Interactive Evolution of Particle Systems
for Computer Graphics and Animation

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley
School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816

{hastings, guha, kstanle@cs.ucf.edu
To appear inlEEE Transactions on Evolutionary Computatidsew York: IEEE Press, 2009.

Abstract—Interactive Evolutionary Computation (IEC) creates ~ primary game play features![6]. Thus, there is a growing need
the intriguing possibility that a large variety of useful contentcan for powerful and user-friendly content generation tools both
be produced quickly and easily for practical computer graphics y, yaqyce the content bottleneck and further empower users.

and gaming applications. To show that IEC can produce such . . -
content, this paper applies IEC to particle system effects, which An emerging approach to this problem astomated con-

are the de facto method in Computer graphics for generating tent genel’atloﬁhl’ough|nteraCtlve EVO|utI0nal’y Computatlon
fire, smoke, explosions, electricity, water, and many other special (IEC), that is, automating content creation though user interac-
effects. While particle systems are capable of producing a broad tion. This paper presents such an automated content generation

array of effects, they require substantial mathematical and method forparticle systemsdemonstrating the promise of IEC
programming knowledge to produce. Therefore, efficient particle for practical content generation

system generation tools are required for content developers to . S . .
produce special effects in a timely manner. This paper details the ~ Particle systems are ubiquitous in computer graphics for

design, representation, and animation of particle systems via two producing animated effects such as fire, smoke, clouds, gun-
IEC tools called NEAT Particles and NEAT Projectiles. Both tools fire, water, cloth, explosions, magic, lighting, electricity, flock-

o1 Algmenting Topoiogies (NEAT) method to contolthe behayior "9 &1 many others [71,13]. They are defined by (1) a set of
of particles. NEAT Particles evolves general-purpose particle points in space and (2) a s_et of rules_ guiding their behavior
effects, whereas NEAT Projectiles specializes in evolving particle @nd appearance, e.g. velocity, color, size, shape, transparency,

weapon effects for video games. The primary advantage of this rotation, etc.
NEAT-based IEC approach is to decouple the creation of new Since such rule sets are often complex, creating each new
effects from mathematics and programming, enabling content effect requires considerable mathematics and programming
developers without programming knowledge_to produce complex knowledge. For example, consider designing apherical
effects. Furthermore, it allows content designers to produce a . . o
broader range of effects than typical development tools. Finally, flame shield of pulsing colorsffect for a futuristic video
it acts as a concept generator, allowing content creators to game or movie. Alternatively, consider designingarticle
interactively and efficiently explore the space of possible effects. weapon effect that fires multiple curving arcs toward the target
Both NEAT Particles and NEAT Projectiles demonstrate how | current practice, the precise mechanics for either scenario
IEC can evolve useful content for graphical media and games, must be hand coded by a programmer. To simplify design,
and are together a step toward the larger goal of automated
content generation. particle effect packages typically provide developers with a set
Index Terms_nteractive Evolutionary Comoutation. |EC of particle system classes, each suitable for a certain type of
NeuroEvolution of Augmenting Topologigs, NEKT, parti,cle sy’s- effe(_:t. Content developers manipulate the paramet_ers of each
tems. particle system class by hand to produce the desired effect.
The problem is that there is no way to efficiently explore the
range of effects within each class.
|. INTRODUCTION To address this problem, this paper presents a new design,
Content generation means creating models, levels, textur@fresentation, and animation approach for particle systems
animations, lighting, etc. for computer graphics in game# which (1) artificial neural networks (ANNSs) control par-
movies, and television. For media developers, content geneligle system behavior, (2) theeuroEvolution of Augmenting
tion consumes significant time and money to produce todayepologies(NEAT) method [9], [10] produces sophisticated
complex graphics and game contént [L], [2]. In part to addreBarticle system behaviors by evolving increasingly complex
this problem, in the video game industry, it is becomingNNs, and (3) evolution is guided by user preference through
increasingly popular to provide extensive character customi&n |IEC interface.
tion tools within games and to distribute tools that allow users Two prototype systems are discussed, NEAT Particles, a
to create their own content outside of the game as well [general-purpose particle effect generator, and NEAT Projec-
[@], [B]. Furthermore, there is a new trend towarcsntent tiles, which is specialized to evolve particle weapon effects
generation tOOI_S as games th_emsej\that iS’,SandbOX games LCopyright 2007 Electronic Arts, http://thesims.ea.com/
such as The Sinis Second Lifé, and Sporé These games 2Copyright 2003 Linden Research Inc., http://secondlife.com/
feature creating houses, vehicles, clothing, and creatures &gopyright 2007 Electronic Arts, http://www.spore.com/

for video games. Both systems interactively evolve ANNs witfor aesthetic appeal). Thus, graphical content generation is a
NEAT to control the motion and appearance of particles. Atcommon application of IEC _[20]/ [21] [22], [23]._[24]. [25].
IEC interface provides a user-friendly method to evolve unique IEC was first introduced in Biomorphs (figur¢ 2a), which
content. aims to illustrate theories about natural evolutidn|[20].
In this way, NEAT Particles shows how IEC can enablBiomorphs are patterns encodedlasdenmayer Systengk-
practical content generation that provides an easy alternatsystems)([26], i.e. grammars that specify the order in which a
to current, potentially cumbersome practice. In particulaset of replacement rules are carried out. Abstract figures that
NEAT Particles and NEAT Projectiles (1) enable users withoutsemble animals or plants are interactively evolved in this
programming or artistic skill to evolve unique particle systemanner.
effects through a simple interface, (2) allow developers to Representations igenetic art(i.e. IEC applied to art) often
evolve a broad range of effects within each particle class, anary, including linear or non-linear functions, fractals, and
(3) serve as concept generators, enabling novel effect typesittomata. Some notable examples include (1) Mutator [21],
be easily discovered. By allowing users to evolve particle ba-cartoon and facial animation system, (2) SBART (figUre 2b)
havior without knowledge of physics or programming, NEAT22], a two-dimensional art exploration tool, (3) a tool that
Particles and NEAT Projectiles are a step toward the largevolves implicit surface models such as fruits and pots (figure
goal of automated content generation for games, simulatiofig) [23], [27], [28], and (4) a system for evolving quadric
and movies. models used as machine components (figlire [2d) [24].
Figure[3 illustrates IEC’s content generation capabilities.
[I. BACKGROUND The figure shows a progression of four user-selected parents

This section reviews particle systems, IEC, and NEAM the evolution of a spaceship with a genetic art tool [25],

which are components of NEAT Particles and NEAT Projed29], [30]. In the example, the user starts by selecting a simple
tiles. image that vaguely resembles what they wish to create and

continues to evolve more complex images through selection
until satisfied with the result. The sequence of images demon-

