrates for intelligence other
than neural networks might be equally or more effective. More broadly, it is challeng-
ing for abstract models based only on biological examples of a particular phenomenon
to convincingly characterize an entire class of phenomenon in general. The conclusion
is that the possible divergence between existing biological examples and an artificial
reimplementation is limited if the reimplementation is based only on increasing levels
of abstraction.

Given the ubiquity of alife models that directly abstract biology at a high level,
limitations of such an approach are problematic for alife’s quest to answer questions
about life independently of any particular form. For example, alife experiments ex-
ploring general conditions for the evolution of important classes of behaviors (e.g.
cooperation, altruism, sexual reproduction) often take direct inspiration from terres-
trial examples or from existing understanding inferred from biology. Because so much
depends on abstracting at a high level from existing example, there is no guarantee
of separating the essential features from the incidental. Thus there is a need for di-
vergent models (and measures of divergence) based on principles other than levels of
abstraction alone.

In particular, one way to isolate an abstraction of a phenomenon from its biological
inspiration is to explicitly reimplement it in a maximally divergent way. That is, a dif-



ferent measure of distance between two implementations of an underlying abstraction
is how few mechanisms they share in common. That is, a helicopter achieves flight by
mechanisms much divergent from a bird: Fast-spinning rotors have little in common
with flapping wings. In contrast, an ornithopter is more directly motivated by bird
wings and implements many of the same mechanisms, even if they are implemented
in a different material or lack feathers. In this way, what is meant by radical reimple-
mentation is an implementation guided by an abstraction of a biological phenomenon
that is nevertheless realized by as few relevant shared mechanisms as possible with
existing biological examples.

Note that the claim here is not that radical reimplementation is the only sound
approach to alife experimentation; instead, the idea is that radical reimplementa-
tion provides a useful philosophical tool for isolating an abstract mechanism from its
particular biological instantiation, thereby avoiding the influence of many potential
confounding factors.

4 Radical Reimplementation

This section describes the radical reimplementation approach in more detail and then
illustrates its utility through case studies of its application in practice.

A central analogy in this paper connects thinking about flight specifically to bio-
logical principles in general. The insight is that inferring too directly from nature’s
examples can lead to deception. That is, many features that superficially appear es-
sential to life may reflect only one possible implementation among many of a deeper
but less obvious concept. Problematically, because this deeper concept may be coun-
terintuitive, imagining any such alternative implementations may be difficult as well.
Thus a tempting assumption is that ubiquitous and obvious features observed in
nature are universal, i.e. characteristic of all possible life in general. While such as-
sumptions require verification, it is difficult to explore their validity when there is
only one example (i.e. life on Earth) from which to infer. Even where Earth pro-
vides multiple instances of a biological phenomenon, these instances all are drawn
from the same biased sampling method (i.e. natural evolution). Such bias may often
cause evolution to converge to similar implementations of a phenomena and prevent
it from reaching others; for example, evolution is unlikely ever to invent a large-scale
jet engine. Thus, just as a helicopter is more informative than a bat in broadening
inferences drawn about the nature of flight, the approach highlighted in this paper
advocates creating maximally divergent examples of biological principles to facilitate
stronger inference. In this way, radical reimplementation can act as a philosophical
tool for investigating whether rarely questioned biological features are masking more
fundamental explanations.

While such investigation may seem like a promising application of alife in general,
an issue with many alife models is that because they are so directly inspired by mech-
anisms in nature they may not illuminate the general phenomena they attempt to
explore. For example, inventing a mechanical bird with flapping wings demonstrates
less understanding of flight than does inventing a helicopter; the reason is that success-
ful synthesis through a more general mechanism demonstrates greater mastery than
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does simply applying the most immediately evident concrete mechanism in a new
context. In other words, evidence for understanding a general principle is better pro-
vided by a radical reimplementation than by a rote recreation. Although artificial life
models are rarely rote recreations, such models often focus on biological plausibility
and transplanting existing biological understanding into a new (often computational)
medium. The danger of such transplantation is that features incidental to biology
may be included; in this way alife can sometimes run the risk of assuming what it
sets out to prove.

Thus another benefit of viewing results through the lens of radical reimplemen-
tation is that such an approach requires stating explicitly what is being reimple-
mented, which better frames how the results should be interpreted. For example,
an experiment focusing on development might explore a radical reimplementation
of a developmental process, and embed that radical reimplementation within a more
conventional evolutionary process. Thus while the results of such an experiment can
potentially shed light on the generalities of development, they may not reflect much
about generalities of evolutionary systems. In other words, an experimenter may rad-
ically reimplement only what is necessary to explore the biological hypothesis being
explored. In this way, this approach can clarify for which aspects of universal biology
an experiment may provide evidence.

Given the potential benefits of radical reimplementation, an important practical
question is how to create such a model (figure 1). The first step is to examine a
biological principle of interest and to abstract it at a high level, that is, to formulate
a hypothesis on the root mechanism behind a particular biological feature. From
such a hypothesis, the next step is to synthesize a concrete implementation of the core
mechanism that deviates significantly from natural examples. In other words, the idea
is to return from the highly abstract to the concrete, but to land in as different a place
as possible from the starting point. In particular, the reimplementation should share
in common as few concrete mechanisms as possible with its biological inspiration.
For example, if inspired by birds to form the abstract hypothesis that lift is central
to flight, the radical reimplementer might create a helicopter that produces lift by
blades that rotate at high speed about a central mast. If such a helicopter can be
made to fly, then by virtue of its deviation from biology it can provide evidence
for the underlying hypothesis about lift. Additionally, evidence for the abstraction’s
generality can be established by the vast diversity of aircraft that an understanding
of lift facilitates (e.g. propeller planes, jumbo jets, and helicopters). In this way, a
successful abstraction both unifies understanding of all examples of a phenomenon
and facilitates different applications and implementations.

