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Abstract

The robustness of animal behavior is unmatched by current machines,
which often falter when exposed to unforeseen conditions. While ani-
mals are notably reactive to changes in their environment, machines often
follow finely-tuned yet inflexible plans. Thus instead of the traditional
approach of training such machines over many different unpredictable
scenarios in detailed simulations (which is the most intuitive approach
to inducing robustness), this work proposes to train machines to be re-
active to their environment. The idea is that robustness may result not
from detailed internal models or finely-tuned control policies but from cau-
tious exploratory behavior. Supporting this hypothesis, robots trained to
navigate mazes with a reactive disposition prove more robust than those
trained over many trials yet not rewarded for reactive behavior in both
simulated tests and when embodied in real robots. The conclusion is that
robustness may neither require an accurate model nor finely calibrated
behavior.
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1 Introduction

Among the distinctive hallmarks that separate natural organisms from machines
is their robustness in the presence of uncertainty and unpredictability. Whether
it is the lion slinking quietly over uncertain terrain or the cockroach fleeing the
faintest vibration, animals exhibit a keen sensitivity and remarkable resilience
to the most subtle variations. This fortitude naturally provides inspiration to
researchers aiming to achieve similar robustness in the control of robotic ma-
chines. Yet interestingly, this goal remains elusive, especially in robot controllers
trained through machine learning. Such controllers are notoriously brittle and
unstable in the presence of noise (Brooks, 1994; Jakobi et al., 1995; Lipson and
Pollack, 2000; Matarié¢, 1997; Matari¢ and Cliff, 1996; Miglino et al., 1995).
The primary obstacle to achieving robustness in learned robot controllers is
that it is impossible to model precisely all details or every situation that can
be encountered. As a result, robot controllers experience conditions outside the
bounds of the models that governed their design when deployed in the real world,



often causing undesirable behavior. In short, they usually learn inappropriately
to depend upon idiosyncratic details encountered during training that may not
be repeated once deployed in the real world (Jakobi et al., 1995).

The usual response to this problem is to attempt to model the real-world
environment as closely as possible, which often includes modeling the distri-
bution of noise in the environment that is likely to degrade the accuracy of
sensory experience (Balakirsky et al., 2009; Michel, 2004; Ng et al., 2006; Nolfi
and Floreano, 2000; Zufferey et al., 2006). This traditional approach reflects
the philosophy that the reason organisms exhibit such remarkable robustness is
that they are highly tuned to their environments through delicate neural control
policies shaped over the eons of evolutionary selection on Earth (Baldwin, 1896;
Hagen and Hammerstein, 2005).

In contrast, the aim of this article is to present and test an alternative hy-
pothesis. The main idea is that rather than reflecting a delicately calibrated
control policy, behavioral robustness (whether in nature or machines) may often
result from policies that are optimized specifically to work in the presence of in-
accuracy and poor internal modeling. In particular, a controller that is selected
to be reactive, i.e. to continually seek out and react to changing information in
the environment, naturally becomes robust because it explicitly mistrusts its
model and thus searches relentlessly for clues to the real nature of its environ-
ment. The idea of training for such reactivity is motivated by the observation
that biological organisms tend to probe their environments continually and react
appropriately to changing stimuli (Berlyne, 1966; Glickman and Sroges, 1966)
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To test this hypothesis, a quantification of reactivity applicable to robots is
derived from the mutual information statistic (Shannon, 1949), which has previ-
ously been applied in a different context to encouraging exploratory (though not
in particular robust) behavior in robots (Ay et al., 2008). The new idea is that
reactive robots exhibit a relationship between the intensity of environmental
change and the intensity of their response, i.e. they noticeably exhibit that they
pay attention to changes in their environment. Because such reactive robots
seek and experience a greater variety of conditions, their success at a particu-
lar task may provide more evidence of their robustness than a similar success
exhibited by a non-reactive robot. Supporting this hypothesis, experiments in
this article with simulated and real wheeled robots demonstrate that robots
trained to accomplish a navigation task while still behaving reactively prove
more robust than robots trained more traditionally to solve the task through
a variety of explicit models of environmental uncertainty (i.e. noise). Interest-
ingly, robots trained to be reactive without any explicit model of environmental
noise whatsoever are sometimes superior to those trained with such models.

The experiments presented here optimize populations of simulated robots
(later transferred to the real world) through a biologically-inspired approach to
robotics based on evolution. It is often the case in such evolutionary robotics

I This paper significantly expands on an initial preliminary conference paper on the idea of
reactivity in Lehman et al. (2012). New content includes the first hybridization of reactivity
and noise, more extensive experiments, and experiments with real robots.



(ER; Nolfi and Floreano, 2000) approaches that robustness is encouraged in an
intuitive way by exposing robots to many instances of probabilistic simulations
in which random noise is added to the robot’s sensors and motors (Jakobi et al.,
1995; Nolfi and Floreano, 2000). The intent is to devalue solutions dependent on
merely circumstantial conditions. While this approach is logical and sometimes
successful, robots in such noisy simulations, while not dependent on momen-
tary idiosyncrasies, may learn to depend on specific distributions of noise. In
contrast, reactivity means depending upon as few assumptions as possible.

In a final surprising result, combining reactivity with noisy simulation pro-
duces the most robust result while requiring multiple times fewer evaluations
than traditional noise training. The overall conclusion is that robustness ulti-
mately may neither require an accurate model nor finely calibrated behavior.

The next section provides background on the evolutionary approach to train-
ing. Section 3 then formalizes the notion of reactivity. The experimental design
is detailed in section 4, followed by results in both simulation and the real world
in section 5. The paper then concludes with final thoughts in section 6.

2 Background

This section reviews past work in evolving robust controllers in ER, the NEAT
and HyperNEAT methods applied in the experiments, and multi-objective op-
timization.

2.1 Evolving for Robustness

For practical reasons, controllers for robots in ER are often trained in a com-
puter simulation rather than directly in reality (Nolfi and Floreano, 2000). How-
ever, discrepancies between simulation and reality may cause controllers that
are effective in simulation to fail when transferred to a real robot. Because this
problem of crossing the reality gap is a significant issue in ER there exist spe-
cific training methods that attempt to mitigate it (Bongard and Lipson, 2004;
Bongard et al., 2006; Jakobi, 1998; Koos et al., 2011; Zagal and Ruiz-Del-Solar,
2007). The reality gap is one facet of the larger difficulty of evolving general,
robust controllers that are not overly dependent on simulation details (Pinville
et al., 2011).

