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Abstract
Behaviors evolved in simulation are often not robust to vari-
ations of their original training environment. Thus often re-
searchers must train explicitly to encourage such robustness.
Traditional methods of training for robustness typically apply
multiple non-deterministic evaluations with carefully mod-
eled noisy distributions for sensors and effectors. In prac-
tice, such training is often computationally expensive and re-
quires crafting accurate models. Taking inspiration from na-
ture, where animals react appropriately to encountered stim-
uli, this paper introduces a measure called reactivity, i.e. the
tendency to seek and react to changes in environmental in-
put, that is applicable in single deterministic trials and can
encourage robustness without exposure to noise. The mea-
sure is tested in four different maze navigation tasks, where
training with reactivity proves more robust than training with-
out noise, and equally or more robust than training with noise
when testing with moderate noise levels. In this way, the
results demonstrate the counterintuitive fact that sometimes
training with no exposure to noise at all can evolve individu-
als significantly more robust to noise than by explicitly train-
ing with noise. The conclusion is that training for reactivity
may often be a computationally more efficient means to en-
couraging robustness in evolved behaviors.

Introduction
A significant challenge in artificial life and evolutionary
robotics (ER) is to evolve robust controllers for robots or
artificial creatures (Nolfi and Floreano, 2000). While nat-
ural organisms are remarkably robust (i.e. they function
over a wide range of environmental conditions), controllers
evolved in simulation are often fragile and dependent upon
overly specific simulation details (Jakobi, 1998; Koos et al.,
2010). For example, a practical manifestation within ER of
this issue is known as crossing the reality gap (Jakobi, 1998;
Koos et al., 2010). The reality gap is the barrier presented
by inevitable discrepancies between a simulated model and
its real-world analogue. That is, robot controllers devel-
oped in simulation will most likely fail when naively trans-
ferred onto a real robot, often because of noise (i.e. non-
determinism in sensors and effectors) in the real world.

Most attempts to overcome this problem craft simulations
that model the real robot and its environment as accurately
as possible (Cliff et al., 1993; Jakobi, 1998; Miglino et al.,
1995; Nolfi and Parisi, 1996). It is also common to introduce

non-determinism through noise in the sensors and effectors
of the robot in simulation (Cliff et al., 1993; Jakobi, 1998;
Koos et al., 2010; Miglino et al., 1995; Nolfi and Floreano,
2000). However, training with noise is not without disadvan-
tages, such as increased computational cost from multiple
non-deterministic trials (necessary to counteract variance in
fitness measurements) and the difficulty of crafting a suffi-
ciently accurate model with the right distribution of noise.
Because of these disadvantages, it would be preferable to
train without noise if there existed alternatives that also pro-
vided robustness. In this spirit, this paper presents a prelim-
inary investigation into the possibility of encouraging robust
behaviors using only information from evaluations consist-
ing of a single deterministic trial.

While robustness can only be verified over multiple trials,
it is still possible that there are clues to robustness hidden
within even a single trial. One possible such clue is illu-
minated by considering how the behaviors of real animals
differ from those produced by artificial evolution. Animals
are robust because they do not depend upon incidental as-
pects of the environment (e.g. a herbivore does not depend
on a particular configuration of grass blades to feed success-
fully). However, the same phenomenon does not hold in
general for artificial systems; artificial evolution tends to ex-
ploit features specific to the simulation not present in real-
ity. Interestingly, observing an animal only once often leaves
one with an impression of its robustness. Similarly, an ex-
perimenter observing a robot behavior in simulation may of-
ten suspect its fragile nature.