The promise of this approach is that it can facilitate probing deep explanations
of biological principles. The next sections illustrate the potential of radical reimple-
mentation by reviewing examples of alife research through its lens.

4.1 Questioning the Necessity of Representations for Intelli-
gent Behavior

Intelligent behavior is characteristic of animal life on Earth. Although its realization is
not fully understood, such biological intelligence is largely enabled by brains composed
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Figure 1: The radical reimplementation approach. To radically reimplement a par-
ticular biological phenomenon requires first creating an abstract hypothesis about
the root mechanism enabling that phenomenon. Then, the abstract hypothesis is
reimplemented in such a way to maximally diverge from existing biological example.

of many interconnected neurons. While the functionality of individual neurons is
becoming more well-understood, the abstract principles guiding how large networks
of such neurons enable intelligence is still in part elusive. Furthermore, beyond the
singular biological anecdote provided by neural networks, an open question is whether
there exists more general abstract principles for constructing intelligence.

Answering this question would lead to a better understanding of the nature of
intelligence, and could also enable engineering intelligent machines that might benefit
humanity and industry. As a result, many fields, including cognitive science, alife,
and artificial intelligence (AI) explore how to understand and recreate intelligence
computationally. In particular, to facilitate such intelligent machines it may be im-
portant to understand what kinds of general computational architectures can enable
intelligent behavior.

That is, there are many different ways to approach modeling intelligence. One
possibility is that an essential component of intelligent behavior is building an internal
model of the world and thereby explicitly representing world knowledge. In other
words, it is possible that increasingly intelligent behavior requires explicit mental
representations of the world and its state, which can be leveraged through planning
to achieve desired goals. If this view is true, any productive Al approach would need
to provide mechanisms to implement or realize such internal models.

Indeed, guided by intuitions about human thought, early Al researchers focused
largely on Al algorithms and architectures built on centralized control, planning, and
symbolic manipulation of knowledge [18]. Yet an interesting but counter-intuitive hy-
pothesis is that intelligent behavior is possible without representation of the world and
its state. Evidence for such a hypothesis is given by the complex behavior of insects,
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which is realized through relatively simple neural networks likely unable to imple-
ment rich models of the world. However, the principles connecting biological neural
networks to intelligent behavior are not conclusively understood, which complicates
exploring the hypothesis directly in biology.

Rather than analyze nature, an alternative approach is to create artificial exam-
ples through engineering. In particular, if an engineered implementation achieves
intelligent behavior without including the capacity for world modeling or knowledge
representation, it provides a counter-example to the hypothesis that representations
are strictly necessary for intelligence. An engineering approach that can be viewed in
such a light is the subsumption architecture [16, 14], a methodology that prescribes
decomposing complex behavior into layers of simple computational behaviors that
subsume each other. As an example of how radical reimplementation can frame ex-
perimental results to yield potential insight into universal biology, the next section
reviews results from research on the subsumption architecture through the lens of
radical reimplementation.

4.1.1 Subsumption Architecture

It is possible that in nature, the evolution of intelligence proceeded through building
networks of behaviors that are each simple in construction. In this view, higher-level
behaviors are enabled through leveraging and subsuming lower-level behaviors. Such
a possibility is supported by the Turing-complete substrate for complex computation
provided by layered recurrent neural networks [92]. However, the computational abil-
ities of such neural networks also encompass building world model and representing
knowledge. Thus a more convincing existence proof for intelligence without repre-
sentation is possible through programs implementing intelligent behavior but without
any possibility for representing the world. In this way, it is possible for a radical reim-
plementation of intelligence to illuminate the underlying hypothesis that such world
models are not necessary for realizing at least some level of intelligent behavior.

One such reimplementation is provided by the subsumption architecture [16, 14],
which controls robots through human-engineered layers of augmented finite state ma-
chines (AFSMs). Each AFSM is composed of a small number of states that the
machines can transition between, one or two internal registers, and an optional timer.
Additionally, the AFSMs are able to perform simple computations such as vector
sums. The machines run asynchronously and can communicate with other AFSMs
by sending fixed-length messages (often only one bit long).

Each of the AFSMs is designed to implement a particular behavior, and is con-
nected by messages to other relevant behaviors in a fixed-topology network. Transi-
tions between states in each AFSM are triggered by timers or by messages received
from other AFSMs. Importantly, the system is designed such that no particular
AFSM can be aware of the global state of the system, nor can any particular AFSM
can send messages that control all other AFSMs. Furthermore, because the com-
putational abilities of each AFSM is limited, no AFSM on its own can implement a
world model or retain much information about the state of the world. Because of such
intentional limitations, any intelligent behavior resulting from the subsumption archi-
tecture cannot be the product of an internal world model or explicit representation
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of information about the world. Note that while superficially similar to ANNs (e.g.
AFSMs are also computationally simple and interconnected), neurons in ANNs are
homogeneous and are designed to provide a substrate for distributed computations.
In contrast, each AFSM is hand-engineered to implement a particular behavior, and
interconnections between AFSMs thereby do not permit a universal mechanism for
distributed computation, but instead only inhibit or influence other simple human-
engineered behaviors.