Nearly all training strategies for evolving robust controllers involve training
at least some individuals with multiple trials (Gomez and Miikkulainen, 2004;
Jakobi, 1998; Pinville et al., 2011), non-determinism (Gomez and Miikkulainen,
2004; Jakobi, 1998; Pinville et al., 2011), or evaluations in reality (Bongard and
Lipson, 2004; Bongard et al., 2006; Koos et al., 2010, 2011; Zagal and Ruiz-
Del-Solar, 2007; Zagal et al., 2004). A common motivation for noisy training
is that real-world sensors often do experience some degree of noise; however,
a deeper motivation is that strategically applying noise to a robot’s sensors or
effectors can prevent evolution from exploiting features specific to a particular
simulation. In other words, evolution otherwise often learns to depend upon



incidental features of the presented scenario that are not characteristic of the
problem to be solved in general (Jakobi, 1998).

While the motivations may be reasonable, the computational cost of training
with noise is significant because noisy evaluations normally consist of multiple
trials to reduce uncertainty about a policy’s average performance (Jakobi, 1998;
Pinville et al., 2011). To reduce computational costs, some methods seek to
evaluate only some individuals in a full suite of noisy trials by estimating trans-
ferability for other individuals (Pinville et al., 2011). Yet this approach still
requires additional potentially expensive evaluations and the estimates of trans-
ferability may not always be accurate. In addition to computational costs, it
is not always clear how many trials, in what distribution, and with what in-
tensity noise should be applied in training to ensure successful transfer (Gomez
and Miikkulainen, 2004). While Jakobi (1998) lays out a principled methodol-
ogy based on minimal simulations, it still requires painstaking measuring and
modeling to implement.

Other approaches leverage occasional evaluations of controllers in the real
world to encourage or estimate transferability (Bongard and Lipson, 2004; Bon-
gard et al., 2006; Koos et al., 2011; Zagal and Ruiz-Del-Solar, 2007). The main
idea is that although time-consuming and potentially difficult to automate, such
evaluations on physical robots can identify discrepancies between the simulator
and reality. In this way, it is possible to co-evolve simulators and controllers
to reduce discrepancies (Bongard and Lipson, 2004; Bongard et al., 2006; Zagal
and Ruiz-Del-Solar, 2007), or to penalize behaviors that exploit them (Koos
et al., 2011).

However, an interesting unexplored question is whether there exist distin-
guishing properties of robust robot controllers that are visible in a single sim-
ulated trial. If such properties exist and can be explicitly encouraged by an
appropriate training incentive, it may be possible to evolve robust robot policies
without multiple trials or intermittent evaluations in reality. While interesting
in its own right, such a training methodology would also reduce computational
cost and might reduce the need to model a domain precisely. To this end,
the experiments in this paper explore incentivizing the reactivity of an evolved
controller to encourage its robustness.

Thus these experiments require a method to evolve robot controllers. Though
other methods could be applied, here the HyperNEAT neuroevolution method
was chosen to optimize the robot controllers as a well-established representative
method in ER (Clune et al., 2011; D’Ambrosio et al., 2012, 2011; Drchal et al.,
2009; Gauci and Stanley, 2010; Haasdijk et al., 2010; Knoester et al., 2010; Stan-
ley et al., 2009). The next section reviews the Neuroevolution of Augmenting
Topologies (NEAT) approach, the foundation of HyperNEAT.

2.2 Neuroevolution of Augmenting Topologies

Because the idea in this paper is to optimize a measure of reactivity to encourage
more robust behaviors, to perform the experiments an optimization method is
needed. The NEAT method was originally developed to evolve artificial neural



networks (ANNSs) to solve difficult control and sequential decision tasks (Stan-
ley and Miikkulainen, 2002, 2004). Evolved ANNs control agents that select
actions based on their sensory inputs. Like the SAGA method (Harvey, 1993)
introduced before it, NEAT begins evolution with a population of small, sim-
ple networks and complexifies the network topology into diverse species over
generations, leading to increasingly sophisticated behavior. A similar process
of gradually adding new genes has been shown in natural evolution (Martin,
1999).

However, a key feature that distinguishes NEAT from prior work in complex-
ification is its unique approach to maintaining a healthy diversity of complexi-
fying structures simultaneously, as this section reviews. Complete descriptions
of the NEAT method, including experiments confirming the contributions of its
components, are available in Stanley and Miikkulainen (2002), and Stanley and
Miikkulainen (2004). This section briefly reviews the key ideas on which the
basic NEAT method is based.

To keep track of which gene is which while new genes are added, a his-
torical marking is uniquely assigned to each new structural component. During
crossover, genes with the same historical markings are aligned, producing mean-
ingful offspring efficiently. In traditional implementations of NEAT, speciation
protects new structural innovations by reducing competition between differing
structures and network complexities, thereby giving newer, more complex struc-
tures room to adjust. Networks are assigned to species based on the extent to
which they share historical markings. It is important to note that this aspect of
NEAT was altered in this paper to replace speciation in NEAT with an explicit
genetic diversity objective, which achieves a similar effect. That way, NEAT
is easily integrated into a multi-objective framework, as explained shortly. Fi-
nally, complexification, which resembles how genes are added over the course of
natural evolution (Martin, 1999), is thus supported by both historical markings
and protecting innovation, allowing NEAT to establish high-level features early
in evolution and then later elaborate on them. In effect, then, NEAT searches
for a compact, appropriate network topology by incrementally complexifying
existing structure.

The next section reviews HyperNEAT, an extension of NEAT applied in
the experiments as a representative example of a modern neuroevolution (i.e.
evolving ANNs through evolutionary algorithms) method.

2.3 HyperNEAT

Many neuroevolution methods are directly encoded, which means each part in
the phenotype is encoded by a single gene, making the discovery of repeating
motifs expensive and improbable. Therefore, indirect encodings (Bongard and
Pfeifer, 2003; Hornby and Pollack, 2002; Stanley and Miikkulainen, 2003) have
become a growing area of interest in evolutionary computation and artificial life.