A. Particle Systems : 1 _
strates the potential of IEC as an engine for content generation.

o e oM Sl images rom Delph NEAT Genetc At (ONGA), are
Trek Il: The Wrath of Khah [11] (figure @a). Soon after, Fr{gdnueczdsgztiﬁrl?”\ls evolved by NEAT, which is discussed in

particle systems effects became widespread on television as
well (figure[1b). Nearly all modern video games include a
particle system enginél[7].][8]; special effects in games su€h NeuroEvolution of Augmenting Topologies

as magical spells (figufg 1c) and futuristic weapons (fifilire 1d)the NEAT method was originally developed to solve control

are usua.llly mpler_nented with particle systemg. and sequential decision tasks. The ANNs evolved with NEAT
In anltlon to 'dlffuse phenomena such as fire, smoke, 8B9 control agents that select actions based on their sensory

explosions, particle systems can also model concrete obiggfs s \while previous methods that evolved ANNSs (i.e. neu-

such as dense trees in a forest/[12], folded cloth and fabfige, o ution methods) evolved either fixed topology networks

[13],_ [14], and sim.ulated quid.motion [:L.S]' [:L§]. Realistic 31, [32], [33], or arbitrary random-topology networks [34],
particle movement is often achieved by simulating real-wor

X . X 35], [36], [37], [38], [39], [40], NEAT is the first to begin
physics [17]. At a more abstract level, particle systems Caly,| tion with a population of small, simple networks and
simulate animal and insect flocking as well as swarming, ,\njexify the network topology into diverse species over
behavior [18]. The prevalence and diversity of particle Sy§anerations, leading to increasingly sophisticated behavior.
tem applications demonstrates their importance 1o COMPUEESynared to traditional reinforcement learning techniques,

graphics in modern media and games. which predict the long-term reward for taking actions in
_ _) different states[[41], the recurrent networks that evolve in
B. Interactive Evolutionary Computation (IEC) NEAT are robust in continuous domains and in domains that

IEC is an approach to evolutionary computation (EC) irequire memory, making many applications possible. In this
which human evaluation replaces the fitness functiod [19japer, particle systems are controlled by ANNs evolved by
A typical IEC application presents to the user the curreMEAT. NEAT is well-suited to this task because (1) it is a
generation of content. The user then interactively determing®ven method for evolving ANNs, and (2) it was employed
which members of the population will reproduce and thguccessfully in prior genetic art applications|[25]. This section
IEC application automatically generates the next generationlwfefly reviews the NEAT method; Stanley and Miikkulainen
content based on the user’s input. Through repeated round§9}f [10] provide complete descriptions.
content generation and fitness assignment, IEC enables uniqusdEAT is based on three key principles. First, in order to
content to evolve that suits the user’s preferences. In somltow ANN structures to increase in complexity over gener-
cases such content cannot be discovered or created in atigns, a method is needed to keep track of which gene is
other way. which. Otherwise, it is not clear in later generations which

IEC aids especially in evolving content for which fithesindividual is compatible with which, or how their genes should
functions would be difficult or impossible to formalize (e.gbe combined to produce offspring. NEAT solves this problem

(b) (d)
Fig. 1. Particle System ExamplesParticle systems are ubiquitous in computer graphics for both movies and ganiBse @gnesis Effeétom Star Trek
2: The Wrath of Khah [L1] is one of the earliest applications of particle systems in commercial computer graphics. (b) Particle systems appear extensively in
television, such as the effects in this live footage produced with the Particlellfusiaitware. (c) Magical spells, glowing weapons, and dragon breath from
the World of Warcraft video game are implemented with particle systems. (d) Finally, futuristic weapons are usually implemented with particle systems,
such as in this shot of the Doont ideo game.

99999
vbegge B B &
(©) (d)

Fig. 2. IEC Art Examples. This figure depicts examples several IEC program interfaces. (a) Biomorphs are simple plant or animal-like figures evolved
with L-systems; they are one of the earliest examples of [EC [20]. (b) SBART evolves complex 2D iimages [22]. (c) A creative desigh systein [23], [27], [28]
evolves simple three-dimensional objects such as green peppers. (d) Finally, an IEC inteiface [24] generates three-dimensional machine components. Thes
examples illustrate typical IEC interfaces and demonstrate the range of content that can be evolved.

% C >
(a (b)

) (d)

Fig. 3. IEC Evolution Example. In this example a spaceship is interactively evolved with DelphiNEAT-based Genetic Art (DNGA)[125],[[29], [30]. The

initial spaceship-like image (a) is evolved from an initial population of random images. An intermediate stage of evolution (b) suggests a tail section, wing
section, and nose section. (c) As evolution proceeds the components become more defined and interesting details become apparent. By the final stage (d]
a spaceship model evolves with elegant lines, a nose section, and tail stabilizers. This sequence illustrates how complex digital art can be evolved by user
preference.

[
é\y

by assigning a uniqukeistorical markingto every new piece of work, because a human performs selection rather than an
network structure that appears through a structural mutati@utomated process, the usual speciation procedure in NEAT
The historical marking is a number assigned to each geiseunecessary.

corresponding to its order of appearance over the courseThird, unlike other systems that evolve network topologies
of evolution. The numbers are inherited during crossovend weights[[43],137]/140]/138], NEAT begins with a uniform
unchanged, and allow NEAT to perform crossover without thgopulation of simple networks with no hidden nodes. New
need for expensive topological analysis. That way, genomesstfucture is introduced incrementally as structural mutations
different organizations and sizes stay compatible throughmdcur, and only those structures survive that are found to be
evolution, solving the previously open problem of matchingseful through fithess evaluations. This way, NEAT searches
different topologies[[42] in an evolving population. through a minimal number of weight dimensions and finds the
S%Dpropriate complexity level for the problem.

Second, traditionally NEAT speciates the population This process of complexification has important implications

that individuals compete primarily within their own niche L) : o
instead of with the population at large. This way, topologicz?r search. While it may not be practical to find a solution in

innovations are protected and have time to optimize their, _ ,
structure before competing with other niches in the population Copyright 1982 Paramount Pictures, hitp://www.paramount.com/

. . . . 2Copyright 2006 Wondertouch Software, http://www.wondertouch.com/
NEAT uses the historical markings on genes to determine t@copyright 2004 Blizzard Entertainment, http://www.blizzard.com/
which species different individuals belong. However, in this 4Copyright 2005 Id Software, http://www.idsoftware.com/

a high-dimensional space by searching in that space directlys The beam systentfigure [3c) models beam, laser, or
it may be possible to find it by first searching in lower electricity effects using Bezier curves. Each particle in
dimensional spaces and complexifying the best solutions into the beam system is a control point for the Bezier curve,
the high-dimensional space. For IEC, complexification means including its position, velocity, and color attributes.
that content can become more elaborate and intricate oves The rotator system(figure [3d) models effects whose
generations. primary behavior is orbital rotation, common in many ap-
Since its inception, NEAT has been applied to a broad array plications. Each particle in a rotator system has rotation,
of research areas [44], [45], [25], [46]. Most notable for the position, and color attributes.
approach in this paper is NERQ]45], an interactive, real- « The trail system (figure [3e) behaves similarly to the
time war game in which ANN-controlled soldiers are evolved. generic system, but additionally drops a trail of static
Because NEAT is a strong method for evolving controllers particles behind each moving particle.

for dynamic physical syst_ems,_it can _naturally be extended toBy providing an array of particle system classes, NEAT
evolve the motion of particles in particle effects as well. Thparticles allows designers to evolve a substantial variety of

next section explains how NEAT is combined with IEC t@ffects while conveniently constraining the search space during
produce a broad array of effects with NEAT Particles. any particular run.