Despite their lack of central control, models of the world, or explicitly represented
knowledge, implementations of the subsumption architecture have successfully real-
ized diverse autonomous behaviors in complex dynamic environments [14, 15, 25, 26].
In addition, subsumption architecture has proved productive in many extensions, such
as when combined with evolutionary algorithms [105, 49], reinforcement learning [67],
logical inference [2], or when applied to atypical domains such as generating musical
accompaniment [17]. Finally, as evidence of its robustness even in practical commer-
cial applications, the subsumption architecture also enables autonomous consumer
robots such as the Roomba [51] that automatically vacuum rooms. These results
serve to provide indirect evidence for the hypothesis underlying the radical reimple-
mentation: Some aspects of autonomous intelligent behavior can be constructed with-
out internal models or explicit knowledge representation. In this way, this example
demonstrates the potential for viewing results through the lens of radical reimple-
mentation.

4.2 Questioning Genetic Regulatory Networks in Biology

Life on Earth depends upon regulatory networks realized through nucleic acids and
proteins. That is, cells in nature function and self-reproduce through genetic pro-
grams implemented through gene regulatory networks (GRNs; [28]). An interesting
biological question is whether evolutionary regularities inferred from life on Earth are
specific to such self-reproducing networks, or whether they reliably generalize across
evolving self-reproducing entities embedded in other substrates.

Such a question is difficult to answer by extrapolation from existing biological
examples because there is no substantial variety in the root mechanisms by which
life on Earth functions and reproduces: All known life depends upon GRNs based
on nucleic acids. In this way, inferring principles about the necessity of GRNs from
biology is subject to the N = 1 problem (recall that this problem implies that in-
ferences made from a sample size of one are often misleading [101, 53]). Thus an
intriguing possibility is that this problem can be circumvented by radically reimple-
menting self-reproduction through alife such that it holistically differs from biological
self-reproduction on Earth. Interestingly, many alife implementations of hereditary
encodings may not equally aid in isolating the generality of existing evolutionary
laws. For example, many approaches in alife and evolutionary computation abstract
away self-reproduction entirely, relying upon an explicit evolutionary algorithm to
copy and breed organisms externally from the organisms themselves. While useful for
many other purposes, such an abstraction prevents studying how evolutionary reg-
ularities may emerge from the dynamics of self-reproduction. Thus, what is needed
to explore the hypothesis that evolutionary laws do not depend upon GRN-based
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self-reproduction is an alife approach that reimplements self-reproducing entities in
an alternative substrate.

4.2.1 Avida

An interesting possibility for an alife radical reimplementation of self-reproduction is
self-copying computer programs. That is, given a sufficiently expressive instruction
set, a computer program can be written that replicates itself through copying the data
that composes it. Indeed, such a replication mechanism enables destructive computer
viruses, although they typically do not evolve like biological viruses. However, it
is also possible to create computing environments in which self-reproducing digital
organisms evolve [86, 61], driven by pressures to replicate faster [86] or to successfully
perform desired computations [61]. Because of their significant divergence in function
and means of self-reproduction, such digital organisms provide a suitable means to
radically reimplement the hypothesis explored in this section.

In particular, the Avida alife platform [61] is the most widely-applied evolutionary
model for digital organisms. In Avida, each digital organism is located in one cell of
a two-dimensional grid, and is composed of a genetically-represented computer pro-
gram and a simple simulated CPU. Evolution is seeded with a simple self-replicating
computer program that is written in a turing-complete assembly language with 26
instructions. Importantly, the assembly language is designed such that mutations of
functioning programs often remain viable. The CPU has access to its internal memory
(in which the program is stored), several registers for holding intermediate results,
and input and output buffers for interacting with the digital organism’s environment.
Self-reproduction is enabled in Avida through individual instructions that allocate ad-
ditional program memory, that copy one instruction in memory to another memory
location, and that divide an organism into two separate organisms. Finally, digital
organisms can reproduce more quickly by gaining additional CPU time. In particu-
lar, experiments in Avida are designed such that whenever desired computations are
performed by an organism, its execution speed increases. Taken together, the features
of Avida instantiate the potential for open-ended evolution of digital organisms.

In this way, it is possible to view experiments in the Avida alife platform [61] as
radial reimplementations of self-reproductive entities. That is, in Avida, the behav-
ior and replication of organisms is based on a digital computer instead of on GRNs.
Despite such divergence, and with few domain-specific modifications, experiments in
Avida have led to demonstrations of how complex features can evolve [61], how sleep
can be adaptive [7], and how motility can evolve [40]. Furthermore, Avida has prac-
tical applications in software development [72], asynchronous sensor communication
[72], and energy management [72]. In this way, the diversity and quality of results
from Avida gives indirect evidence that many evolutionary patterns observed in nat-
ural biology may generalize to classes of self-reproductive entities much different from
biological GRNS.
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4.3 Questioning Development

Development is among the most prominent features of complex biological organisms.
An important biological question is, what is the most fundamental principle behind
development that we can identify to explain its central role in the realization of
phenotypic form and shape? More specifically, what features of biological development
enable compactly representing highly complex, functional, and evolvable organisms?
That is, the vast complexity of the 100 trillion cells that compose an adult human
are organized over time through biological development and are efficiently encoded
by less than 50,000 genes [102]. Furthermore, such development has been much
modulated by natural evolution to enable the vast diversity of complex multicellular
life on Earth. Importantly, identifying the most general laws underlying development
might facilitate human engineering of similarly complex artifacts, which would have
profound implications for society.