One such indirect encoding designed explicitly for neural networks is the
Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) ap-
proach (Gauci and Stanley, 2010; Stanley et al., 2009), which is an indirect



extension of the directly-encoded NEAT approach (Stanley and Miikkulainen,
2002, 2004) reviewed in the last section. HyperNEAT has proven effective in
a number of recent domains, including many-joint robot arm control (Woolley
and Stanley, 2010), real-world Khepera robot control (D’Ambrosio et al., 2012,
2011), quadruped locomotion (Clune et al., 2011), checkers board evaluation
(Gauci and Stanley, 2010), and robocup soccer (Verbancsics and Stanley, 2010).
This section briefly reviews HyperNEAT; a complete introduction is in Stanley
et al. (2009) and Gauci and Stanley (2010).

Rather than expressing connection weights as distinct and independent pa-
rameters in the genome, HyperNEAT allows them to vary across the phenotype
in a regular pattern through an encoding called a compositional pattern produc-
ing network (CPPN; Stanley, 2007), which is like an ANN but with specially-
chosen activation functions. Such CPPNs are used in HyperNEAT to represent
the connectivity patterns of ANNs as a function of geometry. That is, if an
ANN’s nodes are embedded in a geometry, i.e. assigned coordinates within a
space, then it is possible to represent its connectivity as a single evolved func-
tion of such coordinates. In effect the CPPN paints a pattern of weights across
the geometry of a neural network. To understand why this approach is promis-
ing, consider that a natural organism’s brain is physically embedded within a
geometric space, and that such embedding heavily constrains and influences
the brain’s connectivity. Topographic maps (i.e. ordered projections of sensory
or effector systems such as the retina or musculature) exist within brains that
preserve geometric relationships between high-dimensional sensor and effector
fields (Hubel and Wiesel, 1962; Udin and Fawcett, 1988). In other words, there
is important information implicit in geometry that can only be exploited by an
encoding informed by geometry.

In particular, geometric regularities such as symmetry or repetition are per-
vasive throughout the connectivity of natural brains. To similarly achieve such
regularities, CPPNs exploit activation functions that induce regularities in Hy-
perNEAT networks. The general idea is that a CPPN takes as input the geomet-
ric coordinates of two nodes embedded in the substrate, i.e. an ANN situated in
a particular geometry, and outputs the weight of the connection between those
two nodes (figure 1). In this way, a Gaussian activation function by virtue of
its symmetry can induce symmetric connectivity and a sine function can induce
networks with repeated elements. Note that because the size of the CPPN is
decoupled from the size of the substrate, HyperNEAT can compactly encode the
connectivity of a an arbitrarily large substrate with a single CPPN. In short, in
HyperNEAT, NEAT evolves CPPNs that compactly encode larger ANNSs.

It is important to note that HyperNEAT is chosen here simply as a repre-
sentative modern neuroevolution method. Because all experiments are based
on HyperNEAT, the main distinctions among them will be the use of noise or
reactivity in training rather than the training algorithm or its particular details.

The next section reviews multi-objective optimization, which is combined
with HyperNEAT to enable optimizing both reactivity and fitness during a
single run.
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Figure 1: CPPN-based Geometric Connectivity Pattern Encoding. A
collection of nodes, called the substrate, is assigned coordinates that range from
—1 to 1 in all dimensions. (1) Every potential connection in the substrate is
queried to determine its presence and weight; the dark directed lines in the sub-
strate depicted in the figure represent a sample of connections that are queried.
(2) Internally, the CPPN (which is evolved by NEAT) is a graph that determines
which activation functions are connected. As in an ANN, the connections are
weighted such that the output of a function is multiplied by the weight of its
outgoing connection. For each query, the CPPN takes as input the positions of
the two endpoints and (3) outputs the weight of the connection between them.
Thus, CPPNs can produce regular patterns of connection weights in space.

2.4 Multi-objective Optimization

Multi-objective optimization is a popular paradigm within EC that addresses
how to optimize more than one objective at the same time in a principled
way (Coello, 1999). The experiments in this paper apply an implementation
of NSGA-IT (Deb et al., 2002), a well-established Pareto-based multi-objective
search algorithm, to optimize a traditional fitness objective and a reactivity
objective concurrently.

The concept of dominance is central to Pareto-based multi-objective search;
the key insight is that when comparing the performance of two individuals over
multiple objectives, if both individuals are better on different subsets of the
objectives then there is no meaningful way to directly rank such individuals
because neither entirely dominates the other. That is, ranking such mutually
non-dominating individuals would require placing priority or weight on one ob-
jective at the cost of another; traditionally one individual dominates another
only if it is no worse than the other over all objectives and better than the other
individual on at least one objective.

In this way, the best individuals in a population are those that are not



dominated by any others. Such best individuals form the non-dominated front,
which defines a series of trade-offs in the objective space. That is, the non-
dominated front contains individuals that specialize in various combinations of
optimizing the set of all objectives. Some will maximize one at the expense of
all the rest, while some may focus equally on all of the objectives. The result
is that various trade-offs of competing objectives such as genomic diversity,
fitness, and reactivity can be explored during a single evolutionary run. The
hope is that particular trade-offs between fitness performance and reactivity (i.e.
policies that perform as well as possible given the constraint that they must be
reactive) may lead to more robust behavior. Interestingly, such trade-offs may
also mitigate the potential for a reactivity objective to discourage more cognitive
controllers that are not always reactive; that is, if temporarily ignoring sensor
inputs is necessary to increase performance, then the concept of non-dominance
implies that they can yet survive in the population.

Note that adding a reactivity objective can be seen as an example of multi-
objectivation (Coello, 2006; Jensen, 2003; Knowles et al., 2001), where an ad-
ditional objective unrelated to directly solving the problem can nonetheless aid
search. The ability of such helper objectives in ER to encourage robustness
and consistency of behaviors has been previously demonstrated (Koos et al.,
2011; Ollion et al., 2012; Pinville et al., 2011), supporting the motivation of the
multi-objective approach here.