The question raised by such impressions is, what cues are
being perceived to make such judgments? That is, what
are we noticing about animals in nature that makes them
seem so vigorous? Perhaps one heuristic for judging robust-
ness is how reactive their behavior appears. That is, one
clue to robust behavior is noticeably seeking and reacting to
changes in the perceived environment, which is a trait ex-
hibited widely by natural life. Importantly, by observing a
behavior it is possible to estimate how reactive it is. For ex-
ample, take the behaviors of students during a lecture. If the
students nod when key concepts are introduced they are re-



acting appropriately to indicate that they understand; on the
other hand, unreactive students with constant blank stares
reveal less information. Similarly, a blind man with a cane
trying to navigate a corridor often also exhibits reactivity.
If the man taps his cane continually against a wall to ver-
ify his bearings, the behavior is more reactive than if the
man relies completely on a memorized layout of the corri-
dor without re-adjusting (as artificially evolved agents often
do). Intuitively, the more reactive tapping behavior would
also be more robust to unforeseen changes in the corridor or
missteps made by the man. Thus the hypothesis in this paper
is that individuals that demonstrate their reactivity by paying
attention to the world may generally be stepping stones to-
wards robust behavior. Therefore it may prove effective to
directly encourage reactivity, which is the propensity to seek
and react to information in the environment continually.

While there may be many ways to quantify the notion of
reactivity, the measure in this paper is based on statistical de-
pendence between changes in the sensors and the effectors
of a robot. Two random variables are dependent if know-
ing the state of one variable helps predict the other; in other
words, there is some relationship between the two variables.
In this way, if the magnitude of changes in sensors and effec-
tors of a robot are dependent, it may indicate that the robot is
reacting consistently to its environment (i.e. the magnitude
of change in environmental input consistently influences the
corresponding magnitude of changes in behavior). In this
paper such dependence is measured by mutual information,
which thereby formally captures most closely the informal
idea of reactivity introduced here. Indeed, Ay et al. (2008)
previously showed an important theoretical connection be-
tween maximizing mutual information in sensory experi-
ence and effective exploratory behavior in robots. This pa-
per thus suggests how such a measure can be exploited in
evolving specific goal-directed behaviors that are resistant
to noise.

The idea of incentivizing reactivity to encourage robust-
ness is explored in four maze navigation tasks designed to be
challenging under noisy conditions, which makes robustness
difficult to achieve. The main result is that rewarding reac-
tivity in single-trial deterministic evaluations without noise
produces controllers with robustness to noise often rivaling
or outperforming those produced by explicitly training with
noise. This result is significant because it illuminates that
there are hints to robustness observable within a single non-
noisy trial, and also establishes a new practical approach to
training for robustness, which is a property of general inter-
est both to artificial life and ER.

Background

This section reviews past work in evolving robust controllers
in ER, the NEAT and HyperNEAT methods applied in the
experiments, and multi-objective optimization.

Evolving for Robustness
For practical reasons, controllers for robots in ER are of-
ten trained in a computer simulation rather than directly in
reality (Nolfi and Floreano, 2000). However, discrepancies
between simulation and reality may cause controllers that
are effective in simulation to fail when transferred to a real
robot. Because this problem of crossing the reality gap is
a significant issue in ER there exist specific training meth-
ods that attempt to mitigate it (Bongard and Lipson, 2004;
Jakobi, 1998; Koos et al., 2010). The reality gap is one facet
of the larger difficulty of evolving general, robust controllers
that are not overly dependent on simulation details.

Nearly all training strategies for evolving robust con-
trollers involve training at least some individuals with mul-
tiple trials, often non-deterministically (Gomez and Miikku-
lainen, 2004; Jakobi, 1998; Koos et al., 2010). A common
motivation for such training is that real-world sensors of-
ten do experience some degree of noise; however, a deeper
motivation is that strategically applying noise to a robot’s
sensors or effectors can prevent evolution from exploiting
features specific to a particular simulation (Jakobi, 1998).

While the motivations may be reasonable, the computa-
tional cost of training with noise is significant because noisy
evaluations normally consist of multiple trials to reduce un-
certainty about a policy’s average performance (Koos et al.,
2010). To reduce computational costs, some methods seek
to evaluate only some individuals in a full suite of noisy tri-
als by estimating transferability for other individuals (Koos
et al., 2010). Yet this approach still requires additional po-
tentially expensive evaluations and the estimates of transfer-
ability may not always be accurate. In addition to computa-
tional costs, it is not always clear how many trials, in what
distribution, and with what intensity noise should be applied
in training to ensure successful transfer (Gomez and Miik-
kulainen, 2004). While Jakobi (1998) lays out a principled
methodology based on minimal simulations, it still requires
painstaking measuring and modeling to implement.

