
1

Interactive Evolution of Particle Systems
for Computer Graphics and Animation

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816
{hastings, guha, kstanley}@cs.ucf.edu

To appear in:IEEE Transactions on Evolutionary Computation, New York: IEEE Press, 2009.

Abstract—Interactive Evolutionary Computation (IEC) creates
the intriguing possibility that a large variety of useful content can
be produced quickly and easily for practical computer graphics
and gaming applications. To show that IEC can produce such
content, this paper applies IEC to particle system effects, which
are the de facto method in computer graphics for generating
fire, smoke, explosions, electricity, water, and many other special
effects. While particle systems are capable of producing a broad
array of effects, they require substantial mathematical and
programming knowledge to produce. Therefore, efficient particle
system generation tools are required for content developers to
produce special effects in a timely manner. This paper details the
design, representation, and animation of particle systems via two
IEC tools called NEAT Particles and NEAT Projectiles. Both tools
evolve artificial neural networks (ANN) with the NeuroEvolution
of Augmenting Topologies (NEAT) method to control the behavior
of particles. NEAT Particles evolves general-purpose particle
effects, whereas NEAT Projectiles specializes in evolving particle
weapon effects for video games. The primary advantage of this
NEAT-based IEC approach is to decouple the creation of new
effects from mathematics and programming, enabling content
developers without programming knowledge to produce complex
effects. Furthermore, it allows content designers to produce a
broader range of effects than typical development tools. Finally,
it acts as a concept generator, allowing content creators to
interactively and efficiently explore the space of possible effects.
Both NEAT Particles and NEAT Projectiles demonstrate how
IEC can evolve useful content for graphical media and games,
and are together a step toward the larger goal of automated
content generation.

Index Terms—Interactive Evolutionary Computation, IEC,
NeuroEvolution of Augmenting Topologies, NEAT, particle sys-
tems.

I. I NTRODUCTION

Content generation means creating models, levels, textures,
animations, lighting, etc. for computer graphics in games,
movies, and television. For media developers, content genera-
tion consumes significant time and money to produce today’s
complex graphics and game content [1], [2]. In part to address
this problem, in the video game industry, it is becoming
increasingly popular to provide extensive character customiza-
tion tools within games and to distribute tools that allow users
to create their own content outside of the game as well [3],
[4], [5]. Furthermore, there is a new trend towardscontent
generation tools as games themselves, that is,sandbox games
such as The Sims1, Second Life2, and Spore3. These games
feature creating houses, vehicles, clothing, and creatures as

primary game play features [6]. Thus, there is a growing need
for powerful and user-friendly content generation tools both
to reduce the content bottleneck and further empower users.

An emerging approach to this problem isautomated con-
tent generationthroughInteractive Evolutionary Computation
(IEC), that is, automating content creation though user interac-
tion. This paper presents such an automated content generation
method forparticle systems, demonstrating the promise of IEC
for practical content generation.

Particle systems are ubiquitous in computer graphics for
producing animated effects such as fire, smoke, clouds, gun-
fire, water, cloth, explosions, magic, lighting, electricity, flock-
ing, and many others [7], [8]. They are defined by (1) a set of
points in space and (2) a set of rules guiding their behavior
and appearance, e.g. velocity, color, size, shape, transparency,
rotation, etc.

Since such rule sets are often complex, creating each new
effect requires considerable mathematics and programming
knowledge. For example, consider designing aa spherical
flame shield of pulsing colorseffect for a futuristic video
game or movie. Alternatively, consider designing aparticle
weapon effect that fires multiple curving arcs toward the target.
In current practice, the precise mechanics for either scenario
must be hand coded by a programmer. To simplify design,
particle effect packages typically provide developers with a set
of particle system classes, each suitable for a certain type of
effect. Content developers manipulate the parameters of each
particle system class by hand to produce the desired effect.
The problem is that there is no way to efficiently explore the
range of effects within each class.

To address this problem, this paper presents a new design,
representation, and animation approach for particle systems
in which (1) artificial neural networks (ANNs) control par-
ticle system behavior, (2) theNeuroEvolution of Augmenting
Topologies(NEAT) method [9], [10] produces sophisticated
particle system behaviors by evolving increasingly complex
ANNs, and (3) evolution is guided by user preference through
an IEC interface.

Two prototype systems are discussed, NEAT Particles, a
general-purpose particle effect generator, and NEAT Projec-
tiles, which is specialized to evolve particle weapon effects

1Copyright 2007 Electronic Arts, http://thesims.ea.com/
2Copyright 2003 Linden Research Inc., http://secondlife.com/
3Copyright 2007 Electronic Arts, http://www.spore.com/

2

for video games. Both systems interactively evolve ANNs with
NEAT to control the motion and appearance of particles. An
IEC interface provides a user-friendly method to evolve unique
content.

In this way, NEAT Particles shows how IEC can enable
practical content generation that provides an easy alternative
to current, potentially cumbersome practice. In particular,
NEAT Particles and NEAT Projectiles (1) enable users without
programming or artistic skill to evolve unique particle system
effects through a simple interface, (2) allow developers to
evolve a broad range of effects within each particle class, and
(3) serve as concept generators, enabling novel effect types to
be easily discovered. By allowing users to evolve particle be-
havior without knowledge of physics or programming, NEAT
Particles and NEAT Projectiles are a step toward the larger
goal of automated content generation for games, simulations,
and movies.

II. BACKGROUND

This section reviews particle systems, IEC, and NEAT,
which are components of NEAT Particles and NEAT Projec-
tiles.

A. Particle Systems

The first computer-generated particle system in commercial
computer graphics, called theGenesis Effect, appeared in Star
Trek II: The Wrath of Khan1 [11] (figure 1a). Soon after,
particle systems effects became widespread on television as
well (figure 1b). Nearly all modern video games include a
particle system engine [7], [8]; special effects in games such
as magical spells (figure 1c) and futuristic weapons (figure 1d)
are usually implemented with particle systems.

In addition to diffuse phenomena such as fire, smoke, and
explosions, particle systems can also model concrete objects
such as dense trees in a forest [12], folded cloth and fabric
[13], [14], and simulated fluid motion [15], [16]. Realistic
particle movement is often achieved by simulating real-world
physics [17]. At a more abstract level, particle systems can
simulate animal and insect flocking as well as swarming
behavior [18]. The prevalence and diversity of particle sys-
tem applications demonstrates their importance to computer
graphics in modern media and games.

B. Interactive Evolutionary Computation (IEC)

IEC is an approach to evolutionary computation (EC) in
which human evaluation replaces the fitness function [19].
A typical IEC application presents to the user the current
generation of content. The user then interactively determines
which members of the population will reproduce and the
IEC application automatically generates the next generation of
content based on the user’s input. Through repeated rounds of
content generation and fitness assignment, IEC enables unique
content to evolve that suits the user’s preferences. In some
cases such content cannot be discovered or created in any
other way.