Finally, recall that a detail of combining NEAT or HyperNEAT with multi-
objective optimization is that NEAT has a mechanism (called speciation) for
preserving genomic diversity that does not fit naturally into NSGA-II. Thus in
the experiments in this paper, speciation is replaced in NEAT with an explicit
genomic diversity objective that is similar in spirit. In particular, the genomic
diversity of a given genome is quantified as the average distance to its k-nearest
neighbors in genotype space as measured by NEAT’s genomic distance measure.
In this way, multi-objective evolution with NEAT is incentivized to maintain
genomic diversity in a similar way to how it is in the original formulation of
NEAT.

The next section formalizes the measure of reactivity that will be used as an
additional objective for training.

3 Training for Reactivity

The hypothesis in this paper is that an agent that is more reactive to its en-
vironment will also be more robust. This view is in part inspired by the fluid
reactivity and curiosity of natural organisms (Berlyne, 1966; Glickman and Sro-
ges, 1966), which may relate to their robustness. Thus a promising idea is to
encourage reactivity in ANN controllers for robots for two reasons: 1) to probe
whether reactivity may indeed contribute to biological robustness by isolating
it and applying it to an artificial context, and 2) to explore the practical issue
of whether encouraging reactivity can increase the robustness of machines. For
example, a robot exploring a maze that is continually probing and reacting to



the walls with its rangefinder sensors may be more robust than a robot that
always executes an inflexible memorized plan (which could be disrupted easily
by unexpected noise in its sensors or effectors). However, to directly optimize
reactivity so that it can be encouraged to evolve, it needs to be quantified.

In this article the notion of reactivity is formulated as a measure of statis-
tical dependence between the magnitude of changes in a robot’s sensors and
its effectors. In general, dependence between two variables implies a consistent
relationship between them (e.g. an increase in one variable may tend to result
in a decrease in the other). More specifically, it implies that knowledge of one
variable helps to predict the other. Encouraging such dependence makes sense
because it provides evidence that an agent is paying attention to changes in its
immediate situation. In particular, it implies that the magnitude of change in a
robot’s sensors influences the magnitude of change of its effectors. In this way,
the measure is agnostic to the exact relationship between the two because the
ideal such relationship may vary between domains. However, it ensures at least
that reactions to sensory changes are consistent, which aligns well with the idea
of reactivity.

For example, a particularly attentive student might nod vigorously when
an important concept is explained but only slightly when a trivial theorem is
proven. In contrast, for a blind person navigating with a cane in a corridor,
a sudden large change in distance from the wall may call for caution and only
gradual adjustment. Although such a consistent nodding or adjustment policy
might not be directly necessary to solve the task, it provides evidence that the
behavior is reactive. This evidence is the key to the success of the hypothesis
in this paper: Even if forcing agents to provide evidence that they are paying
attention slightly slows down behaviors that might otherwise be faster, it is
still worth that cost for the robustness it buys in the end. For this purpose,
the proposed measure of statistical dependence is that of mutual information
(Shannon, 1949). The choice of this measure is also justified by past experiments
in which mutual information incentivized simple exploratory behavior in robots
(Ay et al., 2008), though that work was not focused on encouraging robustness.

The mutual information statistic for two continuous random variables takes
the form

I(X;Y)=/Y/Xp(x,y) 10g<p(x’y)) dz dy, (1)

p(@)p(y)

where p(z,y) is the joint probability distribution function of X and Y, and p(x)
and p(y) are the marginal probability distributions of X and Y. The higher the
absolute value of I(X;Y'), the more dependent are the two variables. In par-
ticular, mutual information is maximized when the entropy (i.e. uncertainty) of
considering X and Y independently is maximized but the entropy of considering
X conditional on prior knowledge of Y (or vice versa) is minimized.

For the experiments that follow, reactivity is measured by the mutual in-
formation between the magnitude of changes in a robot’s rangefinder sensors
and the magnitude of changes in its motor effectors. However, this approach is



general enough to be applied to different sensory setups in robots in other ER
domains where probing and reacting is also important to robustness. Formally,
the seven rangefinder sensors 41, .., 77 of the simulated robot are subtracted from
their values on the previous timestep and the average magnitude of these differ-
ences at timestep t is recorded as ;. The average change in the robot’s outputs
Yz is computed accordingly.

Because the true distributions of X and Y are not known, p(z), p(y), and
p(z,y) are estimated through histograms (with a bin width of 0.05) of the sam-
pled data x; and y; collected during an evaluation. That is, three histograms are
created: two one-dimensional histograms (one over z; for p(x) and one over y;
for p(y)), and one two-dimensional histogram (over both x; and y; for p(z,y)).
Riemann sums are then applied to approximate the integrals from equation 1.
However, any reasonable means of estimating the distributions or of numerical
integration could be substituted.

An important insight in the proposed approach is that while optimizing this
formalized measure of reactivity alone would not necessarily lead to successful
task performance, instead it can augment training performance as an additional
objective by employing a multi-objective optimization algorithm (Deb et al.,
2002). In this way, individuals might be evolved that both solve a given task
and provide evidence of potential robustness by being reactive, without the need
for multiple noisy trials. The motivation is that if robust solutions could be
evolved through this approach, computational costs would be reduced, as would
the need for precisely modeling the domain (including estimating appropriate
distributions of noise).

The next section describes experiments designed to explore the effect of
reactivity on robustness and contrast it with more traditional approaches.

4 Maze Navigation Experiments

Because reactivity is intended to encourage robust behaviors, a domain for test-
ing reactivity should be challenging under noisy conditions. For this purpose
four maze navigation domains (figure 2) that create such a challenge in different
ways are explored in this article.

4.1 Maze Navigation Domains

In all of the mazes, the simulated robot is modeled after the Khepera III (K-
Team, 2010) (shown in figure 3), which is the model used in the real-world
portion of the experiments, and training and testing noise levels are in line with
established models of the robot (Cyberbotics, 2012). An evolved ANN controls
the robot with the goal of navigating from a starting point to an end point in
a fixed time limit that requires direct traversal. To sense its environment, the
robot has six rangefinders that indicate the distance to the nearest obstacle. Its
three effectors produce forces that respectively turn and propel the robot.

10



— 0 .
o

O

©) ©)
(a) Straight  (b) Zigzag  (c¢) Winding (d) Deceptive

Figure 2: Domains. The goal of the agent in the maze navigation domains is
to navigate from the starting position (large circle) to the goal (small circle).
Note that mazes are not drawn to scale.