An interesting unexplored question is whether there ex-
ist distinguishing properties of robust robot or animat con-
trollers that are visible in a single deterministic trial. If such
properties exist and can be explicitly encouraged by an ap-
propriate training incentive, it may be possible to evolve
robust robot policies without any non-deterministic trials.
While interesting in its own right, such a training method-
ology would also reduce computational cost and the need to
model a domain precisely. To this end, the experiments in
this paper explore incentivizing the reactivity of an evolved
controller to encourage its robustness.

Thus these experiments require a method to evolve robot
controllers. Though other methods could be applied, here
the HyperNEAT neuroevolution method was chosen as a
well-established representative method in ER. The next sec-
tion reviews the Neuroevolution of Augmenting Topologies
(NEAT) approach, the foundation of HyperNEAT.



Neuroevolution of Augmenting Topologies

The NEAT method was originally developed to evolve artifi-
cial neural networks (ANNs) to solve difficult control tasks
(Stanley and Miikkulainen, 2002, 2004). Like the SAGA
method (Harvey, 1993) introduced before it, NEAT begins
evolution with a population of small, simple networks and
complexifies the network topology into diverse species over
generations, leading to increasingly sophisticated behavior.
A similar process of gradually adding new genes has been
shown in natural evolution (Martin, 1999).

However, a key feature that distinguishes NEAT from
prior work in complexification is its unique approach to
maintaining a healthy diversity of complexifying structures
simultaneously, as this section reviews. Complete descrip-
tions of the NEAT method, including experiments confirm-
ing the contributions of its components, are available in
Stanley and Miikkulainen (2002), and Stanley and Miikku-
lainen (2004). This section briefly reviews the key ideas on
which the basic NEAT method is based.

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with
the same historical markings are aligned, producing mean-
ingful offspring efficiently. In traditional implementations
of NEAT, speciation protects new structural innovations by
reducing competition between differing structures and net-
work complexities, thereby giving newer, more complex
structures room to adjust. Networks are assigned to species
based on the extent to which they share historical markings.
It is important to note that this aspect of NEAT was altered
in this paper to replace speciation in NEAT with an explicit
genetic diversity objective, which achieves a similar effect.
That way, NEAT is easily integrated into a multi-objective
framework, as explained shortly. Finally, complexification,
which resembles how genes are added over the course of nat-
ural evolution (Martin, 1999), is thus supported by both his-
torical markings and protecting innovation, allowing NEAT
to establish high-level features early in evolution and then
later elaborate on them. In effect, then, NEAT searches for
a compact, appropriate network topology by incrementally
complexifying existing structure.

The next section reviews HyperNEAT, an extension of
NEAT applied in the experiments as a representative exam-
ple of a modern neuroevolution method.

HyperNEAT

Many neuroevolution methods are directly encoded, which
means each part in the phenotype is encoded by a single
gene, making the discovery of repeating motifs expensive
and improbable. Therefore, indirect encodings (Bongard
and Pfeifer, 2003; Hornby and Pollack, 2002; Stanley and
Miikkulainen, 2003) have become a growing area of interest
in evolutionary computation and artificial life.

One such indirect encoding designed explicitly for neu-
ral networks is the Hypercube-based NeuroEvolution of
Augmenting Topologies (HyperNEAT) approach (Gauci and
Stanley, 2010; Stanley et al., 2009), which is an indirect
extension of the directly-encoded NEAT approach (Stan-
ley and Miikkulainen, 2002, 2004) reviewed in the last sec-
tion. This section briefly reviews HyperNEAT; a complete
introduction is in Stanley et al. (2009) and Gauci and Stan-
ley (2010). Rather than expressing connection weights as
distinct and independent parameters in the genome, Hyper-
NEAT allows them to vary across the phenotype in a regular
pattern through an encoding called a compositional pattern
producing network (CPPN; Stanley, 2007), which is like an
ANN but with specially-chosen activation functions.