IEC aids especially in evolving content for which fitness
functions would be difficult or impossible to formalize (e.g.

for aesthetic appeal). Thus, graphical content generation is a
common application of IEC [20], [21], [22], [23], [24], [25].

IEC was first introduced in Biomorphs (figure 2a), which
aims to illustrate theories about natural evolution [20].
Biomorphs are patterns encoded asLindenmayer Systems(L-
systems) [26], i.e. grammars that specify the order in which a
set of replacement rules are carried out. Abstract figures that
resemble animals or plants are interactively evolved in this
manner.

Representations ingenetic art(i.e. IEC applied to art) often
vary, including linear or non-linear functions, fractals, and
automata. Some notable examples include (1) Mutator [21],
a cartoon and facial animation system, (2) SBART (figure 2b)
[22], a two-dimensional art exploration tool, (3) a tool that
evolves implicit surface models such as fruits and pots (figure
2c) [23], [27], [28], and (4) a system for evolving quadric
models used as machine components (figure 2d) [24].

Figure 3 illustrates IEC’s content generation capabilities.
The figure shows a progression of four user-selected parents
in the evolution of a spaceship with a genetic art tool [25],
[29], [30]. In the example, the user starts by selecting a simple
image that vaguely resembles what they wish to create and
continues to evolve more complex images through selection
until satisfied with the result. The sequence of images demon-
strates the potential of IEC as an engine for content generation.
These images, from Delphi NEAT Genetic Art (DNGA), are
produced by ANNs evolved by NEAT, which is discussed in
the next section.

C. NeuroEvolution of Augmenting Topologies

The NEAT method was originally developed to solve control
and sequential decision tasks. The ANNs evolved with NEAT
can control agents that select actions based on their sensory
inputs. While previous methods that evolved ANNs (i.e. neu-
roevolution methods) evolved either fixed topology networks
[31], [32], [33], or arbitrary random-topology networks [34],
[35], [36], [37], [38], [39], [40], NEAT is the first to begin
evolution with a population of small, simple networks and
complexify the network topology into diverse species over
generations, leading to increasingly sophisticated behavior.
Compared to traditional reinforcement learning techniques,
which predict the long-term reward for taking actions in
different states [41], the recurrent networks that evolve in
NEAT are robust in continuous domains and in domains that
require memory, making many applications possible. In this
paper, particle systems are controlled by ANNs evolved by
NEAT. NEAT is well-suited to this task because (1) it is a
proven method for evolving ANNs, and (2) it was employed
successfully in prior genetic art applications [25]. This section
briefly reviews the NEAT method; Stanley and Miikkulainen
[9], [10] provide complete descriptions.

NEAT is based on three key principles. First, in order to
allow ANN structures to increase in complexity over gener-
ations, a method is needed to keep track of which gene is
which. Otherwise, it is not clear in later generations which
individual is compatible with which, or how their genes should
be combined to produce offspring. NEAT solves this problem

3

(a) (b) (c) (d)
Fig. 1. Particle System Examples. Particle systems are ubiquitous in computer graphics for both movies and games. (a)The Genesis Effectfrom Star Trek
2: The Wrath of Khan1 [11] is one of the earliest applications of particle systems in commercial computer graphics. (b) Particle systems appear extensively in
television, such as the effects in this live footage produced with the ParticleIllusion2 software. (c) Magical spells, glowing weapons, and dragon breath from
the World of Warcraft3 video game are implemented with particle systems. (d) Finally, futuristic weapons are usually implemented with particle systems,
such as in this shot of the Doom 34 video game.

(a) (b) (c) (d)
Fig. 2. IEC Art Examples . This figure depicts examples several IEC program interfaces. (a) Biomorphs are simple plant or animal-like figures evolved
with L-systems; they are one of the earliest examples of IEC [20]. (b) SBART evolves complex 2D images [22]. (c) A creative design system [23], [27], [28]
evolves simple three-dimensional objects such as green peppers. (d) Finally, an IEC interface [24] generates three-dimensional machine components. These
examples illustrate typical IEC interfaces and demonstrate the range of content that can be evolved.

(a) (b) (c) (d)
Fig. 3. IEC Evolution Example. In this example a spaceship is interactively evolved with DelphiNEAT-based Genetic Art (DNGA) [25], [29], [30]. The
initial spaceship-like image (a) is evolved from an initial population of random images. An intermediate stage of evolution (b) suggests a tail section, wing
section, and nose section. (c) As evolution proceeds the components become more defined and interesting details become apparent. By the final stage (d),
a spaceship model evolves with elegant lines, a nose section, and tail stabilizers. This sequence illustrates how complex digital art can be evolved by user
preference.

by assigning a uniquehistorical markingto every new piece of
network structure that appears through a structural mutation.
The historical marking is a number assigned to each gene
corresponding to its order of appearance over the course
of evolution. The numbers are inherited during crossover
unchanged, and allow NEAT to perform crossover without the
need for expensive topological analysis. That way, genomes of
different organizations and sizes stay compatible throughout
evolution, solving the previously open problem of matching
different topologies [42] in an evolving population.

Second, traditionally NEAT speciates the population so
that individuals compete primarily within their own niches
instead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before competing with other niches in the population.
NEAT uses the historical markings on genes to determine to
which species different individuals belong. However, in this

work, because a human performs selection rather than an
automated process, the usual speciation procedure in NEAT
is unecessary.

Third, unlike other systems that evolve network topologies
and weights [43], [37], [40], [38], NEAT begins with a uniform
population of simple networks with no hidden nodes. New
structure is introduced incrementally as structural mutations
occur, and only those structures survive that are found to be
useful through fitness evaluations. This way, NEAT searches
through a minimal number of weight dimensions and finds the
appropriate complexity level for the problem.

This process of complexification has important implications
for search. While it may not be practical to find a solution in

1Copyright 1982 Paramount Pictures, http://www.paramount.com/
2Copyright 2006 Wondertouch Software, http://www.wondertouch.com/
3Copyright 2004 Blizzard Entertainment, http://www.blizzard.com/
4Copyright 2005 Id Software, http://www.idsoftware.com/

4

a high-dimensional space by searching in that space directly,
it may be possible to find it by first searching in lower
dimensional spaces and complexifying the best solutions into
the high-dimensional space. For IEC, complexification means
that content can become more elaborate and intricate over
generations.

Since its inception, NEAT has been applied to a broad array
of research areas [44], [45], [25], [46]. Most notable for the
approach in this paper is NERO [45], an interactive, real-
time war game in which ANN-controlled soldiers are evolved.
Because NEAT is a strong method for evolving controllers
for dynamic physical systems, it can naturally be extended to
evolve the motion of particles in particle effects as well. The
next section explains how NEAT is combined with IEC to
produce a broad array of effects with NEAT Particles.