However, when contemplating development, the danger is that superficial aspects
of the process might seemingly provide plausible answers to philosophical questions
about the deepest principles governing it. On its surface, development generally
begins with a single cell that then repeatedly splits and differentiates into the mul-
ticellular adult form, e.g. a human adult develops over time from its zygote origins.
Notably, during development each cell exploits chemical gradients and local signals
from its neighbors to determine its identity and further differentiate. From this tra-
ditional perspective, the most intuitive inference is that temporal unfolding and local
interaction may be the key principles that explain the expressive power of devel-
opmental processes. In fact, the process of development as growth over time is so
familiar in biology that even questioning the necessity of such ubiquitous features
may seem at first entirely pointless or misguided. Yet it is interesting to consider
whether development in the traditional biological sense might be only a particular
implementation detail that masks a deeper principle.

Problematically, investigating this possibility is challenging through inference from
biology because of biology’s singularity: Biological life has mostly converged to a
singular overarching means of development and cellular replication. Thus inferring
principles about development’s necessity or purpose from biology is subject to the
N = 1 problem, which can be potentially be circumvented again through radical
reimplementation. Interestingly, most existing alife approaches to development may
not equally aid in isolating its general principles. For example, while much work in
alife has explored alternative developmental schemes [99, 12, 41, 33], nearly all of
these schemes operate fundamentally in the spirit of natural development, i.e. one
cell-like entity gives rise to many more through an iterative process of splitting and
differentiation, or at least growth [99, 64, 93, 41, 33, 12]. While such approaches
are thought-provoking and can illuminate some features of development, because of
their similarity to terrestrial biology it is not always clear what insights they bring
to isolate the deeper principles behind development.

For this reason it may be more informative to investigate models through the
radical reimplementation approach to alife. Thus, if an interesting hypothesis can
be derived for the root mechanism of development, it can be empirically investigated
by reimplementing it in a way purposefully divergent from biological development.
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In particular, if the results of reimplementation exhibit similar characteristics to the
biological outcomes, the abstracted root mechanism gains credibility.

One such high-level hypothesis for the root mechanism of development is that it
is a means for expressing an organism as a function of geometry. In other words, the
fully-developed form of an organism can be understood as the product of an abstract
function that maps from points in three-dimensional space to the type of cell (if any)
that should occupy each point in the space. The main motivation for this more broad
abstraction is that the most important aspect of development is the final pattern that
it generates, and that development over time is only one way to realize such patterns.
The implication is that there may be many such ways and that focusing solely on how
it is accomplished in terrestrial biology may be misleading.

While this perspective departs from the more common (and intuitive) view of de-
velopment as a temporal unfolding process that relies upon local interaction, there
are reasons to pursue such an abstraction. For example, that such a functional re-
lationship is possible at all is supported by the universal approximation theorem
[27], which establishes that a series of enough nested functions can approximate any
pattern (including biological patterns such as the phenotypic form of an organism).
However, though they thus can clearly approximate phenotypic form, whether nested
functions of geometry are a productive way to view developmental patterns is a sep-
arate question. Interestingly, it has been demonstrated that many heavily conserved
genes active in development work to establish chemical gradients that act as nested
coordinate frames that provide context to a particular cell about its role within the or-
ganism [84, 74]. This observation supports the idea that establishing nested patterns
is an important function of development.

Because nested coordinate frames appear to be an important feature of develop-
ment, an interesting hypothesis is that the formation of such nested frames may be
the main abstract mechanism of development. In other words, development in nature
may be only one way among many to approximate an abstract mapping from geom-
etry to form through a series of nested functions, and such mapping may be what
enables the compact representation and significant evolvability of multicellular organ-
isms in nature. While this hypothesis might appear tenuous in the context of biology
alone, it is possible to support it through empirical investigation, i.e. through a rad-
ical reimplementation of the hypothesized abstraction of development as a mapping
from geometry to form.

4.3.1 Compositional Pattern Producing Networks

One way to reimplement this abstraction that differs significantly from development
in nature is explicitly to represent development as a function of geometry. This
approach is embodied by compositional pattern producing networks (CPPNs; [97]).
The CPPN is a variant of a traditional ANN that composes a set of functions together
in potentially complex nested ways to produce a pattern when queried over some input
geometry (e.g. a two-dimensional coordinate frame). The basic idea is to represent a
phenotype as a function over a scalar field. In this way, CPPNs can represent complex
patterns from nested coordinate frames in a form much divergent from biological
development.
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In particular, the main idea behind using CPPNs to investigate this abstraction is
to apply computationally simulated evolution or human-guided breeding to structures
(e.g. pictures, songs, or ANNs) represented indirectly by nested functions of global
coordinates. These evolved functions are queried at each coordinate within a regular
grid to produce a final structure without local interaction or iterative temporal un-
folding. Thus the motivation is that the underlying hypothesis about development’s
root mechanism is supported if over many domains CPPNs facilitate computational
evolution of artifacts with biologically-similar regularities.

More concretely, a CPPN is based on the idea that a structure can be represented
as a function of the geometric space it inhabits. For example, consider a function
of one dimension; a three-dimensional printer moving along a line can apply such a
function to realize a linear structure. That is, when evaluated with a scalar input
corresponding to the printer’s current offset along its linear trajectory, the function’s
output modulates whether or not the three-dimensional printer lays down material. In
this way, a mathematical function can direct the realization of a physical structure.
Note that this approach generalizes to larger-dimensional spaces and non-physical
structures (e.g. temporal structures like music).