Such CPPNs are used in HyperNEAT to represent the con-
nectivity patterns of ANNs as a function of geometry. That
is, if an ANN’s nodes are embedded in a geometry, i.e. as-
signed coordinates within a space, then it is possible to rep-
resent its connectivity as a single evolved function of such
coordinates. In effect the CPPN paints a pattern of weights
across the geometry of a neural network. To understand
why this approach is promising, consider that a natural or-
ganism’s brain is physically embedded within a geometric
space, and that such embedding heavily constrains and in-
fluences the brain’s connectivity. Topographic maps (i.e. or-
dered projections of sensory or effector systems such as the
retina or musculature) exist within brains that preserve ge-
ometric relationships between high-dimensional sensor and
effector fields (Hubel and Wiesel, 1962; Udin and Fawcett,
1988). In other words, there is important information im-
plicit in geometry that can only be exploited by an encoding
informed by geometry.

In particular, geometric regularities such as symmetry or
repetition are pervasive throughout the connectivity of nat-
ural brains. To similarly achieve such regularities, CPPNs
exploit activation functions that induce regularities in Hy-
perNEAT networks. The general idea is that a CPPN takes
as input the geometric coordinates of two nodes embedded
in the substrate, i.e. an ANN situated in a particular geome-
try, and outputs the weight of the connection between those
two nodes. In this way, a Gaussian activation function by
virtue of its symmetry can induce symmetric connectivity
and a sine function can induce networks with repeated ele-
ments. Note that because CPPN size is decoupled from the
size of the substrate, HyperNEAT can compactly encode the
connectivity of an arbitrarily large substrate.

It is important to note that HyperNEAT is chosen here
simply as a representative modern neuroevolution method.
Because all experiments are based on HyperNEAT, the main
distinctions among them will be the use of noise or reactivity
in training rather than the training algorithm or its particular
details. The next section reviews multi-objective optimiza-
tion, which is combined later with HyperNEAT to enable
optimizing both reactivity and fitness during a single run.



Multi-objective Optimization
Multi-objective optimization is a popular paradigm within
EC that addresses how to optimize more than one objective
at the same time in a principled way (Coello, 1999). The ex-
periments in this paper apply an implementation of NGSA-
II (Deb et al., 2002), a well-established Pareto-based multi-
objective search algorithm, to optimize a traditional fitness
objective and a reactivity objective concurrently.

The concept of dominance is central to Pareto-based
multi-objective search; the key insight is that when compar-
ing two individuals over multiple objectives, if both indi-
viduals are better on different subsets of the objectives then
there is no meaningful way to directly rank such individuals
because neither entirely dominates the other. That is, rank-
ing such mutually non-dominating individuals would require
placing priority or weight on one objective at the cost of an-
other; traditionally one individual dominates another only if
it is no worse than the other over all objectives and better
than the other individual on at least one objective.

In this way, the best individuals in a population are those
that are not dominated by any others. Such best individu-
als form the non-dominated front, which defines a series of
trade-offs in the objective space. That is, the non-dominated
front contains individuals that specialize in various combi-
nations of optimizing the set of all objectives. Some will
maximize one at the expense of all the rest, while some may
focus equally on all of the objectives. In this way, various
tradeoffs of competing objectives such as genomic diversity,
fitness, and reactivity can be explored during a single evo-
lutionary run. The hope is that particular trade-offs between
fitness performance and reactivity (i.e. policies that perform
as well as possible given the constraint that they must be
reactive) may lead to more robust behavior.

Recall that a detail of combining NEAT or HyperNEAT
with multi-objective optimization is that NEAT has a mech-
anism (called speciation) for preserving genomic diversity
that does not fit naturally into NGSA-II. Thus in the experi-
ments in this paper, speciation is replaced in NEAT with an
explicit genomic diversity objective that is similar in spirit.
In particular, the genomic diversity of a given genome is
quantified as the average distance to its k-nearest neighbors
in genotype space as measured by NEAT’s genomic distance
measure. In this way, multi-objective evolution with NEAT
is incentivized to maintain genomic diversity in a similar
way to how it is in the original formulation of NEAT.

The next section formalizes the measure of reactivity that
will be used as an additional objective for training.

Approach: Training for Reactivity
While other measures may also in the future prove effec-
tive for encouraging robustness, the hypothesis in this pa-
per is that an agent that is more reactive to its environment
may also be more robust. For example, a robot in a maze
that is constantly probing and reacting to the walls with its

rangefinder sensors as it explores may be more robust than
a robot that always executes a memorized plan (which could
be disrupted easily by noise). Thus what is needed is a quan-
tification of reactivity that can be directly encouraged during
evolution.