III. A PPROACH- NEAT PARTICLES

NEAT Particles combines IEC and NEAT to enable users to
evolve complex particle systems. ANNs control particle sys-
tem behavior, NEAT evolves the ANNs, and an IEC interface
gives the user control over evolution. NEAT Particles consists
of five major components: 1) particle systems, 2) ANNs, 3)
physics, 4) rendering, and 5) evolution.

A. Particle System Representation

A particle system is specified by an absolutesystem posi-
tion in three-dimensional space and a set of particles. Each
individual particle is defined by its position, velocity, color,
and size. Particle lifespan unfolds in three phases.

1) At birth particles are introduced into space relative to
system position and according to ageneration shape
(figure 4) that defines the volume within which new
particles may spawn.

2) During its lifetime, each particle changes and moves
according to a set of rules, i.e. anupdate function.

3) Each particle dies, and is removed from the system,
when itstime to livehas expired.

NEAT Particles effects are divided intoclassesfor two
primary reasons: (1) user convenience and (2) performance.
First, to evolve effects in a reasonable time frame, it is helpful
to divide the search space for the user. Second, effects may
be highly dependent upon certain variables, and unaffected by
other variables. For performance reasons, it is not feasible to
evolve all possible particle variables simultaneously. A better
approach is implemented in NEAT Particles, in which only
key variables are evolved in each particle effect class. Five
particle system classes are implemented in NEAT Particles to
facilitate evolving a variety of common types of effects.

• The generic system(figure 5a) models effects such as
fire, smoke, and explosions. Each particle has a position,
velocity, color, and size.

• The plane system(figure 5b) warps individual particles
into different shapes for bright flashes, lens flares, and
engine exhaust effects. A single particle in the plane
system is represented by four points, each of which has
position, velocity, and color.

• The beam system(figure 5c) models beam, laser, or
electricity effects using Bezier curves. Each particle in
the beam system is a control point for the Bezier curve,
including its position, velocity, and color attributes.

• The rotator system(figure 5d) models effects whose
primary behavior is orbital rotation, common in many ap-
plications. Each particle in a rotator system has rotation,
position, and color attributes.

• The trail system (figure 5e) behaves similarly to the
generic system, but additionally drops a trail of static
particles behind each moving particle.

By providing an array of particle system classes, NEAT
Particles allows designers to evolve a substantial variety of
effects while conveniently constraining the search space during
any particular run.

B. Artificial Neural Network Implementation

ANNs control particle behavior in NEAT Particles for
two primary reasons. First, ANNs are a proven method for
autonomous control. Second, NEAT is a powerful method for
evolving ANNs for control and sequential decision tasks.

An important question is why evolving ANNs is preferable
to directly evolving the variables of a traditional particle
system implementation. While feasible, such an approach still
ultimately relies on hand-coded rules (which constitute such
systems), which thus depend on programmers to make the
search possible. For example, in a traditional particle system
implementation, when a new effect class is needed it requires
programmers to define the effect parameters (e.g. color change,
motion pattern physics, etc.). In contrast, in NEAT Particles
the effects of any class are represented by the same structure:
ANNs.

The ANN for each particle effect dictates the characteristics
and behavior of the system. Therefore, each particle effect
class includes its own ANN input and output configuration.
In NEAT Particles, the ANN replaces the math and physics
rules that must be programmed in traditional particle systems.
Because special effects in most movie and game graphics
need to be visually appealing yet not necessarily physically
plausible, ANNs do not need to equate to physically realistic
models. However, evolved ANN-controlled particle behaviors
(e.g. spin in a spiral while changing color from green to
orange) are still compatible with rules in physically accurate
particle simulations such as gravity, friction, or collision.

Every particle in a system is guided by the same ANN.
However, the ANN is activated separately for each particle.
During every frame of animation in NEAT Particles an update
function (figure 6) is executed that (1) loads inputs, (2)
activates the ANN, and (3) reads outputs. The ANN outputs
determine particle behavior for the current frame of animation.
An appropriate set of inputs and outputs is associated with
each effect class as follows.

The primary inputs in NEAT Particles are position and dis-
tance from center of the system. The main outputs are velocity
and color. These are good inputs and outputs because they
can encode significant variety over the long term. However,
because animation happens in real-time, the change in position

5

(a) sphere (b) point (c) line (d) circle
Fig. 4. Generation Shapes. A particle system’s generation shape defines the region in which new particles spawn. (a) Spherical generation produces area
effects such as smoke and explosions. (b) Point generation facilitates effects that are attached to specific points on objects, such as vehicle thrust and muzzle
flash. (c) Line generation commonly produces effects attached to characters or melee weapons, such as glowing swords. (d) Circular generation enables effects
that surround objects, such as energy fields.

(a) generic (b) plane (c) beam

(d) rotator (e) trail
Fig. 5. Particle System Classes. Predefined classes constrain the search space for designers. (a) The generic particle system models effects such as fire,
smoke, and explosions. (b) The plane system warps and stretches individual particles for flashes, lens flares, and other effects. (c) The beam system simulates
beam, laser, or electricity effects. (d) The rotator system models effects based on orbital rotation common in explosions, energy, and magic. (e) The trail
system is similar to the generic system; however each particle drops a trail of smaller particles. Trail systems commonly implement magic, energy, weapon,
and exhaust effects.

Fig. 6. Update Function. Every frame of animation, each particle passes through an update function to compute velocity and color for that frame. Suppose
animation for a particle is being computed at framet (on the right). The particle’s position and distance from center in the previous framet − 1 (on the
left) are input into the particle system ANN. After the ANN is activated, its outputs are interpreted as velocity and color at framet. The high frame rate
of real-time animation produces small position changes; thus animation and color change is fluid. Over the long term; however, position changes are large,
producing a variety of patterns and behaviors.

6

and distance from center are small from one frame to the next,
producing incremental changes that look smooth.

The generic particle system ANN (figure 7a) takes the
current position of the particle(px, py, pz) and distance from
the center of the system(dc) as inputs. Distance from center
introduces the potential for symmetry by allowing particles
to move in relation to the system center. The outputs are the
velocity (vx, vy, vz) and color(R,G,B) of the particle for the
next frame of animation. The generic particle system produces
behaviors suitable for explosions, fire, and smoke effects.

Each particle in the plane system consists four co-planar
points that may be warped into different shapes. Because
the corners must be coplanar for rendering purposes, they
component of velocity for each corner is fixed. Thus, the inputs
to the plane system ANN (figure 7b) are the position of each
corner(px, pz) and the distance from the center of the plane
(dc). The warped quads of plane systems are commonly found
in explosions, engine thrust, and glow effects.