. APPROACH- NEAT PARTICLES B. Artificial Neural Network Implementation

NEAT Particles combines IEC and NEAT to enable users to ANNs control particle behavior in NEAT Particles for

evolve complex particle systems. ANNs control part_icle SY$wo primary reasons. First, ANNs are a proven method for

tem behavior, NEAT evolves the ANNs, and an IEC interfacg 1onomous control. Second, NEAT is a powerful method for

gives the user control over evolution. NEAT Particles Cons'sé'?/olving ANNs for control and sequential decision tasks.

of five major components: 1) particle systems, 2) ANNS, 3) ap important question is why evolving ANNs is preferable

physics, 4) rendering, and 5) evolution. to directly evolving the variables of a traditional particle
system implementation. While feasible, such an approach still

A. Particle System Representation ultimately relies on hand-coded rules (which constitute such

A particle system is specified by an absolsiestem posi- systems), W.hiCh thus depend on programmers t(.) make the

a%%arch possible. For example, in a traditional particle system

tion in three-dimensional space and a set of particles. E N ementation. when a new effect class is needed it reduire
individual particle is defined by its position, velocity, color,I P lon, when w SSIS N It requires

and size. Particle lifespan unfolds in three phases. programmers to define the effect parameters (e.g. color change,
motion pattern physics, etc.). In contrast, in NEAT Particles

1) At birth particles are introduced into space relative e effects of any class are represented by the same structure:
system position and according to generation shape ANNS.

(figure [4) that defines the volume within which new

ficl The ANN for each particle effect dictates the characteristics
particles may spawn.

e TCY) and behavior of the system. Therefore, each particle effect

2) During its lifetime, each particle changes and move§,qq includes its own ANN input and output configuration.

according o a set of rule§, i.e. aipdate function In NEAT Particles, the ANN replaces the math and physics

3) Each .par.tlcle d'?s’ and is 'removed from the SyStefles that must be programmed in traditional particle systems.

when itstime to livehas expired. Because special effects in most movie and game graphics

NEAT Particles effects are divided intolassesfor two need to be visually appealing yet not necessarily physically

primary reasons: (1) user convenience and (2) performanggusible, ANNs do not need to equate to physically realistic
First, to evolve effects in a reasonable time frame, it is helpfilodels. However, evolved ANN-controlled particle behaviors
to divide the search space for the user. Second, effects mayy. spin in a spiral while changing color from green to
be highly dependent upon certain variables, and unaffecteddinge are still compatible with rules in physically accurate
other variables. For performance reasons, it is not feasiblegarticle simulations such as gravity, friction, or collision.
evolve all pOSSibIe partiCle variables SimultanEOUS|y. A better Every partide in a System is gu|ded by the same ANN.
approach is implemented in NEAT Particles, in which onlyjowever, the ANN is activated separately for each particle.
key variables are evolved in each particle effect class. Firfuring every frame of animation in NEAT Particles an update
particle system classes are implemented in NEAT Particlesftghction (figure[) is executed that (1) loads inputs, (2)
facilitate evolving a variety of common types of effects. activates the ANN, and (3) reads outputs. The ANN outputs

« The generic systen(figure [3a) models effects such asletermine particle behavior for the current frame of animation.
fire, smoke, and explosions. Each particle has a positiohn appropriate set of inputs and outputs is associated with
velocity, color, and size. each effect class as follows.

« The plane systentfigure[3b) warps individual particles The primary inputs in NEAT Particles are position and dis-
into different shapes for bright flashes, lens flares, artdnce from center of the system. The main outputs are velocity
engine exhaust effects. A single particle in the plarend color. These are good inputs and outputs because they
system is represented by four points, each of which haan encode significant variety over the long term. However,
position, velocity, and color. because animation happens in real-time, the change in position

LIE

(a) sphere (b) point (c) line (d) circle

Fig. 4. Generation ShapesA particle system’s generation shape defines the region in which new particles spawn. (a) Spherical generation produces area
effects such as smoke and explosions. (b) Point generation facilitates effects that are attached to specific points on objects, such as vehicle thrust and muzzls
flash. (c) Line generation commonly produces effects attached to characters or melee weapons, such as glowing swords. (d) Circular generation enables effect:

that surround objects, such as energy fields.

(a) generic

(d) rotator (e) trail
Fig. 5. Particle System ClassesPredefined classes constrain the search space for designers. (a) The generic particle system models effects such as fire,
smoke, and explosions. (b) The plane system warps and stretches individual particles for flashes, lens flares, and other effects. (c) The beam system simulate
beam, laser, or electricity effects. (d) The rotator system models effects based on orbital rotation common in explosions, energy, and magic. (e) The trail
system is similar to the generic system; however each particle drops a trail of smaller particles. Trail systems commonly implement magic, energy, weapon,
and exhaust effects.

motion and color output

BB Wi

hidden nodes
\ / frame t
positional input
Fig. 6. Update Function. Every frame of animation, each particle passes through an update function to compute velocity and color for that frame. Suppose
animation for a particle is being computed at framéon the right). The particle’s position and distance from center in the previous ftamé (on the
left) are input into the particle system ANN. After the ANN is activated, its outputs are interpreted as velocity and color at. fldmehigh frame rate
of real-time animation produces small position changes; thus animation and color change is fluid. Over the long term; however, position changes are large,

producing a variety of patterns and behaviors.

and distance from center are small from one frame to the net, Physics

producing incremental changes that look smooth. Each frame of animation, after the ANN is activated, the

The generic particle system ANN (figufg 7a) takes thgslocity for each particle is determined by the outputs. To
current position of the particlép., p,, p-) and distance from animate a particle each frame (i.e. move the particle through
the center of the systerfai.) as inputs. Distance from centerspace) a linear motion model calculates the position of the

introduces the potential for symmetry by allowing particleparticle at timet based ortime elapsed- since the last frame
to move in relation to the system center. The outputs are t§eanimation:

velocity (vg, vy, v;) and color(R, G, B) of the particle for the P,=P,_1+Vrs, 1)
next frame of animation. The generic particle system produces .] N .
behaviors suitable for explosions, fire, and smoke effects. Where P; is the particle’s new position vecto;_; is the