In this paper the notion of reactivity is formulated as a
measure of statistical dependence between the magnitude of
changes in a robot’s sensors and its effectors. In general,
dependence between two variables implies some kind of re-
lationship between them (e.g. an increase in one variable
may tend to result in a decrease in the other). More specifi-
cally, it implies that knowledge of one variable helps predict
the other. Encouraging such dependence makes sense be-
cause it provides evidence that an agent is paying attention
to changes in its immediate situation. In particular, it im-
plies that the magnitude of change in a robot’s sensors influ-
ences the magnitude of change of its effectors. In this way,
the measure is agnostic to the exact relationship between the
two because the ideal such relationship may vary between
domains. However, it ensures at least that reactions to sen-
sory changes are consistent, which aligns well with the idea
of reactivity.

For example, a particularly attentive student might nod
vigorously when a particularly important concept is ex-
plained but only slightly when a trivial theorem is proved.
However, for the blind man tapping his cane in a corridor,
any sudden large change in distance from the wall may call
for caution and minor adjustment. Although such a con-
sistent nodding or adjustment policy might not be directly
necessary to solve the task, it provides evidence that the be-
havior is reactive. The particular measure of statistical de-
pendence applied here, motivated by Ay et al. (2008), is that
of mutual information (Shannon, 1949).

The mutual information statistic for two continuous ran-
dom variables takes the following form:

I(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dx dy, (1)

where p(x, y) is the joint probability distribution function of
X and Y , and p(x) and p(y) are the marginal probability
distributions of X and Y . The higher the absolute value of
I(X;Y ), the more dependent are the two variables.

For the experiments in this paper, reactivity is mea-
sured by the mutual information between the magnitude of
changes in a robot’s rangefinder sensors and the magnitude
of changes in its motor effectors (unlike in Ay et al. (2008),
who only measure mutual information in sensors over time).
However, this approach is general enough to be applied to
different sensory setups in robots in other ER domains where
probing and reacting is also important to robustness. For-
mally, the seven rangefinder sensors i1, .., i7 of the simu-
lated robot are subtracted from their values on the previ-
ous timestep and the average magnitude of these differences



at timestep t is recorded as xt. The average change in the
robot’s outputs yt is computed accordingly.

Because the true distributions of X and Y are not known,
p(x), p(y), and p(x, y) are estimated through histograms
(with a bin width of 0.05) of the sampled data xt and yt
collected during an evaluation. That is, three histograms are
created: two one-dimensional histograms (one over xt for
p(x) and one over yt for p(y)), and one two-dimensional
histogram (over both xt and yt for p(x, y)). Riemann sums
are then applied to approximate the integrals from equation
1. However, any reasonable means of estimating the distri-
butions or of numerical integration could be substituted.

While optimizing this formalized measure of reactivity
alone would not necessarily lead to successful task perfor-
mance, it can alternatively be added as an additional ob-
jective to fitness by employing a multi-objective optimiza-
tion algorithm. In this way, individuals might be evolved
that both solve a given task and provide evidence of po-
tential robustness by being reactive, without multiple noisy
trials. The motivation is that if robust solutions could be
evolved through this approach, computational costs would
be reduced, as would the need for precisely modeling a do-
main (including appropriate levels of noise).

Maze Navigation Experiments
Because reactivity is intended to encourage robust behav-
iors, a domain for testing reactivity should be challenging
under noisy conditions. Thus four maze navigation domains
(figure 1) that create such a challenge in different ways are
explored in this paper.