The beam system ANN (figure 7c) controls directed beam
effects. To produce twisting beams, a Bezier curve is im-
plemented with mobile control points directed by the ANN.
The inputs are the position of each Bezier control point
(px, py, pz) and distance of the control point from a the center
of the system(dc). The outputs are the velocity(vx, vy, vz)
and color(R,G,B) of the control point for the next frame
of animation. Beam systems produce curving, multi-colored
beams typically found in futuristic weapons, magic spells,
lightning, and energy effects.

The rotator system (figure 7d) enables evolving rotation-
based effects. The inputs to the ANN are particle position
(px, py, pz) and distance from the center of the system(dc).
The outputs are rotation around thex, y, andz axes(rx, ry, rz)
and color(R,G,B). Rotation-based particle systems are com-
mon in explosions, halos, and energy effects.

The trail system behaves similarly to the generic system yet
provides a more complex visual effect by periodically drop-
ping stationary particles that shrink and fade out. Therefore,
the trail system ANN takes the same inputs and emits the
same outputs as the generic ANN. Trail systems are convenient
because they provide a computationally inexpensive form of
motion blur or visual trail behind moving objects.

ANNs control particle behavior and ANN input/outputs
divide effects into classes, which shrinks the search space
for users. While ANN topology and weights significantly
contribute to particle behavior, activation functions within each
node play an important role as well; they are detailed in the
next section.

C. Activation Functions

Unlike traditional ANNs, NEAT Particles ANN hidden
nodes and output nodes contain an activation function selected
from a set of eight possibilities (figure 8). Theoretically, ANNs
with a single activation function can evolve any behavior [47];
however, multiple activation functions are preferable in NEAT
Particles because the user can obtain variety more quickly and
thereby evolve toward the intended effect sooner.

D. Physics

Each frame of animation, after the ANN is activated, the
velocity for each particle is determined by the outputs. To
animate a particle each frame (i.e. move the particle through
space) a linear motion model calculates the position of the
particle at timet based ontime elapsedτ since the last frame
of animation:

Pt = Pt−1 + V τs, (1)

where Pt is the particle’s new position vector,Pt−1 is the
particle’s position vector in the previous animation frame,V
is the particle’s velocity vector, ands is a scaling value to
adjust the speed of animation.

E. Rendering

NEAT Particles renders particles to the screen withbill-
boarding [48], a technique in which two-dimensional bitmap
textures are mapped onto a plane (i.e. aquad) that faces
perpendicular to the camera. The corners of the quad are
offsets from the particle position. By facing the quad toward
the camera the billboarding method convincingly conveys the
illusion of translucent three-dimensional particles in space.

The billboarding technique is implemented in NEAT Par-
ticles because it is the most common and versatile method
to render particles. An alternative particle rendering method is
point sprites [49]; however, they do not allow arbitrary warping
of particle shape required for the beam and plane systems.

There are several ways to optimize particle system rendering
including level of detail (LOD) [15], batch rendering [49],
and GPU acceleration [50]. NEAT Particles is compatible
with all such methods; however they are not explored in this
implementation.

The next section explains how particle classes, ANNs,
physics, and rendering combine to enable particle effect evo-
lution.

F. Evolution

Evolution in NEAT Particles follows a similar procedure
to other IEC applications (Section II-B). The user is initially
presented a population of nine randomized particle systems
represented by simple ANNs (figure 9a). Each individual
system and its ANN can be inspected byzooming inon the
system (figure 9b). If the initial population of nine systems is
unsatisfactory, a new random batch of effects can be generated
by restarting evolution.

The user begins evolution by selecting a single system
from the population to spawn a new generation. A population
of eight new systems (i.e. offspring) is then generated from
the ANN of the selected system (i.e. parent) by mutating its
connection weights and possibly adding new nodes and con-
nections. That is, offspring complexify following the NEAT
method. Evolution proceeds with repeated rounds of selection
and offspring production until the user is satisfied with the
results. If the user is unsatisfied with an entire new generation,
an undo function recalls the previous generation.

Specifically, each new generation preserves the parent ex-
actly and the other eight members of the population are

7

(a) generic, trail ANN (b) plane ANN

(c) beam ANN (d) rotator ANN
Fig. 7. Particle System ANNs. To produce a specific range of effects, each particle class ANN uses different inputs (i.e. position and distance from center)
and outputs (i.e. velocity, color, and rotation), which are shown for (a) the generic and trail particle system, (b) the beam particle system, (c) the plane particle
system, and (d) the rotator particle system. The beam system ANN appears similar to the generic and trail system ANNs; however a generic system ANN
controls individual particles, whereas a beam system ANN controls Bezier curve control points. The plane system ANN controls four corners of a warped
quad, and the rotator system ANN controls individual particle rotation. Each ANN is evolved in NEAT Particles to connect the inputs to the outputs of each
class.

(a) Sine (b) Cosine (c) Tangent (d) Bipolar Sigmoid

(e) Hyperbolic (f) Gaussian (g) Ramp (h) Step
Fig. 8. ANN Activation Functions. In NEAT Particles all ANN hidden nodes and output nodes are randomly assigned one of eight activation functions: (a) sine,

(b) cosine, (c) tangent, (d) bipolar sigmoid(
[1−exp(−x)]
[1+exp(−x)]

), (e) hyperbolic([e(x)−e(−x)]

[e(x)+e(−x)]
), (f) Gaussian([1√

(0.5∗PI)
]∗e(−x2)), (g) ramp (x=|−1 if(x<−1)

1 if(x>1)
),

or (h) step (x=|−1 if(x<0)
1 if(x≥0)

).

mutated from the parent. For each offspring, a uniformly
random number of connections (between one and the number
of connections in the network) are mutated by a uniformly
random value between−0.5 and 0.5. Adding new nodes
and connections is controlled by separate mutation rates.
The probability of adding a new connection is0.3 and the
probability of adding a new node is0.2. New nodes are
assigned a random activation function and connected into the
existing ANN [9]. These parameters were found to be effective
for IEC in preliminary experimentation.

Through complexification, particle system effects become
increasingly sophisticated as evolution progresses. Thus, com-

plex and unique effects are discovered that follow user pref-
erences. The next section explains evolving particle system
content for a more specialized purpose, weapons effects for
video games.

IV. NEAT PROJECTILES

NEAT Projectiles is an extension of NEAT Particles de-
signed to evolve particle weapon effects for video games. The
aim is to exhibit a concrete, practical application of NEAT
Particles that can potentially enhance content generation in
existing real-world products. NEAT Projectiles uses similar
rendering, physics, and activation functions as NEAT Particles.