A CPPN is an approach to representing such functions. In particular, it repre-
sents a function as a collection of simple functions composed together in potentially
complex nested relationships. Signature regularities often observed in organisms cre-
ated by natural evolution such as symmetry, repetition, repetition with variation,
and imperfect symmetry can be captured by a compact set of common functions that
form the vocabulary for compositions. For example, because a Gaussian function is
symmetric about the origin, it can create symmetric patterns in a CPPN. Similarly,
a sine function can induce repetition. Nesting these functions can generate more
complicated patterns; for example, a sigmoid function can modulate repetition when
composed with a sine wave. For more complicated compositions, it is convenient to
represent the composed functions visually as a network, where connections represent
composition relationships, as shown in figure 2. In this way, CPPNs can facilitate rep-
resenting complex structures that share familiar properties with the forms of natural
organisms (e.g. symmetry, repetition, and repetition with variation).

Note that although the CPPN is a network, it does actually abstract a subtle form
of temporal computation. Because the nodes of the CPPN are activated from bottom
to top, their order of activation (and the functions they compute in that sequence)
can be viewed as a kind of temporal progression. In this sense, they do in effect
encompass a kind of temporal process. However, this form of temporality deviates
importantly from that in natural development because it is not implemented through
a progressive unfolding, and of course there is no local interaction between different
parts of the phenotype. Thus although CPPNs do capture an essential aspect of
temporal development, they deviate significantly from the approach seen in nature.

The same general process of composing functions works also in higher dimensional
spaces. For example, figure 3 shows how a two-dimensional picture can be represented
as the output of a CPPN that takes an x,y coordinate pair as input. Similar appli-
cations of CPPNs can facilitate representing songs [44], three-dimensional physical
structures [21], or ANNs [98]. While there are many ways to represent functions,
the main advantage of CPPNs is that they provide a means for increasingly complex
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Figure 2: Network-based notation. Networks are one possible way to visualize com-
positions of functions. The network shown in (a) depicts the composition sin(o (z)),

while the network shown in (b) depicts the function sin (0’ (x) + G(sin(a (z) ))) +

o (G (sin(o(z)))) +sin(o(z)) +a. Note that G(z) is the Gaussian function and o (z)

is the Sigmoid function.
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f(z,y) = G(cly + cosin(e3Glesy)) + 5o (CGG(C7SU>))

(¢) Formula

Figure 3: How a CPPN represents a picture. (a) The CPPN takes arguments x and
y, which are coordinates in a two-dimensional space. When all the coordinates are
drawn with an intensity corresponding to the output of the CPPN, the result is a
spatial pattern. (b) Internally, the CPPN is a graph that determines which functions
are connected. The connections are weighted such that the output of a function
is multiplied by the weight of its outgoing connection. The CPPN in (b) actually
produces the pattern in (a). (c¢) The weighted-graph structure in (b) can also be
expressed as a mathematical formula. The constants ¢, in the formula represent the
weights for each connection, G(z) is the Gaussian function, and o(x) is the sigmoid
function.

structures to be evolved or bred through human guidance through a computational
process.

That is, through an evolutionary algorithm or interactive evolutionary process
(where humans perform selection in an evolutionary algorithm), it is possible to evolve
complex CPPNs with desirable characteristics. Random mutations to CPPNs can
change the weights of connections, or can alternatively add new nodes or connections
to the network, which effectively add new compositions to the function the CPPN as
a whole represents. In this way, over generations of breeding a CPPN can complexify
over time to represent arbitrarily complex patterns.

In addition to their favorable theoretical properties, CPPNs have yielded interest-
ing practical results in a wide variety of different applications. They have facilitated
an online picture-breeding service [91], an online three-dimensional shape-breeding
service [21], an interactive dance evolution program [32], an interactive music evolu-
tion program [44], a computer game based on evolved particle weapons [42], formed
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the foundation for a practical method of evolving complex neural networks [98, 24],
and have been applied to evolving players for board games like checkers and Go
[35, 34], virtual creatures in artificial life simulations [3, 103], and controllers for both
simulated and real robots [54, 20]. Interestingly, CPPN-represented shapes evolved
through the web service Endless Forms [21] can be realized physically through a three-
dimensional printer. In this way, combining CPPNs with such printers can be seen
as an alternative physical mechanism for realizing complex patterns; unlike biological
development, such a mechanism does not rely on growth over time or local interac-
tion. Examples of the complex phenotypic structures reminiscent of nature that are
encoded by CPPNs are shown in figure 4.

Thus the conclusion from their diverse applications is that CPPNs appear to be
generally well-suited for representing complex structures with natural regularities. In
this way credence is given to the original hypothesis that inspired the radical reim-
plementation: Development may be more at heart about realizing nested functions of
geometry than temporal unfolding or local interaction. In other words, temporal un-
folding and local interaction may merely be the particular tools that nature exploits
to realize a functional relationship between geometry and form; yet CPPNs demon-
strate that these particular tools are not strictly necessary to evolve complex forms.
The practical implication is that engineering approaches can exploit abstractions of
development like CPPNs (similarly to how helicopters exploit the principles of flight)
to enable computationally representing and evolving complex geometrical structures.
At a deeper level, conceiving development as a set of functions of nested coordinate
frames broadens our understanding of the phenomenon and hints at a fundamental
mechanism independent of physics and time.