Each particle in the plane system consists four Co_p|an%@rticle’s position vector in the previous animation frarire,

points that may be warped into different shapes. BecauSethe particle’s velocity vector, and is a scaling value to

the corners must be coplanar for rendering purposesythédiust the speed of animation.
component of velocity for each corner is fixed. Thus, the inputs
to the plane system ANN (figufg 7b) are the position of eadh Rendering

corner (p, p.) and the distance from the center of the plane NEAT Particles renders particles to the screen wiith
(dc). The warped quads of plane systems are commonly fougarding [48], a technique in which two-dimensional bitmap
in explosions, engine thrust, and glow effects. textures are mapped onto a plane (i.eq@ad that faces
The beam system ANN (figufg 7c) controls directed beaperpendicular to the camera. The corners of the quad are
effects. To produce twisting beams, a Bezier curve is indffsets from the particle position. By facing the quad toward
plemented with mobile control points directed by the ANNthe camera the billboarding method convincingly conveys the
The inputs are the position of each Bezier control poiffusion of translucent three-dimensional particles in space.
(pz» py, p-) and distance of the control point from a the center The billboarding technique is implemented in NEAT Par-
of the system(d.). The outputs are the velocitfv,, vy, v.) ticles because it is the most common and versatile method
and color (R, G, B) of the control point for the next frame to render particles. An alternative particle rendering method is
of animation. Beam systems produce curving, multi-colorgshint sprites[[49]; however, they do not allow arbitrary warping
beams typically found in futuristic weapons, magic spellgf particle shape required for the beam and plane systems.
lightning, and energy effects. There are several ways to optimize particle system rendering
The rotator system (figurg] 7d) enables evolving rotatiomcluding level of detail (LOD) [[15], batch rendering]49],
based effects. The inputs to the ANN are particle positicind GPU acceleratiorl [50]. NEAT Particles is compatible
(pz,py,p-) and distance from the center of the systéip). with all such methods; however they are not explored in this
The outputs are rotation around they, andz axes(r,.,7,,7.) implementation.
and color(R, G, B). Rotation-based particle systems are com- The next section explains how particle classes, ANNs,
mon in explosions, halos, and energy effects. physics, and rendering combine to enable particle effect evo-
The trail system behaves similarly to the generic system yation.
provides a more complex visual effect by periodically drop-
ping stationary particles that shrink and fade out. Therefore, £\qjution
the trail system ANN takes the same inputs and emits the

same outputs as the generic ANN. Trail systems are convenienlt:'VOIUt'On in NEAT Particles follows a similar procedure

because they provide a computationally inexpensive form & other IEC app||cat_|ons (SF‘TC“@B)‘ _The user 1s initially
motion blur or visual trail behind moving objects. presented a population of nine randomized particle systems

ANNSs control particle behavior and ANN input/outputsrepres‘emed _by simple ANN.S (figug 9a). !Each individual
. . : . system and its ANN can be inspected byoming inon the

divide effects into classes, which shrinks the search space ' S . . .

system (figur¢ |9b). If the initial population of nine systems is

for USErS. Wh|le_ ANN topology_an_d we|gh_ts Slgr.]Iﬂ.camly%nsatisfactory, a new random batch of effects can be generated
contribute to particle behavior, activation functions within eacb

.) . : Y restarting evolution.
node play an important role as well; they are detailed in th : . . .
next section The user begins evolution by selecting a single system

from the population to spawn a new generation. A population
of eight new systems (i.e. offspring) is then generated from
the ANN of the selected system (i.e. parent) by mutating its
connection weights and possibly adding new nodes and con-
Unlike traditional ANNs, NEAT Particles ANN hidden nections. That is, offspring complexify following the NEAT

nodes and output nodes contain an activation function selectadthod. Evolution proceeds with repeated rounds of selection
from a set of eight possibilities (figuf¢ 8). Theoretically, ANNsind offspring production until the user is satisfied with the
with a single activation function can evolve any behaviol [47fesults. If the user is unsatisfied with an entire new generation,
however, multiple activation functions are preferable in NEA&n undofunction recalls the previous generation.

Particles because the user can obtain variety more quickly andpecifically, each new generation preserves the parent ex-
thereby evolve toward the intended effect sooner. actly and the other eight members of the population are

C. Activation Functions

n Outputs

chpww -

(a) generic, trail ANN (b) plane ANN

E@\ /9. EQ\ L /9-

Hidden Nodes Hldden Nodes

SHEEE -~ SEANN -

(c) beam ANN (d) rotator ANN

Fig. 7. Particle System ANNs To produce a specific range of effects, each particle class ANN uses different inputs (i.e. position and distance from center)
and outputs (i.e. velocity, color, and rotation), which are shown for (a) the generic and trail particle system, (b) the beam particle system, (c) the plane particle
system, and (d) the rotator particle system. The beam system ANN appears similar to the generic and trail system ANNSs; however a generic system ANN
controls individual particles, whereas a beam system ANN controls Bezier curve control points. The plane system ANN controls four corners of a warped
quad, and the rotator system ANN controls individual particle rotation. Each ANN is evolved in NEAT Particles to connect the inputs to the outputs of each
class.

\

(a) Sine (b) Cosine (c) Tangent (d) Bipolar Sigmoid
(e) Hyperbolic () Gaussian (g) Ramp (h) Step
Fig. 8. ANN Activation Functions. In NEAT Particles all ANN hidden nodes and output nodes are randomly assigned one of eight activation functions: (a) sine,

) _e(—2)] 1 if(z<—1)

. . . ex [e H 1 —z2 =
(b) cosine, (c) tangent, (d) bipolar agmc{l%ﬁ) (e) hyperboho(w), (V) Gausaarﬂm]*e()), (g) ramp =] 1 if(es1)),

or (h) step =7} (25

mutated from the parent. For each offspring, a uniformlglex and unique effects are discovered that follow user pref-
random number of connections (between one and the numbegnces. The next section explains evolving particle system
of connections in the network) are mutated by a uniformlgontent for a more specialized purpose, weapons effects for
random value betweer-0.5 and 0.5. Adding new nodes video games.

and connections is controlled by separate mutation rates.

The probability of adding a new connection (s3 and the IV. NEAT PROJECTILES

probability of adding a new node i8.2. New nodes are

assigned a random activation function and connected into théVEAT Projectiles is an extension of NEAT Particles de-

existing ANN [S]. These parameters were found to be effecti@igned to evolve particle weapon effects for video games. The
for IEC in preliminary experimentation. aim is to exhibit a concrete, practical application of NEAT

Particles that can potentially enhance content generation in
Through complexification, particle system effects beconexisting real-world products. NEAT Projectiles uses similar
increasingly sophisticated as evolution progresses. Thus, caendering, physics, and activation functions as NEAT Particles.

(a) Main Interface (b) Zoom Mode

Fig. 9. NEAT Particles Interface. In the main interface (a), the user is presented with nine particle systems. System parameters such as generation shape
and inputs are displayed on the bottom of the screen. In zoom mode (b), a single particle system and its ANN can be inspected.