8

(a) Main Interface (b) Zoom Mode
Fig. 9. NEAT Particles Interface. In the main interface (a), the user is presented with nine particle systems. System parameters such as generation shape
and inputs are displayed on the bottom of the screen. In zoom mode (b), a single particle system and its ANN can be inspected.

Furthermore, the same IEC interface (figure 10) drives evolu-
tion. The major differences are (1) the projectile classes, (2)
the projectile constraints, and (3) the ANN inputs and outputs.

A. Projectile Classes

Three classes of weapon-like systems are implemented in
NEAT Projectiles to mirror common weapon models in video
games: (1)dumb weapons, (2) directed weapons, and (3)
smart weapons. Dumb weapons fire simple, non-target aware
projectiles and exhibit a fixed behavior in flight. Directed
weapons fire projectiles that may be steered by the user
during flight. Smart weapons see the target; like a heat-seeking
missile, the in-flight behavior of smart projectiles is influenced
by target motion.

B. Projectile Constraint

Particle weapons provide two new significant constraints
on particle motion beyond generic particle effects. First, to
avoid weapons firing backward, projectile velocity is limited
to overall forward motion. Second, evolved projectile weapons
fire in the same pattern regardless of what direction the weapon
is facing. It would not make sense for projectiles emitted from
a weapon to behave differently when a user points the weapon
in different directions. Therefore, projectile coordinates are
defined relative to the heading of the gun when it is fired.

The new projectile classes and constraint mechanisms also
influence the interpretation of NEAT Projectiles ANNs, as
explained next.

C. Projectile ANNs

Because there is more than one way to make particles act
as projectiles, two approaches are implemented and tested in
NEAT Particles: (1) theoffset-constrained modeland (2) the
force constrained model.

In the offset-constrained model (figure 11a), a 90◦ offset
conein front of each particle is computed in each frame. The
outputs from each particle’s ANN represent a vector within
the offset cone, which becomes the particle’s new velocity.
Offset angles are computed differently for each weapon type.

A particle fired from thedumb weaponhas a fixed offset in
the direction the gun was facing on discharge (figure 12a).
The directed weaponallows the user to influence projectiles
while in flight; therefore particle offset is constrained to a 90◦

cone around the vector the weapon is currently facing (figure
12b). Particles fired from thesmart weaponseek their target.
Therefore, the smart particle’s offset is constrained to the 90◦

cone around a vector from the projectile to the target (figure
12c).

In the force-constrained model (figure 11b), the ANN is
similar to that used in the generic system of NEAT Particles;
however a push force is applied to constrain particle movement
to a general direction. The direction of the push force depends
on the weapon type. The dumb weapon projectile is pushed
in the direction of the gun when it discharges. The directed
projectile pushes in the direction the gun is currently facing.
The smart weapon pushes projectiles in the direction of the
target.

The combination of constraint model, classes, and correct
ANN design minimizes defective offspring while allowing a
sufficiently large variety of unique weapons to evolve, which
is integral to efficiently producing useful content though IEC.

V. EXPERIMENTAL RESULTS

This section shows how NEAT Particles and NEAT Pro-
jectiles work in practice to produce useful particle system
content. All particle systems reported were evolved in between
five and ten minutes and between 20 and 30 user-guided
generations. The NEAT particles executable, source code,
and examples effects in this paper can be downloaded at
http://eplex.cs.ucf.edu .

Figure 13 illustrates evolving aflame shieldeffect with
NEAT Particles. The goal of the effect is a halo of flaming
red particles around the user. Evolution begins with a red ring
(figure 13a). As evolution proceeds, particles begin breaking
away from the ring (figure 13b). A full orbital sphere of
particles develops eventually (figure 13c) and the final effect
(figure 13d) exhibits brighter colors.

Figure 14 depicts the evolution of anarc gun effect with
NEAT Projectiles. The aim is to create a multi-beam effect
that tracks a target. The starting point is a single curving

9

(a) Main Interface (b) Zoom Mode
Fig. 10. NEAT Projectiles Interface. In the main interface (a), the user chooses among nine projectile systems of any weapon class. The weapons can be
rotated (as in this figure) and the refire rate adjusted to display their full behavior. In zoom mode (b), a single projectile system and its ANN can be inspected.

(a) offset constrained (b) force constrained
Fig. 11. Projectile System ANNs. Projectile models are designed to minimize undesirable behaviors (e.g. firing backward). (a) In the offset constrained
model, projectile movement is constrained by an offset cone in front of the projectile. The offset cone is computed by adding two vectorsup-down(oud)
and left-right (olr). ANN inputs include the current position of the particle, distance from center of the weapon, and a bias. The outputs are left-right offset,
up-down offset, and color. (b) In the force constrained model, projectile motion is perturbed by an additional push force applied to the projectile after ANN
processing. Inputs are the current position of the particle, the distance from the system center, and a bias. The outputs are the particle velocity and color.
Both models constrain projectile behavior while allowing sufficient evolutionary variety.

beam to the target, which is marked with a cross (figure 14a).
During evolution the beam splits (figures 14b, 14c). Finally,
the desired effect is achieved with two stylized, parallel arcs
that track the target (figure 14d).

Preliminary testing of both NEAT Projectiles constraint
models suggests that, compared to the force-constrained
model, the offset-constrained model over-constrains evolution.
It generates less variety in evolved weapon effects. However,
unlike the force-constrained model, it also produces no off-
spring that fire back at the user. Thus, both models have their
pros and cons.

Keyframe animations for evolved particle and projectile
systems are depicted in figures 15 and 16. Additional evolved
systems are presented in figures 17 and 18.

A. Comparisons

To compare the quality of IEC particle effects to those
generated by traditional methods, two hand-coded particle
emitters were implemented with the same rendering method
as NEAT Particles (figure 19). The resulting effects exhibit
similar visual quality; however, they are limited to simple
behaviors because the behavioral complexity of hand-coded
particle systems is dependent upon mathematics, physics, and
programming, which become increasingly difficult to coordi-
nate through hand-coded policies as more is added.

Another interesting comparison can be drawn with the
IEC fireworks application by Tsuneto [51] (figure 20), which
produces a specialized class of particle effects. In this system,
fireworks are defined by real-world attributes such as powder
type, explosive payload, number of stages, stage configuration,
etc. A rule-based physics system defines the behavior of
fireworks based on these attributes. Through repeated selection
in an IEC interface, users can evolve fireworks to suit their
preferences. Thus, unlike NEAT Particles, this system demon-
strates evolving the variables of a rule system. In contrast,
NEAT Particles evolves the behavior rules themselves. Both
approaches offer unique advantages. The special rule set of
the fireworks application allows it to focus on a specific class
of effects. NEAT Particles in contrast can evolve effects in a
large variety of classes because of its generality and lack of
domain-specific parameters.