4.4 Questioning Adaptive Explanations

Natural evolution is a profoundly creative process responsible for crafting the diverse
forms that populate Earth. While much is understood about natural evolution, there
remain some questions that are still debated among biologists. For example, such
questions include the origin of life [80], the maintenance of sexual reproduction [100],
and the relative importance of evolutionary forces to evolution’s creativity [81, 83].
In particular, this section focuses on investigating the importance of natural selection
relative to non-adaptive evolutionary forces like genetic drift or exaptation. Such
investigation is conducted through an evolutionary algorithm that radically reimple-
ments evolution as a search without any pressure to adapt.

The issue of adaptation’s relative importance has been thoroughly debated al-
though it remains unresolved [81]. Some researchers argue that natural selection is
paramount [29, 94, 30], while others stress the role of non-adaptive forces [39, 38,
73, 66]. For example, Dawkins [29] lays out a selection-centric argument for com-
plex macro-level adaptations. In contrast, Gould [39] attributes more of evolution’s
creativity to historicity, the accumulation of variation, and the constraints imposed
by a genome’s architecture (e.g. the body plan). While there are theoretical and
experimental approaches to investigating this issue [81, 77|, this section focuses on
how radical reimplementation can act as a new tool to explore this and other issues
related to evolutionary pressures in a principled way.
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Figure 4: Variety of CPPN-represented structures with natural properties. A se-
lection of applications of CPPNs to representing complex phenotypic structures is
shown. In particular, (a) shows a gallery of pictures evolved by users on the Picbreeder
(http://picbreeder.org) online service [91], (b) shows some of the products of an
online service called Endless Forms [21] where three-dimensional shapes are evolved
(reproduced from http://endlessforms.com/press/), and (c) shows examples of a

complex ANNs evolved by the CPPN-based HyperNEAT method (reproduced from
Clune et al. [24]).
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The motivation for such new means of exploration is again that natural evolu-
tion as a whole is subject to the N = 1 problem: There is only one example of life
evolving through natural evolution that we are aware of, which complicates inferring
statistically-valid principles about evolution in all its possible instantiations. Fur-
thermore, natural evolution itself is only one example of an evolutionary process, and
may be biased in significant ways; this potential bias also serves to motivate exploring
evolutionary processes divergent from nature.

A related problem for studying the relative importance of different evolutionary
forces is that the effects and dynamics of natural evolution span both the entire
planet and billions of years. Thus comprehensive and direct study of previous major
evolutionary events is challenging because such events occurred over huge swaths
of geography and time, and the exact temporal evolutionary forces expressed leave
little trace. The vast scale of evolution similarly complicates recreating such events
through directed evolution in laboratories. Even the longest experimental evolution
studies are only around 50,000 generations long and culminate in relatively simple
adaptations [107, 8]. For these reasons, experimental methods facilitating indirect
investigation, like radical reimplementation, may be important tools for isolating the
effect and importance of particular evolutionary forces.

The main idea is that evolution can be abstracted in different ways and reimple-
mented to stress a particular abstraction in a manner explicitly unlike nature. For
example, a coarse way of abstracting evolution (in a selection-centric interpretation)
is to view evolution as an optimizer, driving relentlessly towards higher fitness. An
alternate abstraction that is non-adaptive is instead to conceive natural evolution as
a process driven to continually create novelty without any direct pressure towards
adaptation. Of course, both of these abstractions focus on only one aspect of natu-
ral evolution, but radical reimplementation allows for exploring the impact of those
aspects in isolation.

Interestingly, the abstraction of evolution as an optimizer is prevalent in evolu-
tionary computation (EC; [9, 43]). In most evolutionary algorithms (EAs), biological
fitness is abstracted as a fitness function. Individuals from a population of compu-
tational genomes are selected for their ability to maximize the fitness function and
are mated algorithmically to form the next generation. Because the fitness function
is central in such an abstraction, these models can be seen as selection-centric rad-
ical reimplementations of natural evolution. That is, there is little room for other
evolutionary forces in such EAs because of tiny population sizes (from a biological
perspective) and exaggerated mutation rates. In other words, traditional EAs ab-
stract natural evolution’s key driving force as optimization and reimplement such
optimization much differently from natural selection. Unlike real organisms, such
computational genomes do not reproduce inherently (i.e. they do not encode how
to reproduce themselves and must be copied by the underlying evolutionary algo-
rithm) and thus do not have a traditional biological fitness, but instead are rated by
their ability to achieve a preconceived objective by an engineered fitness function.
However, although they have proven successful in many cases, such objective-driven
EAs have never generated artifacts exhibiting complexity on the level of biological
organisms. Furthermore, the high-level properties of such EAs often contrast starkly
with those of natural evolution. For example, EAs are nearly always convergent
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[89, 59, 96], i.e. over time diversity in the population tends to be extinguished. In
fact, a wide range of techniques have been investigated to actively maintain diversity
in EAs [89, 59, 68, 46]. In contrast, a characteristic feature of natural evolution is
its open-ended march towards greater diversity. These problems (i.e. failure to evolve
biological levels of complexity and the tendency to converge) put into question the
central abstraction of evolution as an optimizer [59], which abstracts to some degree
the adaptationist view of natural evolution.