Furthermore, the same |IEC interface (fighré 10) drives evolA-particle fired from thedumb weaporhas a fixed offset in
tion. The major differences are (1) the projectile classes, (e direction the gun was facing on discharge (figurg 12a).
the projectile constraints, and (3) the ANN inputs and outpufBhe directed weaporallows the user to influence projectiles
while in flight; therefore particle offset is constrained to & 90
cone around the vector the weapon is currently facing (figure
) . b). Particles fired from themart weaporseek their target.
Three classes of weapon-like systems are implementedriierefore, the smart particle’s offset is constrained to the 90
NEAT Projectiles to mirror common weapon models in vide@yne around a vector from the projectile to the target (figure
games: (1)dumb weapons(2) directed weaponsand (3) M2c).
smart weaponsDumb weapons fire simple, non-target aware |, the force-constrained model (figufe] 11b), the ANN is
projectiles and exhibit a fixed behavior in flight. Directedmijar to that used in the generic system of NEAT Particles;
weapons fire projectiles that may be steered by the u$gfivever a push force is applied to constrain particle movement
during flight. Smart weapons see the target; like a heat-seekigg, general direction. The direction of the push force depends
missile, the in-flight behavior of smart projectiles is influencegy, ihe weapon type. The dumb weapon projectile is pushed

A. Projectile Classes

by target motion. in the direction of the gun when it discharges. The directed
projectile pushes in the direction the gun is currently facing.
B. Projectile Constraint The smart weapon pushes projectiles in the direction of the

Particle weapons provide two new significant constrain@r_ic_]ﬁt' binati f traint del. d ;
on particle motion beyond generic particle effects. First, t € combination of constraint model, classes, and correc

avoid weapons firing backward, projectile velocity is limite NN design minimizes defective offspring while allowing a

to overall forward motion. Second, evolved projectile weapor?é‘ﬁ'f'eml?/tlar%? Ya”t?ty of dunlque wefa [IJons tto f\tlﬁ Ive,hvvlgcc;:h
fire in the same pattern regardless of what direction the Weadaﬂn egral to efhiciently producing usetul content thoug '

is facing. It would not make sense for projectiles emitted from
a weapon to behave differently when a user points the weapon) _
in different directions. Therefore, projectile coordinates are This section shows how NEAT Particles and NEAT Pro-
defined relative to the heading of the gun when it is fired. 1€ctiles work in practice to produce useful particle system
The new projectile classes and constraint mechanisms af§&tent. All particle systems reported were evolved in between

influence the interpretation of NEAT Projectiles ANNs, afve and ten minutes and between 20 and 30 user-guided
explained next. generations. The NEAT particles executable, source code,

and examples effects in this paper can be downloaded at
o http://eplex.cs.ucf.edu .

C. Projectile ANNs Figure[I3 illustrates evolving #lame shieldeffect with
Because there is more than one way to make particles BEAT Particles. The goal of the effect is a halo of flaming
as projectiles, two approaches are implemented and testeded particles around the user. Evolution begins with a red ring
NEAT Particles: (1) theoffset-constrained modeind (2) the (figure[I3a). As evolution proceeds, particles begin breaking
force constrained model away from the ring (figur¢ 13b). A full orbital sphere of

In the offset-constrained model (figure] 11a), & fifset particles develops eventually (figure]13c) and the final effect
conein front of each particle is computed in each frame. Thigure[I3d) exhibits brighter colors.
outputs from each particle’s ANN represent a vector within Figure[I4 depicts the evolution of arc gun effect with
the offset cone, which becomes the particle’s new velocitMEAT Projectiles. The aim is to create a multi-beam effect
Offset angles are computed differently for each weapon typbat tracks a target. The starting point is a single curving

V. EXPERIMENTAL RESULTS

(a) Main Interface (b) Zoom Mode

Fig. 10. NEAT Projectiles Interface. In the main interface (a), the user chooses among nine projectile systems of any weapon class. The weapons can be
rotated (as in this figure) and the refire rate adjusted to display their full behavior. In zoom mode (b), a single projectile system and its ANN can be inspected.

/- @Q\ ! /9-

Hldden Nodes

A

(a) offset constrained (b) force constrained

Fig. 11. Projectile System ANNs Projectile models are designed to minimize undesirable behaviors (e.g. firing backward). (a) In the offset constrained
model, projectile movement is constrained by an offset cone in front of the projectile. The offset cone is computed by adding twaprdotergo,,4)

andleft-right (o;,-). ANN inputs include the current position of the particle, distance from center of the weapon, and a bias. The outputs are left-right offset,
up-down offset, and color. (b) In the force constrained model, projectile motion is perturbed by an additional push force applied to the projectile after ANN
processing. Inputs are the current position of the particle, the distance from the system center, and a bias. The outputs are the particle velocity and color.
Both models constrain projectile behavior while allowing sufficient evolutionary variety.

beam to the target, which is marked with a cross (fiuje 14a).Another interesting comparison can be drawn with the
During evolution the beam splits (figurps]14b] 14c). FinallyEC fireworks application by Tsunetd [51] (figure]20), which
the desired effect is achieved with two stylized, parallel arggoduces a specialized class of particle effects. In this system,
that track the target (figufe JL4d). fireworks are defined by real-world attributes such as powder

Preliminary testing of both NEAT Projectiles constraintype, explosive payload, number of stages, stage configuration,
models suggests that, compared to the force-constrairetd. A rule-based physics system defines the behavior of
model, the offset-constrained model over-constrains evolutiditeworks based on these attributes. Through repeated selection
It generates less variety in evolved weapon effects. Howevar,an IEC interface, users can evolve fireworks to suit their
unlike the force-constrained model, it also produces no offreferences. Thus, unlike NEAT Particles, this system demon-
spring that fire back at the user. Thus, both models have th&lirates evolving the variables of a rule system. In contrast,
pros and cons. NEAT Particles evolves the behavior rules themselves. Both

Keyframe animations for evolved particle and projectileapproaches offer unique advantages. The special rule set of
systems are depicted in figufes 15 @nfl 16. Additional evolvéte fireworks application allows it to focus on a specific class
systems are presented in figufe$ 17 and 18. of effects. NEAT Particles in contrast can evolve effects in a
large variety of classes because of its generality and lack of
) domain-specific parameters.
A. Comparisons

To compare the quality of IEC particle effects to those
generated by traditional methods, two hand-coded partuﬁe User Study
emitters were implemented with the same rendering methodAn informal user study was conducted to test the viability
as NEAT Particles (figur@ 19). The resulting effects exhibif the NEAT Particles method. In this study, eight users were
similar visual quality; however, they are limited to simpléntroduced to the system and encouraged to explore the search
behaviors because the behavioral complexity of hand-codgshce to evolve effects that please them. Samples of the user-
particle systems is dependent upon mathematics, physics, emdived effects are presented in figlird 21. In general, users
programming, which become increasingly difficult to coordifound the generic and trail particle system classes to produce
nate through hand-coded policies as more is added. the most variety, while the rotator, plane, and beam systems

10

oy U Y 3
¥ .. &, &
P3 g/pg éps

(a) dumb (b) directed (c) seek

Fig. 12. Projectile Constraint Mechanics To ensure that weapons behave as projectiles, particle velocities are constrained to ¢oee&0shown above.