B. User Study

An informal user study was conducted to test the viability
of the NEAT Particles method. In this study, eight users were
introduced to the system and encouraged to explore the search
space to evolve effects that please them. Samples of the user-
evolved effects are presented in figure 21. In general, users
found the generic and trail particle system classes to produce
the most variety, while the rotator, plane, and beam systems

10

(a) dumb (b) directed (c) seek
Fig. 12. Projectile Constraint Mechanics. To ensure that weapons behave as projectiles, particle velocities are constrained to the 90◦ cones shown above.
In the figure, W is the weapon and T is the target. (a) Dumb weapon particles are not target-aware so they are constrained in velocity to a fixed 90◦ cone
in front of the weapon at the moment of discharge. (b) Directed weapon particles are not target-aware but may be influenced while in flight by the weapon.
Thus directed particle velocity is constrained to the 90◦ cone in which the weapon is currently facing. (c) Smart particles are target-aware; therefore they are
constrained to a 90◦ cone around a vector from the particle to the target.

(a) (b) (c) (d)
Fig. 13. Particle System Evolution. This figure illustrates evolution of aflame shieldeffect with NEAT Particles, in which red and yellow particles are
evolved to orbit a player at the center. (a) Evolution begins with a ring shaped rotator system with an appropriate red and yellow color scheme. (b) After a
few generations particles begin to detach from the ring. (c) Several generations later a prominent orbital behavior becomes apparent. (d) Evolution concludes
with a full orbital pattern and a brighter color scheme, producing a convincing flame shield effect suitable for use in a video game.

(a) (b) (c) (d)
Fig. 14. NEAT Projectiles Evolution. A double-arc beam weapon that seeks a target is evolved with NEAT Projectiles. The weapon emits particles from
the left side of each frame and the target is marked with a cross on the right side. (a) Evolution begins with a single arc that connects to the target. (b)
After several generations, the beam begins to split in the middle. (c) Continuing evolution, the double arc becomes more pronounced. (d) Eventually the arcs
become fully disjoint and the intended projectile behavior is achieved.

were acknowledged to be more constrained. The examples
presented in figure 21, all evolved within 15 generations,
demonstrate that the IEC approach enables users to quickly
and easily generate complex and unique particle effects.

In summary, the totality of results demonstrate the ability
of NEAT Particles and NEAT Projectiles to evolve particle
systems of similar complexity to those in mainstream games.

VI. PERFORMANCE

NEAT Particles’ computational requirements scale at O(n),
where n is the number of particles. The position of each
particle is input to the ANN once per frame. Similarly, in
traditional particle systems each particle passes through an
update function once per frame. While the complexity of the
ANN increases with the complexity of the effect, the same is

likely true for traditional formulations. Thus NEAT Particles is
expected to perform comparably to traditional particle systems.

VII. D ISCUSSION ANDFUTURE WORK

The complexity and cost of producing content for modern
graphics and games creates the need for tools that quickly
and efficiently generate novel content. IEC can alleviate this
problem by enabling automated content generation guided by
user preferences. NEAT Particles demonstrates the promise of
this approach by constraining the search space for the user,
thereby defining a content space large enough to evolve many
interesting and useful results, yet not so large that producing
useful output is too time-consuming. The separate classes
implemented in NEAT Particles provide this constraint.

11

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 15. Evolved Particle Animations. Key frames from animations of two evolved particle systems are presented in this example. Figures (a) through (d)
depict an expanding vortex or explosion-like effect of an evolved plane system. Figures (e) through (h) depict a realistic billowing smoke cloud or explosion
effect produced by an evolved trail system. Such effects illustrate that NEAT Particles can evolve effects appropriate for graphics and games.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 16. Evolved Projectile Animations. Key frames of evolved single projectiles are displayed above. The projectiles are fired from the left side of the
screen towards the right side. The trailing lines mark motion over time. Figures (a) through (d) display a solid yellow projectile with a smooth curving
behavior. Figures (e) through (h) depict a spiraling projectile that changes colors. Multiple projectiles evolved within the constraints combine to form complex
weapon effects in NEAT Projectiles.

Besides intentionally evolving specific particle systems that
they have in mind, users can also employ the IEC approach of
NEAT Particles as a concept generation tool. While evolving
a specific effect, the user often generates novel, compelling
effects that were not initially planned. Thus an additional
advantage of NEAT Particles over traditional particle system
implementations is that it may act as an idea or concept
generator.

Future research will focus on (1) user-designation of in-
puts and outputs, decoupling particle system creation from
programming even further, and (2) evolution during a game,
while it is played, which is a most significant implication of
automated content generation. For example, consider a game
in which content such as weapons, items, spells, etc. are

automatically generated based on characteristics users prefer.
Such a system is especially suited to multi-player virtual world
games (e.g.Massively Multiplayer Online Games; MMOGs),
in which unique content is coveted and potentially thousands
of players can contribute to evolutionary content within the
game.

Another promising area for future research is applying
similar techniques to evolving other graphical content, such as
three dimensional models and programmable shader effects.

VIII. C ONCLUSION

There is an increasing need for powerful graphics and game
content generation tools. Content developers require such tools
to augment and assist the slow and expensive content pipeline.

12

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Fig. 17. Sample Evolved Particle Systems. The images in this figure are single animation frames from effects evolved with NEAT Particles. These images
demonstrate the variety of effects evolved through IEC.

End-users benefit from such tools because today’s games are
distributed with content generation tools for users to customize
or build their own content. Additionally, there is the emerging
trend of content generation as a major part of game play
itself. IEC can potentially solve this problem by providing an
intuitive way to easily generate complex and unique content
by user preference.

NEAT Particles and NEAT Projectiles demonstrate how
particle system effects for graphics and video games can be
interactively evolved through user preference. In this approach,
particle systems are represented by ANNs, the ANNs are
evolved by NEAT, and an IEC interface enables the user to
guide evolution. By replacing the complex, hand-coded rules
of traditional particle systems with ANNs, the dependence
on programmers to create new effects is reduced. The IEC
interface provides easy, interactive exploration of the search
space and a way to discover novel effects useful to both
developers of graphics and gaming media, and to end users
of the content generation tools provided with such software.

While the focus of this work is on evolving particle system

effects, the techniques are applicable to generating other types
of graphical and gaming content. Thus, automated content gen-
eration is a promising research direction in which evolutionary
computation can significantly contribute to popular media and
games.

