
Evolving Content in the Galactic Arms Race Video Game
In: Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG09). Piscataway, NJ:IEEE

Winner of the Best Paper award at CIG-2009

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley

Abstract— Video game content includes the levels, models,
items, weapons, and other objects encountered and wielded by
players during the game. In most modern video games, the set
of content shipped with the game is static and unchanging,
or at best, randomized within a narrow set of parameters.
However, ideally, if game content could be constantly renewed,
players would remain engaged longer in the evolving stream of
novel content. To realize this ambition, this paper introduces
the content-generating NeuroEvolution of Augmenting Topolo-
gies (cgNEAT) algorithm, which automatically evolves game
content based on player preferences, as the game is played.
To demonstrate this approach, the Galactic Arms Race (GAR)
video game is also introduced. In GAR, players pilot space ships
and fight enemies to acquire unique particle system weapons
that are evolved by the game. As shown in this paper, players
can discover a wide variety of content that is not only novel,
but also based on and extended from previous content that they
preferred in the past. The implication is that it is now possible to
create games that generate their own content to satisfy players,
potentially significantly reducing the cost of content creation
and increasing the replay value of games.

I. I NTRODUCTION

Creating the models, levels, textures, and other content that
players encounter and possess in games is time-consuming
and expensive [1], [2]. In part to address this problem and to
provide additional replay value, it is increasingly popular for
developers to distribute tools that enable players to create
their own content [3], [4] or to randomize content (e.g.
random map generators). However, content creation tools
usually require significant effort to master and specialized
knowledge beyond that of most players. Moreover, ran-
domization only works if it is tightly constrained to avoid
generating undesirable content, and provides no means to
deduce the kind of content that players prefer. Thus a more
intriguing potential solution is to automatically generate
content during the game, as it is played, based on actual
player behavior.

To make such content generation possible, this paper intro-
duces thecontent-generating NeuroEvolution of Augmenting
Topologies(cgNEAT) algorithm, which automatically gener-
ates content for video games and simulations. This approach
creates new content in real time through an evolutionary
algorithm based on the content players liked in the past.

To show that automatic content generation is genuinely
possible, cgNEAT is implemented in this paper in a novel
video game called Galactic Arms Race (GAR). In GAR,

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley are with
the School of Electrical Engineering and Computer Science. University
of Central Florida, Orlando, FL 32816. email:{hastings, guha,
kstanley }@eecs.ucf.edu.

compositional pattern producing networks(CPPNs), which
are a variant of artificial neural network (ANNs), genetically
encode and control particle system weapons. The CPPNs
evolve and increase in complexity though cgNEAT, which
tracks which weapons players fire the most. That way,
during the game, weapon behavior becomes increasingly
sophisticated while consistently evolving to suit player tastes.
In this way, it is theplayer rather than the designer who
ultimately implicitly determines what kind of content will
populate the game.

The main result is that players discover a wide variety
of content that is not only novel, but also based on and
extended from previous content that they liked in the past,
which makes this approach superior to simple content ran-
domization. Moreover, for developers, it means that it is
possible to produce games and simulations that create their
own content to satisfy users, impacting both the production
cost and longevity of future such games. While the evolved
content in GAR is the weapons, in principle cgNEAT can
evolve any class of content in the same way, opening up an
exciting new direction in video game design.

II. BACKGROUND

This section first reviews existing video games that rely
in part on machine learning. Next, related research on
automatic content generation for games is presented. Third,
NEAT and CPPNs, which are major components of cgNEAT,
are detailed. Finally, because particle system weapons are
automatically evolved by cgNEAT in GAR, prior work in
evolving particle systems is discussed.

A. Machine Learning in Commercial Games

The impact of machine learning so far on the video
game industry has been limited, although some games are
beginning to incorporate learning techniques. However, con-
tent generation continues to be absent from applications of
machine learning in commercial games. The most common
application of machine learning is to optimize the policy
that controls non-player characters (NPCs) (figure 1). For
example, the ANN race car controllers Colin McRae Rally
2.01 and Forza Motorsport 22 and the creature brains in
Creatures 33 and Black and White 24 are learned. Generally,

1Copyright 2001 Codemasters, http://www.codemasters.com/
2Copyright 2007 Microsoft Game Studios, http://forzamotorsport.net/
3Copyright 2004 Creature Labs, http://www.gamewaredevelopment.co.uk/
4Copyright 2005 Lionhead Studios, http://www.lionhead.com/



(a) (b) (c) (d) (e)
Fig. 1. Evolving NPC Behavior in Existing Games. Learned policies enable race car controllers to navigate tracks with complex physics in (a) Colin
McRae Rally 2.0 and (b) Forza Motorsport 2. Learned policies also control decision making for a variety of characters in (c) Creatures 3 and (d) Black
and White 2. In (e) NERO [5], players evolve a squad of virtual soldiers to fight other players. NERO introduced rtNEAT, which demonstrated the viability
of NPC evolution in real time. Building on the success of these games, cgNEAT aims to evolve other forms of game content, outside of NPC behavior.

the NPC behavior in such games is trained by develop-
ers before release. Recently, although it is not a commer-
cial game, NeuroEvolving Robotic Operatives (NERO [5];
http://nerogame.org/) enabled players to evolve the tactics
for a squad of virtual soldiers in real-time, while the game
is played, demonstrating the potential viability of evolution
to commercial gaming.