(a) Khepera III (b) Front Sensors

Figure 3: Khepera III with Korebot II. The Khepera III mobile robots
(a) in these experiments (which are trained in simulation and later transferred
to the real world) come equipped with a Korebot II extension that runs an
embedded Linux operating system and allows the robots to receive broadcast
communications over a wireless network. Although the Khepera III has many
sensors available, only the front six infrared rangefinders (b) are utilized in these
experiments.

In the Noise training variations, noise was applied to both the simulated
robot’s rangefinder sensors and its motor outputs. Such noise was computed
according to the weighted average (1.0 — x)v + an, where z is the noise level,
v is the before-noise value, and n is randomly chosen from the unit uniform
distribution.

The first domain, the Straight maze (figure 2a), is designed to be simple
but yields situations that only become necessary to experience when an evolved
behavior is exposed to significant levels of noise. That is, although an uncon-
ditional “always go forwards” policy will be effective without noise, sufficient
effector noise may cause the robot’s heading to veer into walls. To further ac-
centuate such situations, in this maze the robot is disabled for the remainder
of a trial if it collides with a wall. The Zigzag maze (figure 2b) is slightly more

11



complicated because of the need to turn, but it and the remaining mazes allow
the robot to recover if it hits a wall. The Winding maze (figure 2c¢), with its
right-angle turns and narrower corridors, creates significant opportunity for the
robot to get stuck or confused with increasing noise. Finally, the most challeng-
ing maze, the Deceptive maze (figure 2d), has deceptive cul-de-sacs that may
complicate training in addition to sharp corners that are difficult to navigate
with noise.

Four different ER approaches are compared to investigate the potential of
training for reactivity:

e In the Standard setup there is a single deterministic trial (i.e. the robot
performs ideally in the sense that there is no deviation from expected
responses in its sensors and motors). ANN controllers for robots are
optimized towards increasing success in accomplishing the domain task.
Robots trained with this approach are expected to generalize poorly be-
cause no attempt is made to model noise in the environment.

e In the three Noise setups the optimization criteria remain the same as in
the standard setup, but each robot is evaluated in eight non-deterministic
noisy trials to provide a more realistic estimate of its performance in the
real world. The amount of both sensor and effector noise for the three
different noise setups is respectively 10%, 20%, and 30%, applied applied
as follows: Noise is computed according to the weighted average (1.0 —
z)v + an, where z is the noise level, v is the before-noise value, and n
is randomly chosen from the unit uniform distribution. Of course, the
training noise level closest to the noise level in testing would be expected
to yield the best performance.

e In the Reactivity setup an additional optimization criterion for increased
reactivity complements the objective of accomplishing the domain task.
As in the Standard setup, the robot is evaluated only in a single deter-
ministic trial with no noise. The interesting question is whether a robot
trained in such a setup, without any attempt to model noise, would nev-
ertheless perform as well or better than those trained for a noisy environ-
ment.

e The Reactivity + Noise setup follows the Reactivity setup but each
robot is evaluated in a single non-deterministic noisy trial to determine
its quality. The amount of both sensor and effector noise for the three
different Reactivity + Noise setups is respectively 10%, 20%, and 30%,
following the Noise setup. This setup explores whether reactivity comple-
ments training with noise by significantly reducing the number of noise
trials (from eight down to one) needed to learn effectively from noise.

4.2 Optimization Details

For these experiments HyperNEAT was combined with a multi-objective ap-
proach based on the popular NSGA-IT algorithm (Deb et al., 2002). All ex-

12



Figure 4: HyperNEAT ANN Substrate. The substrate ANN that Hyper-
NEAT evolves is shown. The labeled numbers indicate the input nodes for the
six rangefinder sensors, the unlabeled nodes are the hidden nodes, and the L,
F, and R nodes are the output nodes for the left, forward, and right effectors
of the robot, respectively.

periments optimize a primary objective that estimates progress towards accom-
plishing the domain task (i.e. navigating through a maze). Some experiments
also concurrently optimize the reactivity of robots to investigate the hypothesis
that reactivity may increase robustness. A final objective included in all exper-
iments encourages population diversity (D’Ambrosio et al., 2012). The idea is
to reward exploring a range of genotypes to avoid converging to an ANN con-
troller that is only locally optimal and does not successfully solve the task. In
HyperNEAT, sensors and effectors are placed in a geometric arrangement called
the substrate to reflect the geometry of sensors and effectors on the robot in the
real world. The neural substrate for the robots in this experiment is shown in
figure 4, and is adapted from similar substrates used in past experiments with
Khepera robots (D’Ambrosio et al., 2011).

The fitness of an individual is calculated as its distance to the goal at the
end of the evaluation, which is a standard measure of progress in maze navi-
gation tasks (Iba and Terao, 2000; Langdon et al., 1999; Lehman and Stanley,
2011; Mouret and Doncieux, 2012; Revello and McCartney, 2000). Runs of the
Straight, Zigzag, and Winding mazes lasted 400 generations, while because of
its increased difficulty runs of the Deceptive maze lasted 1,000 generations.

The experiments were run with a modified version of the public domain
SharpNEAT package (Green, 2006). The size of each population was 250 with
20% elitism. Asexual offspring (50%) had 0.96 probability of link weight muta-
tion, 0.03 chance of link addition, and 0.01 chance of node addition. The coef-
ficients for determining genomic similarity were 1.0 for nodes and connections
and 0.1 for weights. The available activation functions were sigmoid, Gaussian,
absolute value, and sine. Parameter settings are based on standard SharpNEAT
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Figure 5: Reactivity Calculation for Representative Controllers. A
scatter plot of paired magnitudes of sensor and effector changes for each time
step of the simulation is shown for representative controllers from the Reactivity
and Standard setups. The ANN controller trained with Reactivity receives a
higher reactivity score because there is a higher mutual information between
the two plotted dimensions. In particular, there is greater uncertainty in the
independent distributions of sensor and effector change magnitudes, and less
uncertainty in the conditional distributions.

defaults and were found to be robust to moderate variation through preliminary
experimentation.