REFERENCES

[1] P. Stiff, “Special effects cost studios big bucks,”Digital Spy,
2006. [Online]. Available: http://www.digitalspy.co.uk/movies/a33092/
special-effects-cost-studios-big-bucks.html/

[2] B. Lomborg, “These holywood special effects may cost
the world 15 trillion,” Telegraph.co.uk, 2004. [Online]. Avail-
able: http://www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/
2004/05/09/do0903.xml&sSheet=/portal/2004/05/09/ixportal.html/

[3] V. Software, “Source engine sdk,” 2007. [Online]. Available:
http://developer.valvesoftware.com/wiki/MainPage/

[4] E. Games, “Unreal engine sdk,” 2007. [Online]. Available: http:
//www.unrealtechnology.com/

[5] I. Software, “Quake wars sdk,” 2007. [Online]. Available: http:
//www.idsoftware.com/

[6] G. Entis, “Recent accomplishments and upcoming challenges for
interactive graphics in videogames,” 2007. [Online]. Available:
http://www.zcorp.com/

http://www.digitalspy.co.uk/movies/a33092/special-effects-cost-studios-big-bucks.html/
http://www.digitalspy.co.uk/movies/a33092/special-effects-cost-studios-big-bucks.html/
http://www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/2004/05/09/do0903.xml&sSheet=/portal/2004/05/09/ixportal.html/
http://www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/2004/05/09/do0903.xml&sSheet=/portal/2004/05/09/ixportal.html/
http://developer.valvesoftware.com/wiki/Main_Page/
http://www.unrealtechnology.com/
http://www.unrealtechnology.com/
http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.zcorp.com/

13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Fig. 18. Sample Evolved Projectile Systems. Single animation frames are shown of evolved NEAT Projectile systems fired from the left side of the screen
toward targets on the right. The trailing lines plot motion over time. These images demonstrate the variety of weapon behaviors evolved by NEAT Projectiles.

(a) (b)
Fig. 19. Traditional Particle System Comparison. To compare IEC-generated particle systems to traditional ones, two hand-coded particle emitters were
implemented within the same renderer as NEAT Particles. The expanding ring emitter (a) supports explosion effects and the simple ring emitter (b) can convey
a variety of magical and force effects. Both systems display similar visual quality to NEAT Particles. However, they are capable of comparatively much less
behavioral complexity. This example demonstrates the dependence on math and programming of traditional particle system implementations.

14

(a) (b) (c)
Fig. 20. Tsuneto’s IEC Fireworks [51]). In this IEC fireworks application, users evolve combinations of real-world fireworks properties such as size,
powder type, explosive payload, etc., through repeated selection. This exemplifies evolving the variables of a rule system, whereas in NEAT Particles the rules
themselves are evolved.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 21. User-Evolved Particle Effects. The images in this figure depict effects evolved with NEAT Particles by participants in the user study. The variety
and complexity of these examples demonstrate that the IEC approach of NEAT Particles enables users to quickly evolve compelling particle system effects.

[7] J. Lander, “The ocean spray in your face,”Game Developer Magazine,
pp. 13–20, July 1997.

[8] J. V. der Berg, “Building an advanced particle system,”Game Developer
Magazine, pp. 44–50, March 2000.

[9] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,”Evolutionary Computation, vol. 10, pp. 99–127,
2002. [Online]. Available: http://nn.cs.utexas.edu/keyword?stanley:ec02

[10] ——, “Competitive coevolution through evolutionary complexification,”
Journal of Artificial Intelligence Research, vol. 21, pp. 63–100, 2004.
[Online]. Available: http://nn.cs.utexas.edu/keyword?stanley:jair04

[11] W. Reeves, “Particle systems: A technique for modeling a class of fuzzy
objects,”ACM Transactions on Computer Graphics, vol. 17, no. 3, pp.
91 – 108, 1983.

[12] ——, “Approximate and probabilistic algorithms for shading and ren-
dering structured particle systems,”ACM Transactions on Computer
Graphics, vol. 19, no. 3, pp. 313 – 322, 1985.

[13] D. Breen, “A particle based model for simulating draping behavior of
woven cloth,” Textile Research Journal, vol. 64, no. 11, pp. 663–685,
1994.

[14] B. Eberhardt, A. Weber, and W. Strasser, “A fast, flexible, particle-
system model for cloth draping,”IEEE Transactions on Computer
Graphics and Applications, vol. 16, no. 5, 1996.

[15] D. Obrien, S. Fisher, and M. Lin, “Automatic simplification of particle
system dynamics,” inProceedings of the 14th Conference on Computer
Animation, 2001, pp. 210–257.

[16] M. Muller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” inProceedings of the 2003 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 2003, pp.
154–159.

[17] C. Reynolds, “Steering behaviors of autonomous characters,” inPro-
ceedings of the Game Developers Conference, 1999, pp. 763–782.

[18] ——, “Flocks, herds, and schools: A distributed behavioral model,” in
Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques, 1987, pp. 25 – 34.

[19] H. Takagi, “Interactive evolutionary computation: Fusion of
the capacities of EC optimization and human evaluation,”
Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.
[Online]. Available: http://ieeexplore.ieee.org/iel5/5/20546/00949485.
pdf?tp=&arnumber=949485&isnumber=20546

[20] R. Dawkins,The Blind Watchmaker.Essex, U.K.: Longman, 1986.
[21] S. Todd and W. Latham,Evolutionary Design by Computers. Morgan

Kaufman, 1999.
[22] T. Unemi, “Genetic algorithms and computer graphic arts,”Journal of

Japan Society for Artificial Intelligence, vol. 9, no. 4, pp. 518–523, 1994.
[23] H. Nishino, H. Takagi, S. Cho, and K. Utsumiya, “A 3d modeling system

for creative design,” inProceedings of the 15th International Conference
on Information Networking, 2001, pp. 479–487.

[24] P. Husbands, G. Jenny, M. McIlhagga, and R. Ives, “Two applications
of genetic algorithms to component design,”Lecture Notes in Computer
Science, vol. 1143, pp. 50–62, 1996.

[25] M. Fagerlund, “DelphiNEAT-based genetic art homepage,” http://www.
cambrianlabs.com/mattias/GeneticArt/, 2005.

[26] A. Lindenmayer, “Mathematical models for cellular interaction in de-

http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://ieeexplore.ieee.org/iel5/5/20546/00949485.pdf?tp=&arnumber=949485&isnumber=20546
http://ieeexplore.ieee.org/iel5/5/20546/00949485.pdf?tp=&arnumber=949485&isnumber=20546
http://www.cambrianlabs.com/mattias/GeneticArt/
http://www.cambrianlabs.com/mattias/GeneticArt/

15

velopment parts I and II,”Journal of Theoretical Biology, vol. 18, pp.
280–299 and 300–315, 1968.

[27] H. Nishino, H. Takagi, S. Cho, and K. Utsumiya, “A 3d modeling system
for creative design,” vol. 100, no. 461, pp. 1–8, 2000.

[28] ——, “A digital prototyping sytem for designing novel 3d geometries,”
pp. 473–482, October 2000.

[29] K. O. Stanley, “Exploiting regularity without development,” inProceed-
ings of the AAAI Fall Symposium on Developmental Systems. Menlo
Park, CA: AAAI Press, 2006.