In all of the mazes, a Khepera robot controlled by an ANN
must navigate from a starting point to an end point in a fixed
time limit that requires direct traversal. The Straight maze
(figure 1a) is designed to be simple but incorporate situations
that only become necessary to experience when an evolved
behavior is exposed to significant levels of noise. That is, al-
though an unconditional “always go forwards” policy will be
effective without noise, sufficient effector noise may cause
the robot’s heading to veer into walls. To further accentuate
such situations, in this maze the robot is disabled for the re-
mainder of a trial if it collides with a wall. The Zigzag maze
(figure 1b) is slightly more complicated because of the need
to turn, but it and the remaining mazes allow the robot to
recover if it hits a wall. The Winding maze (figure 1c), with
its right-angle turns and narrower corridors, creates signifi-
cant opportunity for the robot to get stuck or confused with
increasing noise. Finally, the most challenging maze, the
Deceptive maze (figure 1d), has a deceptive cul-de-sac that
may complicate training in addition to sharp corners that are
difficult to navigate with noise.

The simulated robot is modeled after the Khepera III (K-
Team, 2010), and training and testing noise levels are in line
with established models of the robot (Cyberbotics, 2012).
The robot has six rangefinders that indicate the distance to

(a) Straight (b) Zigzag (c) Winding (d) Deceptive

Figure 1: Domains. The goal of the agent in the maze
navigation domains is to navigate from the starting position
(large circle) to the goal (small circle). Note that mazes are
not drawn to scale.

the nearest obstacle. Its three effectors produce forces that
respectively turn and propel the robot. At each simulated
timestep, the robot moves forward at a velocity of 9F cen-
timeters per second, where F is the forward effector out-
put. The robot also turns at 120(R−L) degrees per second,
where R is the right effector output and L is the left effec-
tor output. The fitness of an individual is calculated as its
distance to the goal at the end of the evaluation, which is a
standard measure of progress in maze navigation tasks.

Three different approaches are compared to investigate
the potential of training for reactivity:

• In the Standard setup there is a single deterministic trial
evaluated on two objectives: genomic diversity and the
domain-dependent fitness measure.

• In the three Noise setups the objectives remain the same as
in the standard setup, but each robot is evaluated in eight
non-deterministic noisy trials to determine its fitness. The
amount of both sensor and effector noise for the three dif-
ferent noise setups is respectively 10%, 20%, and 30%,
applied as follows: Noise is computed according to the
weighted average (1.0−x)v+x(n), where x is the noise
level, v is the before-noise value, and n is randomly cho-
sen from the unit uniform distribution.

• In the Reactivity setup an additional reactivity objective
(as described earlier) complements the genomic diversity
and fitness objectives. As in the Standard setup, the robot
is evaluated only in a single deterministic trial with no
noise.

Experimental Parameters
Because HyperNEAT differs from original NEAT only in its
set of activation functions, it uses the same parameters (Stan-
ley and Miikkulainen, 2002). The experiments were run
with a modified version of the public domain SharpNEAT
package (Green, 2006). The size of each population was
250 with 20% elitism. Asexual offspring (50%) had 0.96
probability of link weight mutation, 0.03 chance of link ad-
dition, and 0.01 chance of node addition. The coefficients



for determining genomic similarity were 1.0 for nodes and
connections and 0.1 for weights. The available CPPN activa-
tion functions were sigmoid, Gaussian, absolute value, and
sine. Parameter settings are based on standard SharpNEAT
defaults and prior reported settings for NEAT (Stanley and
Miikkulainen, 2002, 2004). They were found to be robust
to moderate variation through preliminary experimentation.
Runs of the Straight, Zigzag, and Winding mazes lasted 400
generations, while because of its increased difficulty runs of
the Deceptive maze lasted 1, 000 generations.

Results
In training, the Reactivity setup did not significantly dif-
fer in performance from the other setups in the Straight or
Winding mazes. However, the Reactivity setup did solve the
Deceptive maze more often (in 17 out of 20 runs) than any
other setup (Fisher’s exact test; p < 0.001). In comparison,
the Standard setup solved the maze in 8 runs, and the 10%,
20%, and 30% Noise setups solved the maze in 3, 1, and
0 runs, respectively. The Reactivity setup also solved the
Zigzag maze significantly more often than the 20% or 30%
Noise setups (Fisher’s exact test; p < 0.001). These results
support the hypothesis noise may often complicate training.
However, training performance may not reflect robustness
to noise; the Standard and Reactivity setups in fact both had
no exposure to noise at all. It is important to note that even
when a complete solution is not evolved in training, a partial
evolved solution might still sometimes solve the task in the
more lenient generalization test that is described next.