In the figure, W is the weapon and T is the target. (a) Dumb weapon particles are not target-aware so they are constrained in velocity t6 adned 90

in front of the weapon at the moment of discharge. (b) Directed weapon particles are not target-aware but may be influenced while in flight by the weapon.
Thus directed particle velocity is constrained to th€ @ne in which the weapon is currently facing. (c) Smart particles are target-aware; therefore they are
constrained to a 90cone around a vector from the particle to the target.

(b) (d)

Fig. 13. Particle System Evolution This figure illustrates evolution of #iame shieldeffect with NEAT Particles, in which red and yellow particles are

evolved to orbit a player at the center. (a) Evolution begins with a ring shaped rotator system with an appropriate red and yellow color scheme. (b) After a
few generations particles begin to detach from the ring. (c) Several generations later a prominent orbital behavior becomes apparent. (d) Evolution concludes
with a full orbital pattern and a brighter color scheme, producing a convincing flame shield effect suitable for use in a video game.

(d)

(b)
Fig. 14. NEAT Projectiles Evolution. A double-arc beam weapon that seeks a target is evolved with NEAT Projectiles. The weapon emits particles from
the left side of each frame and the target is marked with a cross on the right side. (a) Evolution begins with a single arc that connects to the target. (b)
After several generations, the beam begins to split in the middle. (c) Continuing evolution, the double arc becomes more pronounced. (d) Eventually the arcs
become fully disjoint and the intended projectile behavior is achieved.

were acknowledged to be more constrained. The exampliégly true for traditional formulations. Thus NEAT Particles is
presented in figur¢ 21, all evolved within 15 generationsxpected to perform comparably to traditional particle systems.
demonstrate that the IEC approach enables users to quickly
and easily generate complex and unique particle effects.

In summary, the totality of results demonstrate the ability
of NEAT Particles and NEAT PrOjeCt”eS to evolve partide The Comp|exity and cost of producing content for modern
systems of similar complexity to those in mainstream gamegraphics and games creates the need for tools that quickly

and efficiently generate novel content. IEC can alleviate this
VI. PERFORMANCE problem by enabling automated content generation guided by

NEAT Particles’ computational requirements scale at)Q(user preferences. NEAT Particles demonstrates the promise of
where n is the number of particles. The position of eackthis approach by constraining the search space for the user,
particle is input to the ANN once per frame. Similarly, inthereby defining a content space large enough to evolve many
traditional particle systems each particle passes through iateresting and useful results, yet not so large that producing
update function once per frame. While the complexity of theseful output is too time-consuming. The separate classes
ANN increases with the complexity of the effect, the same implemented in NEAT Particles provide this constraint.

VII. DISCUSSION ANDFUTURE WORK

11

ﬁ
—
(e) M (@) (h)

Fig. 15. Evolved Particle Animations. Key frames from animations of two evolved particle systems are presented in this example. Figures (a) through (d)
depict an expanding vortex or explosion-like effect of an evolved plane system. Figures (e) through (h) depict a realistic billowing smoke cloud or explosion
effect produced by an evolved trail system. Such effects illustrate that NEAT Particles can evolve effects appropriate for graphics and games.

(® (9)

Fig. 16. Evolved Projectile Animations. Key frames of evolved single projectiles are displayed above. The projectiles are fired from the left side of the
screen towards the right side. The trailing lines mark motion over time. Figures (a) through (d) display a solid yellow projectile with a smooth curving
behavior. Figures (e) through (h) depict a spiraling projectile that changes colors. Multiple projectiles evolved within the constraints combine to form complex
weapon effects in NEAT Projectiles.

Besides intentionally evolving specific particle systems thatitomatically generated based on characteristics users prefer.
they have in mind, users can also employ the IEC approachSich a system is especially suited to multi-player virtual world
NEAT Particles as a concept generation tool. While evolvingames (e.gMassively Multiplayer Online GampMMOGS),

a specific effect, the user often generates novel, compellimywhich unique content is coveted and potentially thousands
effects that were not initially planned. Thus an additionalf players can contribute to evolutionary content within the

advantage of NEAT Particles over traditional particle systegame.

implementations is that it may act as an idea or conceptAnother promising area for future research is applying

generator. similar techniques to evolving other graphical content, such as

three dimensional models and programmable shader effects.
Future research will focus on (1) user-designation of in-

puts and outputs, decoupling particle system creation from
programming even further, and (2) evolution during a game,
while it is played, which is a most significant implication of There is an increasing need for powerful graphics and game
automated content generation. For example, consider a garoatent generation tools. Content developers require such tools
in which content such as weapons, items, spells, etc. @aeaugment and assist the slow and expensive content pipeline.

VIII. CONCLUSION

12

(m) (0)

Fig. 17. Sample Evolved Particle SystemsThe images in this figure are single animation frames from effects evolved with NEAT Particles. These images

demonstrate the variety of effects evolved through IEC.

End-users benefit from such tools because today’s games effects, the techniques are applicable to generating other types
distributed with content generation tools for users to customipégraphical and gaming content. Thus, automated content gen-
or build their own content. Additionally, there is the emergingration is a promising research direction in which evolutionary
trend of content generation as a major part of game plagmputation can significantly contribute to popular media and
itself. IEC can potentially solve this problem by providing agames.

intuitive way to easily generate complex and unique content

by user preference. REEERENCES
NEAT Particles and NEAT Projectiles demonstrate how
P. Stiff, “Special effects cost studios big bucksDigital Spy

.pamCIe_SyStem effects for graphlcs and video ga_mes can lyé 2006. [Online]. Available] http://www.digitalspy.co.uk/movies/a33092/
interactively evolved through user preference. In this approach, special-effects-cost-studios-big-bucks.html/
particle systems are represented by ANNs, the ANNs arfg] B. Lomborg, “These holywood special effects may cost

evolved by NEAT, and an IEC interface enables the user to the world 15 ftrllion Telegraph.co.uk 2004. [Online]. Avail-
! able: http://www.telegraph.co.uk/opinion/main.jhtml?xmli=/opinion/

guide evolution. By replacing the complex, hand-coded rules 3004/05/09/do0903 xmi&sSheet=/portal/2004/05/09/ixportal.html/
of traditional particle systems with ANNs, the dependencés] V. Software, “Source engine sdk,” 2007. [Online]. Available:
; http://developer.valvesoftware.com/wiki/Maiage/
.On programmgrs to Crea.te new.effeCtS IS r_educed. The lEé%] E. Games, “Unreal engine sdk,” 2007. [Online]. Available: http:
interface provides easy, interactive exploration of the search Jiwww.unrealtechnology.com/
space and a way to discover novel effects useful to botis] I. Software, “Quake wars sdk,” 2007. [Online]. Available: http:
vel r f araphi n mina medi n n r [Iwww.idsoftware.com/
de clopers ot grap C$ and 9a g. ed 6.1’ and to end US%G? G. Entis, “Recent accomplishments and upcoming challenges for
of the content generation tools provided with such software.” j;ieractive graphics in videogames, 2007. [Online]. Available:

While the focus of this work is on evolving particle system |http://www.zcorp.com/

http://www.digitalspy.co.uk/movies/a33092/special-effects-cost-studios-big-bucks.html/
http://www.digitalspy.co.uk/movies/a33092/special-effects-cost-studios-big-bucks.html/
http://www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/2004/05/09/do0903.xml&sSheet=/portal/2004/05/09/ixportal.html/
http://www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/2004/05/09/do0903.xml&sSheet=/portal/2004/05/09/ixportal.html/
http://developer.valvesoftware.com/wiki/Main_Page/
http://www.unrealtechnology.com/
http://www.unrealtechnology.com/
http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.zcorp.com/

13

(j)
- \
(m) (n) (0) ()

Fig. 18. Sample Evolved Projectile SystemsSingle animation frames are shown of evolved NEAT Projectile systems fired from the left side of the screen
toward targets on the right. The trailing lines plot motion over time. These images demonstrate the variety of weapon behaviors evolved by NEAT Projectiles.

(b)

Fig. 19. Traditional Particle System Comparison To compare IEC-generated particle systems to traditional ones, two hand-coded particle emitters were
implemented within the same renderer as NEAT Particles. The expanding ring emitter (a) supports explosion effects and the simple ring emitter (b) can convey
a variety of magical and force effects. Both systems display similar visual quality to NEAT Particles. However, they are capable of comparatively much less
behavioral complexity. This example demonstrates the dependence on math and programming of traditional particle system implementations.

14

(@) (b)

Fig. 20. Tsuneto’s IEC Fireworks [51])). In this IEC fireworks application, users evolve combinations of real-world fireworks properties such as size,
powder type, explosive payload, etc., through repeated selection. This exemplifies evolving the variables of a rule system, whereas in NEAT Particles the rules
themselves are evolved.

™

(e)
Fig. 21. User-Evolved Particle Effects The images in this figure depict effects evolved with NEAT Particles by participants in the user study. The variety
and complexity of these examples demonstrate that the IEC approach of NEAT Particles enables users to quickly evolve compelling particle system effects.

(@)

[7] J. Lander, “The ocean spray in your fac&ame Developer Magazine GRAPH/Eurographics Symposium on Computer Animatkg03, pp.

pp. 13-20, July 1997.

154-159.

[8] J.V.der Berg, “Building an advanced particle syste@ame Developer [17] C. Reynolds, “Steering behaviors of autonomous characters?rin
Magazine pp. 44-50, March 2000. ceedings of the Game Developers Confered®89, pp. 763-782.

[9] K. O. Stanley and R. Miikkulainen, “Evolving neural networks throughj18] ——, “Flocks, herds, and schools: A distributed behavioral model,” in
augmenting topologiesEvolutionary Computationvol. 10, pp. 99-127, Proceedings of the 14th Annual Conference on Computer Graphics and
2002. [Online]. Available: http://nn.cs.utexas.edu/keyword?stanley:ec02 |nteractive Techniquesl987, pp. 25 — 34.

[10] —, “Competitive coevolution through evolutionary complexification,”19] H. Takagi, “Interactive evolutionary computation: Fusion of
Jour.nal of A(tlflual Intelligence Researchvol. 21, pp. 63—100, .2004' the capacites of EC optimization and human evaluation,’
[Online]. Available: http://nn.cs.utexas.edu/keyword?stanley:jair04 Proceedings of the IEEEvol. 89, no. 9, pp. 1275-1296, 2001.

[11] W. Reeves, “Particle systems: A technique for modeling a class of fuzzy [Online]. Available: |http://ieeexplore.ieee.org/iel5/5/20546/0094S485.
objects,”ACM Transactions on Computer Graphiesl. 17, no. 3, pp. pdf?tp=&arnumber=949485&isnumber=20546

[12] o1 - 128 198_3' ‘ d babilistic alaorith ¢ hadi d [20] R. Dawkins,The Blind Watchmaker. Essex, U.K.: Longman, 1986.
——, “Approximate and probabilistic algorithms for shading and ren : :
dering structured particle systems¥CM Transactions on Computer [21] Eélfrggnanlcgs\)/\g LathanEvolutionary Design by ComputersMorgan
Graphics vol. 19, no. 3, pp. 313 — 322, 1985. ST . . .

[13] D. Breen, “A particle based model for simulating draping behavior 4122] T. Unemi, _Geneuc algquthms ‘and computer graphic ardsfimal of
woven cloth,” Textile Research Journavol. 64, no. 11, pp. 663—685, Japap Spuety forArt'|f|C|aI Intelligenc¢eol. 9, r?o. 4, pp. 518—5?3, 1994.
1994. [23] H. Nishino, H. Takagi, S. Cho, and K. Utsumiya, “A 3d modeling system

[14] B. Eberhardt, A. Weber, and W. Strasser, “A fast, flexible, particle- for creative Fje5|gn,”||Prqceed|ngs of the 15th International Conference
system model for cloth drapingJEEE Transactions on Computer on Information Networking2001, pp. 479-487.

Graphics and Applicationsvol. 16, no. 5, 1996. 24] P. Husbgnds, G Jenny, M. Mcllhagga,_and R. Ives, “T_No applications

[15] D. Obrien, S. Fisher, and M. Lin, “Automatic simplification of particle of genetic algorithms to component desigh¢cture Notes in Computer
system dynamics,” ifProceedings of the 14th Conference on Computer ~ Sciencevol. 1143, pp. 50-62, 1996.

Animation 2001, pp. 210-257. [25] M. Fagerlund, “DelphiNEAT-based genetic art homepage,” http://vww.

[16] M. Muller, D. Charypar, and M. Gross, “Particle-based fluid simulation [cambrianlabs.com/mattias/GeneticArt/, 2005.

for interactive applications,” irProceedings of the 2003 ACM SIG-[26]

A. Lindenmayer, “Mathematical models for cellular interaction in de-

http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://ieeexplore.ieee.org/iel5/5/20546/00949485.pdf?tp=&arnumber=949485&isnumber=20546
http://ieeexplore.ieee.org/iel5/5/20546/00949485.pdf?tp=&arnumber=949485&isnumber=20546
http://www.cambrianlabs.com/mattias/GeneticArt/
http://www.cambrianlabs.com/mattias/GeneticArt/

[27]
(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

velopment parts | and Il,Journal of Theoretical Biologyvol. 18, pp.
280-299 and 300-315, 1968.

H. Nishino, H. Takagi, S. Cho, and K. Utsumiya, “A 3d modeling system
for creative design,” vol. 100, no. 461, pp. 1-8, 2000.

——, “A digital prototyping sytem for designing novel 3d geometries,”
pp. 473-482, October 2000.

K. O. Stanley, “Exploiting regularity without development,” Rroceed-
ings of the AAAI Fall Symposium on Developmental Systeritenlo
Park, CA: AAAI Press, 2006.