[30] ——, “Compositional pattern producing networks: A novel abstraction
of development,”Genetic Programming and Evolvable Machines Special
Issue on Developmental Systems, pp. 131 – 162, 2007.

[31] F. Gomez and R. Miikkulainen, “Solving non-Markovian control tasks
with neuroevolution,” inProceedings of the 16th International Joint
Conference on Artificial Intelligence. San Francisco: Kaufmann, 1999,
pp. 1356–1361. [Online]. Available: http://nn.cs.utexas.edu/keyword?
gomez:ijcai99

[32] N. Saravanan and D. B. Fogel, “Evolving neural control systems,”IEEE
Expert, pp. 23–27, June 1995.

[33] A. Wieland, “Evolving neural network controllers for unstable systems,”
in Proceedings of the International Joint Conference on Neural Networks
(Seattle, WA). Piscataway, NJ: IEEE, 1991, pp. 667–673.

[34] H. Braun and J. Weisbrod, “Evolving feedforward neural networks,” in
Proceedings of ANNGA93, International Conference on Artificial Neural
Networks and Genetic Algorithms. Berlin: Springer, 1993.

[35] J. C. F. Pujol and R. Poli, “Evolution of the topology and the weights
of neural networks using genetic programming with a dual represen-
tation,” School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, UK, Tech. Rep. CSRP-97-7, 1997.

[36] J. C. Bongard and R. Pfeifer, “Repeated structure and dissociation
of genotypic and phenotypic complexity in artificial ontogeny,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and
E. Burke, Eds. San Francisco: Kaufmann, 2001, pp. 829–836.
[Online]. Available: http://www-illigal.ge.uiuc.edu:8080/gecco-2001/

[37] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular
encoding and direct encoding for genetic neural networks,” inGenetic
Programming 1996: Proceedings of the First Annual Conference, J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Cambridge,
MA: MIT Press, 1996, pp. 81–89.

[38] B.-T. Zhang and H. Muhlenbein, “Evolving optimal neural networks
using genetic algorithms with Occam’s razor,”Complex Systems, vol. 7,
pp. 199–220, 1993.

[39] D. W. Opitz and J. W. Shavlik, “Connectionist theory refinement:
Genetically searching the space of network topologies,”Journal of
Artificial Intelligence Research, vol. 6, pp. 177–209, 1997.

[40] X. Yao, “Evolving artificial neural networks,”Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[41] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[42] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimization,”Neural computing and applications,
vol. 1, no. 1, pp. 67–90, 1993.

[43] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,”IEEE Transactions
on Neural Networks, vol. 5, pp. 54–65, 1993.

[44] M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary and
temporal difference methods in a reinforcement learning domain,” in
GECCO 2006: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, July 2006, pp. 1321–1328.

[45] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the NERO video game,”IEEE Transactions on Evolutionary
Computation Special Issue on Evolutionary Computation and Games,
vol. 9, no. 6, pp. 653–668, 2005.

[46] H. Ferstl, “SharpNEAT-based genetic art homepage,” http://www.cs.ucf.
edu/∼kstanley/GenArt.zip, 2006.

[47] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–
314, 1989.

[48] A. Fernandes, “Lighthouse 3d billboarding tutorial,” 2006. [Online].
Available: http://www.lighthouse3d.com/opengl/billboarding/

[49] F. D. Luna,3D Game Programming with Direct X 9.0. Wordware,
2003.

[50] L. Latta, “Building a million particle system,” inProceedings of Game
Developers Conference, 2004.

[51] C. Tsuneto, “A fireworks animation support system using interactive
evolutionary computation,” Master’s thesis, Kyushu Institute of Design,
2002.

Erin J. Hastings is currently pursuing a Ph.D. at
the University of Central Florida. He earned a B.S.
in Computer Science from University of Florida
in 2001 and an M.S. in Computer Science from
University of Central Florida in 2004.

His research interests include evolutionary com-
putation, interactive evolution, neural networks,
graphical content generation, particle systems, col-
lision detection, and range monitoring. He has re-
cently published papers in the IEEE Symposium on
Computational Intelligence and Games, the ICST

International Conference on Testbeds and Research Infrastructures for the
Development of Networks & Communities, and the SCS Summer Computer
Simulation Conference.

Ratan K. Guha received the B.S. degree with hon-
ors in Mathematics and the M.S. degree in Applied
Mathematics from the University of Calcutta. He
received the Ph.D. degree in Computer Science from
the University of Texas at Austin in 1970.

He is a Professor of Computer Science at the
University of Central Florida, Orlando. His research
interests include distributed systems, networks, secu-
rity protocols, modeling, simulation, and graphics.
His research has been supported by grants from
ARO, NSF, STRICOM, PM-TRADE, NASA, and

the State of Florida.
Dr. Guha is a member of ACM, IEEE, SCS, and served on the Board

of Directors of SCS. He is currently serving on the editorial board for the
International Journal of Internet Technology and Secured Transactions and
the editorial board for Modelling and Simulation in Engineering.

Kenneth O. Stanley received the B.S.E. degree
magna cum laudein computer science engineering
and a minor in cognitive science from the University
of Pennsylvania, Philadelphia, in 1997, and the M.S.
degree in computer science and the Ph.D. degree
from the University of Texas at Austin (UT-Austin),
in 1999 and 2004, respectively.

He is an Assistant Professor in the School of Elec-
trical Engineering and Computer Science, University
of Central Florida. He has published papers in JAIR,
Evolutionary Computation, and Artificial Life jour-

nals. His research focuses on evolutionary algorithms and complexity.
Dr. Stanley is a member of AAAI. He has won Best Paper Awards at the

2002 Genetic and Evolutionary Computation Conference, for his work on
NEAT, and at the IEEE 2005 Symposium on Computational Intelligence and
Games, for his work on NERO.

http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://www-illigal.ge.uiuc.edu:8080/gecco-2001/
http://www.cs.ucf.edu/~kstanley/GenArt.zip
http://www.cs.ucf.edu/~kstanley/GenArt.zip
http://www.lighthouse3d.com/opengl/billboarding/

	Introduction
	Background
	Particle Systems
	Interactive Evolutionary Computation (IEC)
	NeuroEvolution of Augmenting Topologies

	Approach - NEAT Particles
	Particle System Representation
	Artificial Neural Network Implementation
	Activation Functions
	Physics
	Rendering
	Evolution

	NEAT Projectiles
	Projectile Classes
	Projectile Constraint
	Projectile ANNs

	Experimental Results
	Comparisons
	User Study

	Performance
	Discussion and Future Work
	Conclusion
	References
	Biographies
	Erin J. Hastings
	Ratan K. Guha
	Kenneth O. Stanley