4.3 Example Trajectories and Reactivity Measures

To illustrate how reactivity is detected, figure 5 shows a scatter plot of the
relevant dimensions for calculating mutual information of two characteristic
behaviors in the Straight maze. Note that in the Reactivity example, there is
more variance in both plotted dimensions, and knowing one dimension generally
helps predict the other. This increase in prediction accuracy of one dimension
from knowing the other, which is higher for the Reactivity example, is the
mutual information between the two dimensions. Figure 6 shows the trajectories
of these same individuals, demonstrating the link between reactive behavior and
the reactivity measure.

5 Results

This section first presents training results and then turns to generalization, real-
world transfer, and transfer to novel environments.

14
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Figure 6: Trajectory in Straight Maze of Representative Controllers.
The trajectories of the controllers from figure 5 are shown when they are eval-
uated in the Straight maze simulation. The ANN controller trained with Reac-
tivity exhibits a more exploratory behavior that generates a greater variety of
sensor and effector changes.

5.1 Training Results

The results of the training performance are shown in figure 7. The Reactivity
setups with and without noise reach a significantly lower training error than
any of the Noise setups or the Standard setup in the Deceptive and Straight
mazes (p < 0.05; Student’s t-test). Reactivity also achieves lower training error
in the Winding maze in all but the 10% Noise setup (p < 0.01; Student’s t-test).
Additionally, the Standard setup actually outperforms some of the Noise setups
in each of the four mazes (p < 0.05; Student’s t-test), highlighting the potential
for the noise model itself to increase the difficulty of training.

These results thus support the hypothesis that training with noise alone
may often complicate training. However, training performance may not reflect
robustness to noise; the Standard and Reactivity setups in fact both had no
exposure to noise at all. It is important to note that even when a complete so-
lution is not evolved in training, a partial evolved solution might still sometimes
solve the task in the more lenient generalization test that is described next.

5.2 Generalization Test

Because the motivation for this experiment is to investigate the robustness of
evolved controllers, a generalization test was devised to measure how well an
evolved controller would perform in noisy distributions not encountered during
training. The generalization test consists of 50 noisy trials with the length of
evaluation doubled from training to allow for greater lenience. Such lenience
reflects that in transfer slight stumbles due to the difference between the real
world and the training environment are preferred to catastrophic failures (i.e.
when a policy can never solve the task irrespective of how much time is allot-
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Figure 7: Maze Navigation Training Error Results. The average training
error, i.e. the closest distance to the goal achieved by the best-performing indi-
vidual in each run, is shown for the different training methodologies averaged
over twenty independent runs. Generally the Reactivity setups perform com-
petitively even though optimization in such setups must balance two different
objectives.

ted). For each of the 50 trials, the sensor and effector noise levels are sampled
independently from a uniform distribution ranging from 5% to 35%. The idea
is to estimate the robustness of an evolved robot controller over a wide yet
reasonable range of noisy situations.

An individual receives a score on the generalization test in accordance with
the fraction of trials in which it is able to navigate the maze successfully (if
it comes closer than 20 centimeters to the goal at any point). For each run,
the individual scoring the overall highest on this test in the final population is
recorded, and the average over each of the 20 runs reflects a setup’s performance
in the test. This approach to testing gives a sense of the most robust ANN
controller one can hope to find with each approach. Figure 8 shows the results
of the generalization test.
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bility of the best individual from a run solving the generality test is shown for

different training methodologies over the four maze domains.
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5.2.1 Generalization Performance of Reactivity Alone and Noise Se-
tups

This section examines how the non-reactive setups (Standard and the three
Noise setups) compare to training with the Reactive setup on the generalization
test. Over these five compared setups with four different mazes, there are 20
total generalization scenarios and 16 pair-wise comparisons with the Reactivity
setup. Overall, the Reactivity setup was never significantly worse than the
more traditional setups and was often significantly better (in 5 out of 16 total
pair-wise comparisons; Student’s t-test; p < 0.05).

Due to its simplicity, the Straight maze did not distinguish any of the setups
in this generalization test (although it does in the fine-grained generalization
test described later). However, the other mazes proved more informative in sep-
arating the setups. In particular, it is interesting to explore whether Reactivity
provides any advantage over the Standard setup. Supporting its motivation,
the Reactivity setup outperforms the Standard setup in both the Zigzag and
Deceptive mazes and is never outperformed by Standard. Furthermore, despite
having no exposure to noise during training, the Reactivity setup never performs
significantly worse than the Noise setups. In fact, Reactivity alone outperforms
20% and 30% Noise in the Winding maze, and also outperforms the 30% Noise
setup in the Deceptive maze. These results suggest that training with some
noise models can hurt robustness while reactivity can sometimes circumvent
the need for choosing a particular noise model at all.

5.2.2 Generalization Performance of Reactivity + Noise

Results so far suggest that training with reactivity often performs as well as
training explicitly with noise, and is sometimes significantly better. An inter-
esting question is whether the performance of reactivity can be further improved
if the robot trained for reactivity is evaluated in a single non-deterministic noisy
trial. These results are also shown in Figure 8. Overall, the Reactivity + Noise
setups most often perform significantly better than the other approaches (in 36
out of 60 pairwise comparisons) and are never significantly worse.

The Straight maze, as in the previous section, provides no useful distinctions
for this generalization test. However, in both the Zigzag and Winding mazes,
the Reactivity + Noise setups nearly always outperform the other approaches
(in 28 out of 30 pair-wise comparisons). Finally, in the Deceptive maze, all of
the Reactivity + Noise setups outperform the Standard setup although they do
not outperform Reactivity alone. Reactivity + Noise in this maze also most
often outperforms the Noise setups (in five out of nine pair-wise comparisons).
These results demonstrate that evaluating robots in one noisy trial combined
with reactivity is a promising new approach for training for robustness that
relinquishes the need for multiple noisy trials.
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Figure 9: Winding Maze.

5.3 Transfer to the Real World

To validate the potential benefits of reactive behaviors for crossing the reality
gap (Jakobi et al., 1995) to the real world, this section presents results of real-
world transfers. The Winding maze was chosen as a test environment for transfer
because it was one of the more challenging maze setups in training (figure 7)
and was also designed to be easily realizable in the real world. The maze was
constructed out of red 72in x33inx21in bricks with a carpet base (figure 9),
which are the same dimensions as in the simulator.