Because the motivation for this paper is to investigate the
robustness of evolved controllers, a generalization test was
devised to measure how well an evolved controller would
perform in noisy distributions not encountered during train-
ing. The generalization test consisted of 50 noisy trials with
the length of evaluation doubled from training to allow for
greater leniency. Such leniency reflects that in transfer slight
stumbles due to the reality gap are preferred to catastrophic
failure (i.e. if a policy will never solve the task irrespective
of how much time is allotted). An individual receives a score
on the generalization test in accordance with the fraction of
trials in which it is able to navigate the maze successfully
(i.e. if it comes within 20 units of the goal at any time). For
each run, the individual scoring the overall highest on this
test from sampling the population every 100 generations is
recorded (except in the Deceptive maze experiment in which
every 200 generations is recorded because of its longer dura-
tion), and averaged over each of the 20 runs. This approach
to testing gives a sense of the most robust controller one can
hope to find with each approach. The generalization test is
repeated with noise distributions from 0% to 35% at 5% in-
tervals. Thus over five setups (three training levels of noise,
standard, and reactivity) with eight testing noise levels each,
there are 40 total generalization scenarios per domain, and
32 possible pairwise comparisons between Reactivity and

the other setups in each domain. The results of applying this
generalization test are shown in figure 2.

To assess statistical significance on the generalization test
for each domain, a one-way ANOVA test was first applied
across the five experimental setups for each level of general-
ization noise to demonstrate that the distributions are signif-
icantly different (at least p < 0.05). If at a particular noise
level this first test was passed, then Student’s t-tests were
applied to measure the significance of pairwise differences
between Reactivity and the other experimental setups.

The Straight maze, as might be expected, proved chal-
lenging only to the Standard setup because this setup pro-
vided no incentive to learn to interact with walls. Support-
ing its motivation, the Reactivity setup, despite not being
exposed to noise nonetheless discovers policies that robustly
react to walls. There were only two significant differences
(among 32 total pairwise comparisons) between Reactivity
and the other setups in the Zigzag maze (Reactivity was bet-
ter than Standard in one scenario and 30% Noise was bet-
ter than Reactivity in another), indicating perhaps that in
some relatively simple domains it may make little difference
what training setup is chosen. In the Winding maze, training
with higher levels (20% or 30%) of noise provided a sig-
nificant advantage over Reactivity for generalization with
higher levels of noise (≥ 25%), demonstrating that some-
times knowing the distribution of noise in reality can inform
training. Finally, the Deceptive maze proved the most chal-
lenging for all methods (no method scored above 50% suc-
cess on the highest noise level in the generalization test),
although Reactivity was significantly better than the 30% or
20% Noise setups when testing generalization on low lev-
els of noise (< 15%). This result suggests that an inaccu-
rate noise model can hurt noisy training while reactivity can
sometimes circumvent the need for such modeling entirely.

Over all four domains, training with the Reactivity setup
was never significantly worse at generalizing than training
with the Standard setup, and was significantly better in 15
out of the 32 pairwise comparisons. Training with the Reac-
tivity setup was significantly better at generalizing than the
Noise setups in 7 out of 96 comparisons while Noise also
was significantly better than Reactivity in 7 pairwise com-
parisons. Interestingly, the occasional significant advantages
for the Noise setups only occurred when the noise level in
the generalization test was 25% or greater, which suggests
that reactivity training may generally be most advantageous
when dealing with moderate levels of noise.

Discussion
The motivation for reactivity is to encourage an agent to pay
attention to its environment and thereby make full use of
its sensory experience. While ultimately the most reactive
solution may not be the best performing or most robust, such
reactivity may still be desirable because it can potentially act
as a stepping stone on the way to a robust policy.
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(b) Zigzag Maze
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(c) Winding Maze
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(d) Deceptive Maze

Figure 2: Maze Navigation Generalization Test Results. The average probability of the best individual from a run to solve
the generalization test at various levels of noise is shown for different training methodologies over the four maze domains. The
main result is that training with reactivity in all four domains is never significantly worse than training with noise (10%, 20%,
or 30%) on the generalization test at moderate levels of noise (< 25%).