However, it is important to note that such a negative result of radical reimple-
mentation is not as informative as a positive result. It could be that a particular
radical reimplementation is misguided, and that another more well-designed imple-
mentation of the guiding abstraction would yield better results. For example, the
kinds of representations applied in most EAs may not compare favorably to biolog-
ical DNA, begging the question of whether the negative result is due either to an
ineffective abstraction of evolution or to an ineffective abstraction of biological repre-
sentation. On the other hand, a positive result for a radical reimplementation more
assuredly provides evidence for its underlying abstraction, because it is improbable
that reimplementing an incorrect abstraction would yield desirable results. For exam-
ple, demonstrating in reality a new form of flight provides evidence for the principles
the engineer applied; and because a new form of flight is so difficult to achieve, it
would be unlikely that relying on a fundamentally incorrect abstraction would prove
productive merely by chance.

A more positive example of a radical reimplementation of natural evolution is
based on an abstraction other than optimization: evolution as a generator of novelty.
This optimization-free abstraction is plausible because a signature of evolution is its
tendency to diverge and fill reachable niches. Interestingly, such an abstraction can
be radically reimplemented as an algorithm that searches only for novelty. This idea
motivates novelty search, an EA that focuses on novelty instead of natural selection
[56, 59].

4.4.1 Novelty Search

Novelty search [56, 59] is a non-adaptive! EA that is not driven towards any particular
form over another. Instead it diverges, finding forms different from what has been
encountered by the search in the past. While in nature the accumulation of novelty
is mainly passive (although frequency-dependent selection may sometimes directly
encourage novelty [4]), novelty search explicitly seeks it. In this way, novelty search
allows investigating the properties of a search without the pressure for organisms to
adapt to their environment.

In particular, novelty search replaces the fitness function that characterizes the
optimization-based EA abstraction of natural evolution with a novelty metric, which
is a user-defined measure of distance between evolved artifacts in a particular domain.

INote that in this context, non-adaptive is meant to indicate that novelty search is not driven
by an abstraction of natural evolution including natural selection (i.e. the idea that organisms are
selected for increasing fit to their niche). That is, novelty search is non-adaptive in that it is driven
by an abstraction of natural evolution based only on the accumulation of novelty, which is generally
a non-adaptive process in natural evolution.
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Figure 5: Contrast between optimization-based search and novelty search. (a) Tra-
ditional EAs guided by a fitness function tend to converge towards a prescripted ob-
jective. (b) Novelty search is instead driven to diverge from previously encountered
artifacts.

In this way, novelty search can be driven to find only what is different from what it
has previously encountered in a user-defined space of artifacts. Figure 5 illustrates
the main difference between novelty search and a traditional objective-based EA. Im-
portantly, although novelty might seem like an uninformative gradient of information
to follow, often performing something novel requires exploiting regularities in a do-
main. For example, for a robot to behave in a novel way may require learning about
its environment, e.g. how to avoid walls or navigate a corridor. In this way, a search
for novelty can lead to functional and interesting results; a similar human drive may
underlie artistic and literary creation [69].

What is particularly interesting about novelty search is that it offers the potential
to investigate whether the appearance of adaptation can often deceptively result from
non-adaptive search processes. This issue is biologically relevant because a common
critique of “adaptationists” is that they are too quick to infer adaptive explanations
before considering non-adaptive alternatives. The general problem is that while it is
easy to form adaptive intuitions (e.g. feature X may have evolved to enhance fitness
by means of explanation Y'), our intuitions are less developed when understanding
non-adaptive processes. In other words, understanding a direct search process is
familiar because it is something we all employ in day-to-day life (e.g. a search for our
car keys, or navigating from our house to work and back again). Because novelty
search realizes a search without an overarching goal (just as natural evolution is
not driven overall towards any one specific type of organism), it can act as a tool
for understanding the potential of non-adaptive processes. In effect, novelty search
allows isolating the potential of a raw search for novelty entirely separated from any
optimization pressure, which would be a challenging experiment to perform with real
organisms.

In this way, novelty search can both test the abstraction of evolution as a search
for novelty and potentially provide evidence and insight in the adaptationist debate.
To review such evidence, in EC there have been a series of experiments that compare
novelty search with a more traditional objective-driven algorithm [60, 59, 57, 87]. The
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basic idea is to investigate which type of search can better evolve an ANN that can
control a robot to perform a target task (e.g. navigating a maze or walking bipedally).
That is, an ANN is connected to a simulated robot, receiving sensory information and
outputting motor commands; fitness is measured based on how well the robot con-
trolled by the neural network performs, whereas novelty is measured by how different
the robot’s behavior is from previous robots. That way, the structure and connectiv-
ity of the neural networks are evolved by feedback from either optimization pressure
or the novelty of the controlled robot’s behavior. Two example problems to which
novelty search has been applied are shown in figure 6; while the expectation might
be that optimizing directly for the target task would be more successful, in practice
novelty search has often performed better [60, 59, 57, 87], more effectively evolving
controllers for maze-navigating robots [60, 59, 57|, artificial ants [57], bipedal robots
[59], and robots that learn from experience [87]. Thus while bipedal walking may nor-
mally be viewed as an adaptation, the explanation for its discovery by novelty search
[59] cannot be adaptationist because novelty search does not explicitly favor walking
over anything else. The reason that novelty search nevertheless does well is that a
search driven to optimize fitness may converge on a fitness peak from which there is
no path to the highest-fitness goal behavior. In other words, the stepping stones to
the target behavior may not increase fitness themselves. While this phenomenon is
known in biology (e.g. rugged fitness landscapes are known to be difficult to optimize
[48, 22], and overall significant limitations of selection have been shown [5, 88]) it is
informative to see how pervasive it is even in a wide range of simple problems, and
how it can be overcome by searching only for novelty.