The generalization test described in the previous section decided which in-
dividuals to transfer for each method. In particular, the best-scoring individual
on the Winding maze generalization test from each of the 20 independent runs
for each method was tested in the real world.

Each such robot was given a single real-world trial in the Winding maze. The
progress of the robot in each real-world trial was measured by the proportion
of the three turns it traversed successfully (i.e. a robot that completed two of
the turns in a particular trial would receive a score of 2). This measure was
then averaged across all transferred robots for a given approach. The resulting
quantity estimates the expected progress a transferred robot will make in the
maze for each approach. Figure 10 illustrates this measure for all of the trained
setups.

The best method at transferring, Reactivity + 30% Noise, progresses 63%
of the way through the maze for an average transferred controller, significantly
outperforming (Student’s t-test; p < 0.05) all of the other approaches except
Reactivity + 20% Noise (which progressed on average 50% of the way through
the maze). Similarly, Reactivity + 20% Noise outperforms all of the traditional
approaches (the Noise and Standard setups). Reactivity + 10% Noise and Re-
activity alone are only significantly better than the 30% Noise setup (which
progressed only 1.65% through the maze on average), and the traditional ap-
proaches are never significantly better than any of the Reactivity setups nor do
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Figure 10: Real World Transfer Results in Winding Maze. The effects
on transferability, i.e. the expected percentage of progress through the Winding
maze for a robot transferred from simulation to the real world, are shown for
training with various ER setups.

they significantly differ from each other. Interestingly, the transferability to the
real world tends to decrease with increased noise levels in training when using
standard Noise training (30% Noise never successfully traverses the entire maze
in reality), but increases with increasing noise in training when paired with
Reactivity (Reactivity + 30% Noise successfully traverses the maze in 45% of
attempts).

Videos of transfers from simulation to the real world, including both reactive
success and typical non-reactive failures, can be viewed at:
http://goo.gl/Qn9nz. A typical robot trained with reactivity keeps an ad-
equate distance to the surrounding walls. On the other hand, robots trained
without reactivity often collide with the walls when trying to take a left or right
turn.

5.4 Transfer to Novel Environments

To probe the limits of the generality of evolved behaviors, controllers can be
transferred into mazes to which they had no exposure during training. That
is, ideally controllers would be robust not only to varying levels of noise but
also to structural variations in the domain. Of course, it may be unrealistic to
expect that exposure to only one environment in training can induce perfect
generalization across all possible environments. However, such a test might still
provide interesting perspective on a method’s ability to induce robustness.
Thus, to explore this idea, the same controllers that were transferred from
simulation to reality in the Winding maze (as described in the previous section)
were additionally transferred in simulation to other maze domains. That is,
the most robust controllers trained in the Winding maze were evaluated on the
simulated generalization test in the Straight maze, the Zigzag maze, and the
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Deceptive maze. The Winding maze was chosen because it was also tested in
real-world transfer, and many of its features are also present in the other mazes.
That way, a controller evolved only to solve the Winding maze might be able
to exploit the same underlying regularities in the other mazes to solve them as
well.

Figure 11 shows how training through different approaches affects the prob-
ability of successful transfer to novel environments. In the Zigzag maze, can-
didates evolved with the Reactivity + 30% Noise setup are significantly more
likely to transfer than any of the other setups (p < 0.05; Student’s t-test), and
in the Straight maze, Reactivity + 30% Noise is significantly better than the
Standard setup or the 20% or 30% Noise alone setups. There were no significant
pairwise differences in the Deceptive maze, because nearly all transfers failed
completely; however, aggregating data reveals some benefit for reactivity. In
particular, over all reactive transfers in the Deceptive maze, 11 passed the gen-
eralization test more than 10% of the time, while only 2 from the setups without
reactivity did. This difference is significant (p < 0.05; Fisher’s exact test), as
is the pairwise comparison of average probability of success in the Deceptive
maze if the data is aggregated by whether or not the setup includes reactivity
(p < 0.05; Student’s t-test). Furthermore, examining pairwise differences across
all three transfer scenarios, setups including reactivity are never significantly
worse at transferring than those without reactivity, and are often better (in 12
out of 48 such comparisons).

While the tests in entirely different mazes show that robustness gained
through reactivity has natural limits (particularly in the Deceptive maze), the
results overall show that in reasonable reproductions of the training environ-
ment (such as real-world reproductions), significant robustness does emerge.
Thus given realistic expectations on possible deviations from training, reactiv-
ity can act as a useful tool for emphasizing robustness, such as in crossing the
reality gap.

5.5 Fine-grained Generalization Test

To further investigate robustness, a fine-grained generalization test was devised
to measure how well an evolved controller performs on individual levels of noise.
In other words, this generalization test provides a more granular view of ro-
bustness, to demonstrate what levels of noise proved most challenging for each
approach. The main idea is to measure how varying the level of noise affects a
controller’s performance.

For this generalization test, an individual was evaluated on 50 independent
trials with a fixed level of sensor and effector noise (i.e. the level of sensor
noise is the same as that of effector noise, and this level is constant for all 50
trials). For each run, the individual scoring the overall highest on this test from
sampling the population at regular intervals is recorded, and averaged over each
of the 20 runs. In all of the mazes except the Deceptive maze, the population
is sampled every 100 generations. In the Deceptive maze experiment every 200
generations is sampled because of its longer duration. The generalization test
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Figure 11: Generalization to Novel Domains. The effects on transferability
to novel simulated domains from the Winding maze are shown for training with
various ER setups. The main conclusion is that such transfer can sometimes
be aided by reactivity training, although successful transfer may be more likely
when tested domains sufficiently resemble those encountered in training.

itself is repeated with noise distributions from 0% to 35% at 5% intervals (for
eight total testing noise levels). This approach to testing gives a sense of what
levels of noise proved most challenging for each approach.

To assess statistical significance on the generalization test for each domain,
a one-way ANOVA test was first applied across the five experimental setups
for each level of generalization noise to demonstrate that the distributions are
significantly different (at least p < 0.05). If at a particular noise level this first
test was passed, then Student’s t-tests were applied to measure the significance
(assuming a p-value of 0.05) of pairwise differences between Reactivity and the
other experimental setups.