The experiments in this paper provide evidence for this
idea because the Reactivity setup often significantly outper-
forms the Standard setup in generalization testing and never
underperforms it, meaning that simply encouraging an agent
to be reactive often promotes robust behaviors. Additionally,
reactivity is always at least as good at generalizing as the
Noise setups when exposed to moderate noise, and in some
cases is significantly better. Thus reactivity demonstrates
that it is possible to evolve controllers that perform well in
noisy situations without ever exposing those controllers to
noise. In addition to providing a compelling proof of con-
cept, reactivity also can reduce computational cost (i.e. it
took eight times fewer trials per evaluation than noisy train-
ing) and the need to model a domain precisely.

One major benefit of training with reactivity is that train-
ing with noise requires several noisy trials to be run per
evaluation to evaluate a behavior effectively, while reactiv-
ity can be accurately measured with a single deterministic
trial. Computing an agent’s reactivity does require calculat-
ing a statistical measure, but this cost is generally insignif-
icant when compared to the computation required to simu-
late a domain. So even when reactivity does not outperform
noisy training, it may still be preferable because of the de-
creased runtime. Additionally, reactivity can facilitate train-
ing robots in complex domains in which the computational
costs incurred by multiple, noisy trials are prohibitive.

Another benefit of reactivity is that it can reduce the need

for precise domain models. Accurately modeling a robot,
its environment, and the actual levels of sensor and effector
noise is often a difficult and laborious task, and perfect accu-
racy is generally impossible (Jakobi, 1998). However, with
noisy training model accuracy can be important; selection
of the right level of training noise is necessary to outperform
reactivity in the Winding maze or to avoid underperform-
ing reactivity in the Deceptive maze. Thus when training
with noise, unless the model is accurate, generalization per-
formance may be suboptimal. Interestingly, the Reactivity
setup does not require a model of noise and performance de-
grades gracefully as the amount of noise increases. Even
without any exposure to noise it is rarely significantly worse
than any of the Noise setups; in as many cases it is signifi-
cantly better. Thus it is possible to exploit reactivity to avoid
crafting an accurate noise model, which is oftentimes diffi-
cult or time-consuming. In future work evolved reactive be-
haviors will be transferred to the real world to verify these
potential benefits for crossing the reality gap.

While training with noise has established itself as the
dominant means of producing robust controllers (Gomez
and Miikkulainen, 2004; Jakobi, 1998; Koos et al., 2010;
Nolfi and Floreano, 2000), the effort required to produce an
accurate noise model and the computational cost of train-
ing with noise make it a kind of “necessary evil” for real-
world transfer. The preliminary results in this paper demon-
strate that reactivity provides an alternative to training with



noise that offers performance gains and reduced computa-
tional cost in some cases. However, there are still significant
avenues for future research in this area. First, the measure
of reactivity expressed in this paper is simple and intuitive:
The magnitude of the change in outputs should depend on
the magnitude of the change in inputs. However, more so-
phisticated or domain-dependent properties of evolved be-
haviors may exist that better encourage robustness. Addi-
tionally, reactivity could be combined with noisy training to
further boost performance by encouraging controllers to re-
act appropriately in noisy environments. Ultimately the re-
sults in this paper highlight that the idea of rewarding reac-
tivity or other behavioral properties indicative of robustness
is a promising research direction that merits further study.

Conclusion
This paper introduced the idea of encouraging properties of
evolved controllers observable in single deterministic eval-
uations that correlate with increased robustness and gener-
ality. Motivated by the insight that robust behaviors tend to
probe and react to their environment, the reactivity of a con-
troller is suggested as one promising such property. Exper-
iments showed that training with reactivity most often per-
forms as well as training explicitly with noise, and is also
significantly better as often as it is worse. The benefit is the
reduced computation from considering only one determin-
istic evaluation and the eliminated need for accurate noise
models. While the investigated measure does not always
outperform training with noise, it is interesting and coun-
terintuitive that even sometimes training without noise can
be more effective in the face of noise than explicitly train-
ing with it. The conclusion is that reactivity is a viable new
perspective on training for robustness that demonstrates that
there may often be hints to robustness or generality hidden
within single trials.
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