——, “Compositional pattern producing networks: A novel abstraction
of development,Genetic Programming and Evolvable Machines Special
Issue on Developmental Systempp. 131 — 162, 2007.
F. Gomez and R. Miikkulainen, “Solving non-Markovian control tasks;
with neuroevolution,” inProceedings of the 16th International Joint
Conference on Artificial Intelligence San Francisco: Kaufmann, 1999,
pp. 1356-1361. [Online]. Available: http://nn.cs.utexas.edu/keywor(
gomez:ijcai99

N. Saravanan and D. B. Fogel, “Evolving neural control systete£E :
Expert pp. 23-27, June 1995.]
A. Wieland, “Evolving neural network controllers for unstable systems!
in Proceedings of the International Joint Conference on Neural Networl i
(Seattle, WA). Piscataway, NJ: IEEE, 1991, pp. 667—673.

15

[51] C. Tsuneto, “A fireworks animation support system using interactive
evolutionary computation,” Master’s thesis, Kyushu Institute of Design,
2002.

Erin J. Hastings is currently pursuing a Ph.D. at
the University of Central Florida. He earned a B.S.
in Computer Science from University of Florida
in 2001 and an M.S. in Computer Science from
University of Central Florida in 2004.

His research interests include evolutionary com-
putation, interactive evolution, neural networks,
graphical content generation, particle systems, col-
lision detection, and range monitoring. He has re-
cently published papers in the IEEE Symposium on
Computational Intelligence and Games, the ICST

H. Braun and J. Weisbrod, “Evolving feedforward neural networks,” ifnternational Conference on Testbeds and Research Infrastructures for the
Proceedings of ANNGA93, International Conference on Artificial Neurdpevelopment of Networks & Communities, and the SCS Summer Computer

Networks and Genetic AlgorithmsBerlin: Springer, 1993.
J. C. F. Pujol and R. Poli, “Evolution of the topology and the weights
of neural networks using genetic programming with a dual represen-
tation,” School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, UK, Tech. Rep. CSRP-97-7, 1997.

J. C. Bongard and R. Pfeifer, “Repeated structure and dissociation
of genotypic and phenotypic complexity in artificial ontogeny,” in
Proceedings of the Genetic and Evolutionary Computation Conference
L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, an
E. Burke, Eds. San Francisco: Kaufmann, 2001, pp. 829-8
[Online]. Available: http://www-illigal.ge.uiuc.edu:8080/gecco-2001/
F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellul
encoding and direct encoding for genetic neural networksGémetic
Programming 1996: Proceedings of the First Annual ConferedcedR.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Cambridg
MA: MIT Press, 1996, pp. 81-89. -1
B.-T. Zhang and H. Muhlenbein, “Evolving optimal neural networks'lr

using genetic algorithms with Occam’s razagdmplex Systemsol. 7,

pp. 199-220, 1993. .

D. W. Opitz and J. W. Shavlik, “Connectionist theory refinement?he State of Florida.
Genetically searching the space of network topologidsirnal of
Artificial Intelligence Researchvol. 6, pp. 177-209, 1997.

X. Yao, “Evolving artificial neural networks,Proceedings of the IEEE
vol. 87, no. 9, pp. 1423-1447, 1999.

R. S. Sutton and A. G. Bart®einforcement Learning: An Introduction
Cambridge, MA: MIT Press, 1998.

N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimization,Neural computing and applications
vol. 1, no. 1, pp. 67-90, 1993.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networkSEE Transactions
on Neural Networksvol. 5, pp. 54-65, 1993.

M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary a
temporal difference methods in a reinforcement learning domain,”
GECCO 2006: Proceedings of the Genetic and Evolutionary Comput
tion ConferenceJuly 2006, pp. 1321-1328.
K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo
lution in the NERO video game JEEE Transactions on Evolutionary
Computation Special Issue on Evolutionary Computation and Gamg
vol. 9, no. 6, pp. 653-668, 2005.
H. Ferstl, “SharpNEAT-based genetic art homepage,” http://www.c5.u(
edu/~ kstanley/GenArt.zip, 2006.

Simulation Conference.

Ratan K. Guha received the B.S. degree with hon-
ors in Mathematics and the M.S. degree in Applied
Mathematics from the University of Calcutta. He
received the Ph.D. degree in Computer Science from
the University of Texas at Austin in 1970.

He is a Professor of Computer Science at the
University of Central Florida, Orlando. His research
interests include distributed systems, networks, secu-
rity protocols, modeling, simulation, and graphics.
His research has been supported by grants from
ARO, NSF, STRICOM, PM-TRADE, NASA, and

Dr. Guha is a member of ACM, IEEE, SCS, and served on the Board
of Directors of SCS. He is currently serving on the editorial board for the
International Journal of Internet Technology and Secured Transactions and
the editorial board for Modelling and Simulation in Engineering.

Kenneth O. Stanley received the B.S.E. degree
magna cum laudén computer science engineering
and a minor in cognitive science from the University
of Pennsylvania, Philadelphia, in 1997, and the M.S.
degree in computer science and the Ph.D. degree
from the University of Texas at Austin (UT-Austin),
in 1999 and 2004, respectively.

He is an Assistant Professor in the School of Elec-
trical Engineering and Computer Science, University
of Central Florida. He has published papers in JAIR,
Evolutionary Computation, and Artificial Life jour-

G. Cybenko, “Approximation by superpositions of a sigmoidal function,hals. His research focuses on evolutionary algorithms and complexity.

Mathematics of Control, Signals, and Systerd. 2, no. 4, pp. 303—
314, 1989.

Dr. Stanley is a member of AAAI. He has won Best Paper Awards at the
2002 Genetic and Evolutionary Computation Conference, for his work on

A. Fernandes, “Lighthouse 3d billboarding tutorial,” 2006. [Online] NEAT, and at the IEEE 2005 Symposium on Computational Intelligence and

Available:| http://www.lighthouse3d.com/opengl/billboarding/

F. D. Luna,3D Game Programming with Direct X 9.0 Wordware,
2003.

L. Latta, “Building a million particle system,” ifProceedings of Game
Developers Conferenc@004.

Games, for his work on NERO.

http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://www-illigal.ge.uiuc.edu:8080/gecco-2001/
http://www.cs.ucf.edu/~kstanley/GenArt.zip
http://www.cs.ucf.edu/~kstanley/GenArt.zip
http://www.lighthouse3d.com/opengl/billboarding/

	Introduction
	Background
	Particle Systems
	Interactive Evolutionary Computation (IEC)
	NeuroEvolution of Augmenting Topologies

	Approach - NEAT Particles
	Particle System Representation
	Artificial Neural Network Implementation
	Activation Functions
	Physics
	Rendering
	Evolution

	NEAT Projectiles
	Projectile Classes
	Projectile Constraint
	Projectile ANNs

	Experimental Results
	Comparisons
	User Study

	Performance
	Discussion and Future Work
	Conclusion
	References
	Biographies
	Erin J. Hastings
	Ratan K. Guha
	Kenneth O. Stanley