Interestingly, figure 12 shows how the overall most-general (figure 8) com-
bination, Reactivity + 20% noise, compares to the more traditional setups for
robustness training in the Deceptive maze. The results in this maze most clearly
demonstrate how traditional noise training can result in controllers over-fit to
the training level of noise, e.g. the 30% Noise setup is most effective among
the Noise setups only when tested at 30% or 35% noise. In contrast, the per-
formance of Reactivity + 20% Noise degrades more uniformly when tested on
increasing levels of noise.

Finally, the overall best performing method in the fine-grained generalization
test, Reactivity + 20% noise, is never significantly worse and often significantly
better than all of the Standard and the 10%, 20% and 30% Noise setups.
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Figure 12: Fine-grained Generalization Test Results in the Deceptive
Maze. The average probability of the best individual from a run to solve the
generalization test at various levels of noise is shown for the Standard, Noise,
and Reactivity + 20% noise setups for the Deceptive maze.

How the setup of Reactivity alone compares to the non-reactive setups (Stan-
dard and the three Noise setups) on the fine-grained generalization test is shown
in figure 13. Over the five compared setups (Reactivity, Standard, and three
different training noise levels) with eight testing noise levels each, there are 40
total generalization scenarios per domain.

Interestingly, in the Straight maze, the Standard setup (which has no expo-
sure to noise nor any incentive to encourage reactivity) is the only setup that
suffers as testing noise levels increase, supporting the motivation for this maze.
More importantly, over all four domains, training with the Reactivity setup was
never significantly worse at generalizing than training with the Standard setup,
and was significantly better in 15 out of the 32 pairwise comparisons. Train-
ing with the Reactivity setup was significantly better at generalizing than the
Noise setups in 7 out of 96 comparisons while Noise also was significantly better
than Reactivity in 7 pairwise comparisons. Interestingly, the occasional signifi-
cant advantages for the Noise setups only occurred when the noise level in the
generalization test was 25% or greater, which suggests that reactivity training
without noise may generally be most advantageous when it is likely that a robot
will encounter only moderate levels of noise in reality.

Figure 14 compares the effect on fine-grained generalization of training with
Reactivity + 10%, 20%, and 30% noise. The results demonstrate that training
combining Reactivity with Noise demonstrates an advantage over training with
Reactivity alone that is rarely dependent on a particular testing level of noise.

Finally, independently of the added noise level (e.g. 10%, 20%, or 30%), the
Reactivity 4+ Noise setups always perform the same or better than Reactivity
without noise in all domains except in one scenario (Reactivity + 10% Noise
in the Straight maze evaluated at 35% noise). The overall best performing
method in the fine-grained generalization test, Reactivity + 20% noise, is never
significantly worse and often significantly better than all of the Standard and
the 10%, 20% and 30% Noise setups.
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Figure 13: Maze Navigation Fine-grained Generalization Test Results.
The average probability of the best individual from a run to solve the generaliza-
tion test at various levels of noise is shown for different training methodologies
over the four maze domains. The main result is that training with reactivity
in all four domains is never significantly worse than training with noise (10%,
20%, or 30%) on the generalization test at moderate levels of noise (< 25%).

6 Discussion and Conclusions

This study demonstrates that the selection of ANN controllers based on the
biologically-inspired concept of reactivity can produce robust controllers that
do not depend explicitly on the specific training model both in simulation and
when transferred to real robots. Solutions trained with reactivity as a goal had
the best success rate when run in real robots and tended to perform best across
all noise levels when tested in simulation. Solutions evolved with multiple noisy
trials showed promise when tested on specific noise levels, implying that if a
simulation is properly tuned to the actual conditions a robot will experience,
then these approaches can be beneficial. However, such perfect tuning is difficult
if not impossible to achieve in the real world, and these results show it may not
be necessary.

Perhaps most interesting is that the ANN controllers that performed best
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Figure 14: Reactivity + Noise Maze Navigation Fine-grained Gener-
alization Test Results. The average probability of the best individual from
a run to solve the generalization test at various levels of noise is shown for dif-
ferent variations of reactivity with noise over the four maze domains. The main
result is that training with Reactivity + 20% noise is never significantly worse
than training with any of the other setups (including Standard and the three
Noise setups) and is often significantly better.

in the generalization test and transferred best to real robots were those that
were trained with a combination of reactivity and a single noisy trial. Such
a combination seems counter-intuitive because the robot is exposed only to a
single, partly random experience of the world. However, that is also the case for
organisms in the real world: all animals are born with noisy sensors and effectors
and must learn the appropriate responses to them. A critical advantage that the
controllers in these experiments have is that during simulation, the true signal
is known to the experimenters, so the controllers can be directly rewarded for
reacting to it instead of the raw noisy input. Thus robots must probe their
environment not only for information about it, but also for information about
their own sensors and effectors.

In ER, training with multiple noisy trials has the obvious effect of increasing
computational costs linearly with the number of trials performed; thus reactivity

25



provides a clear benefit by still producing robust controllers with only a single
trial. However, a less obvious byproduct of traditional noisy trials is their effect
on the evolutionary search space, that is, how they affect the search process for
the solution. In training, single trials with reactivity were always no worse, and
typically better than multi-trial approaches, confirming studies (Beyer, 2000)
that suggest a deleterious effect of multiple trials of noise upon search, e.g. by
obscuring less robust stepping stones that still lead to better behavior.

Rewarding reactivity is inspired by the tendency of animals to explore their
environment when faced with unfamiliar circumstances. This natural response
is intuitive, yet is ignored by some learning approaches in favor of finding an
“optimal” training solution, even if that solution may not actually produce the
best real-world results. In addition to providing a logical quantification for this
concept of reactivity, this work suggests that there exist effective alternative
approaches to multiple trials (Jakobi et al., 1995; Pinville et al., 2011) or real-
world evaluation (Koos et al., 2011; Zagal and Ruiz-Del-Solar, 2007) for creating
robust controllers that can cross the reality gap. More deeply, the results suggest
that building and learning from an accurate model of the environment may not
be the most important factor in attaining robust behavior. Rather than finely
tuned, robust behaviors may simply be highly cautious and reactive, thereby
precluding the need for perfection at every step.
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