The generality of results from novelty search [60, 59, 57, 87, 58, 37, 31, 76, 50,
95, 55] is provocative and may hint at the importance of non-adaptive forces to the
creativity of natural evolution. At minimum it provides a concrete example of how
non-adaptive forces can consistently produce artifacts with the superficial appearance
of adaptation. While natural selection may be a powerful honing force, it may not be
well-suited for creativity, just as successful brainstorming sessions often result from a
relaxed, non-judgmental atmosphere [82]. In other words, while adaptive arms races
between organisms may optimize them relative to one another (e.g. gazelles and their
cheetah predators may adapt to become faster), such arms races do not generally
result in diverse novel species (e.g. naked mole rats). In this way novelty search offers
a controversial perspective on the relative importance of natural selection: Perhaps
evolution at heart is more of a novelty accumulator than an optimizer, even if on
surface the mechanisms by which novelty search and natural evolution accumulate
novelty are divergent.

5 Discussion

One motivation for the radical reimplementation approach is to stress the broad pos-
sibilities for alife implementations. In particular, the universality of alife results may
often be unnecessarily limited by taking direct inspiration from natural evolution.
In other words, when alife acts to export current biological understanding into a
new medium, it may shed light only on how current understanding can generalize
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(a) Maze Navigation (b) Biped Locomotion

Figure 6: Example applications of novelty search. (a) In the maze navigation do-
main, a maze-navigating robot begins at the location within the maze marked by
the larger circle. A robot that travels from the starting location to the ending loca-
tion (marked by the smaller circle) is considered a solution. Although novelty search
does not directly seek to solve the problem, applying it to discover robots that end
in novel locations within this deceptive maze proves much more effective than di-
rectly rewarding robots that get closer to the ending location: Novelty search nearly
always evolves a successful navigator whereas a more traditional EA nearly always
fails. (b) In the biped locomotion domain, successful evolution will yield a robot with
a stable gait. Results in this domain illustrate that searching for maximally novel
types of falling and walking behaviors is more effective than directly searching for the
farthest-traveling gait.

over various mediums. Yet by including current biological understanding, such ap-
proaches may not help in achieving one of alife’s central goals: to illuminate the
deeper underlying principles of universal biology. In this way, a contribution of radi-
cal reimplementation is to introduce a philosophical framework for isolating particular
hypotheses about life from potential confounding details.

Additionally, it is often difficult for alife researchers to convince biologists of the
relevance of their models. Part of the difficulty is that biology generally studies
life as it is, centered on the concrete. In contrast, alife is centered on the abstract
and aims to investigate life in all possible incarnations. As the examples of radical
reimplementation reviewed here illustrate, focusing on the abstract and divergent
possibilities for life can yield informative and thought-provoking insights. And while
the philosophy of biology and theoretical biology also deal in abstractions, usually
the abstract models are designed for biological purposes and are inspired by life as it
is. Thus this paper helps demonstrate that models that are deliberately biologically
implausible may still be of interest to biology.

The key point is that it is possible for abstractions, even those not specifically
designed to illustrate biological principles, to be biologically relevant. Some alife
models, like Avida, specifically aim at and achieve such relevance. But it may be
exactly because the subsumption architecture, CPPNs, and novelty search were de-
signed as practical means to extend the state of the art in their respective fields, and
not to speak to biology, that they are biologically relevant. That is, the practicality
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of these technologies in many different contexts provides significant evidence for their
driving abstractions, and the divergence of the implementations of these abstractions
from nature isolates the concept being tested.

In this way it is possible to interpret abstractions from non-biological fields as
providing evidence for biological theories. The subsumption architecture is not a di-
rect model of biological brains, Avida is not a model of terrestrial self-reproduction,
CPPNs are not a model of animal development, nor is novelty search a plausible bio-
logical model of natural evolution. Yet the success of CPPNs in representing complex
phenotypes in a wide range of applications provides evidence for abstracting develop-
ment as a product of nested functions of geometry. In a similar way, novelty search
provides a means to investigate the power of searches without pressure to achieve
anything in particular. Because abstractions are general, it is not surprising that
philosophical insight can bleed from one field to another. However, the merit of rad-
ical reimplementation is that it suggests a principled approach to such philosophical
overlap.

Interestingly, much progress in science results from overturning assumptions widely
accepted as fact. In this spirit an unconventional tool to investigate such assumptions
about biology may be important, especially when it is difficult to investigate them
in a more direct manner. What biological principles widely assumed essential are in
fact only incidental? What might separating these two classes teach us about life?

6 Conclusion

This paper defined the radical reimplementation approach to artificial life. By coarsely
abstracting a biological phenomenon and reimplementing it in a way maximally diver-
gent from biological example, it is possible to investigate the validity of the abstrac-
tion. In this way, abstractions about biology that are divergently implemented in EC
models or alife simulations can potentially be relevant to biology. The strength of this
approach is that there is no need to defend the reimplementation itself as biologically
plausible or accurate; what is being tested is the underlying abstract hypothesis. In
conclusion, radical reimplementation is a new philosophical tool for investigating and
isolating fundamental biological principles, thereby allowing researchers to ask and
investigate provocative questions.
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