The success of learning algorithms in these games suggests
the potential to apply learning to create content beyond NPC
behavior, as discussed in the next section. In fact, automat-
ically generating content could further open the video game
industry to the possibilities created by machine learning.

B. Evolving Game Content

Evolving game content is an emerging research area with
great potential to contribute to the mainstream gaming indus-
try. Two of the few current examples of evolved game content
include race tracks [6] and even the rules of the game itself
[7]. These investigations thus represent the cutting edge of an
exciting new research direction. However, in these examples
content is evolvedoutside the game; there currently exists
no game (and thus no comparable algorithm to cgNEAT)
that evolves novel content based on usage statistics as the
game is played. The aim of cgNEAT is thus to evolve such
content in real time, based on tracked player preferences, and
seamlessly introduce the newly generated content into the
game. The cgNEAT method represents content with CPPNs
evolved by NEAT, both of which are discussed next.

C. NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method was originally developed to solve
control and sequential decision tasks. The ANNs evolved
with NEAT control agents that select actions based on their
sensory inputs. While previous methods that evolved ANNs
(i.e. neuroevolution methods) evolved either fixed topology
networks [8], [9], or arbitrary random-topology networks
[10], [11], [12], NEAT begins evolution with a population
of small, simple networks andcomplexifiesthe network
topology into diverse species over generations, leading to
increasingly sophisticated behavior. A similar process of
gradually adding new genes has been confirmed in natural
evolution [13], [14] and shown to improve adaptation in
a few prior evolutionary [15] and neuroevolutionary [16]
approaches. This section briefly reviews the NEAT method;

Stanley and Miikkulainen [5], [17] provide complete intro-
ductions.

To keep track of which gene is which while new genes are
added, ahistorical markingis uniquely assigned to each new
structural component. During crossover, genes with the same
historical markings are aligned, producing meaningful off-
spring efficiently. Traditionally, speciation in NEAT protects
new structural innovations by reducing competition between
differing structures and network complexities. However, in
this work, because a human performs selection rather than an
automated process, the usual speciation procedure in NEAT
is unnecessary.

Most importantly, complexification, which resembles how
genes are added over the course of natural evolution [13], al-
lows NEAT to establish high-level features early in evolution
and then later elaborate on them. For evolving content, com-
plexification means that content can become more elaborate
and intricate over generations.

In this paper, particle system weapons are controlled by
ANNs evolved by NEAT. NEAT is chosen because (1) it is
proven effective for evolving ANNs in a diversity of domains
[17], [18], [19], [20], and (2) it is fast enough to run in real
time (in the NERO video game [5]), which is required for
an interactive system. Because NEAT is a strong method
for evolving controllers for dynamic physical systems, it can
naturally be extended to evolve the motion of particle effects
as well, such as those featured in GAR.

The next section explains CPPNs, which are the special
variant of ANNs evolved by NEAT in GAR.

D. Compositional Pattern Producing Networks (CPPNs)

Compositional pattern-producing networks (CPPNs) are a
variation of artificial neural networks (ANNs) that differ in
their set of activation functions and how they are applied
[21], [22]. While CPPNs are similar to ANNs, the different
terminology originated because CPPNs were introduced as
pattern-generators rather than as controllers. This section
explains the difference in implementation and application
between CPPNs and ANNs.

Whereas ANNs often contain only sigmoid or Gaussian
activation functions, CPPNs can include both such functions
and many others. The choice of CPPN functions can be
biased toward specific patterns or regularities. For example,
periodic functions such as sine produce segmented patterns



with repetitions, while symmetric functions such as Gaus-
sian produce symmetric patterns. Linear functions can be
employed to produce patterns with straight lines. In this way,
CPPN-based systems can be biased toward desired types of
patterns by carefully selecting the set of available activation
functions.

Additionally, unlike typical ANNs, CPPNs are usually
applied across a broad space of possible inputs so that
they can represent a complete image or pattern. Because
they are compositions of functions, CPPNs in effect encode
patterns at infinite resolution and can be sampled at whatever
resolution is desired.

Successful CPPN-based applications such as Picbreeder
[19], in which users from around the Internet collaborate to
evolve pictures, and NEAT Drummer [23], which evolves
drum track patterns to accompany songs, demonstrate that
CPPNs can evolve diverse content. The approach in this pa-
per evolves particle systems encoded by CPPNs, as discussed
next.

E. Evolving Particle Systems

Particle systems are ubiquitous in computer graphics for
producing non-solid, or “fuzzy,” phenomena such as fire,
smoke, water, cloth, explosions, magic, electricity, and many
others [24], [25]. Particle systems are usually defined by (1)
a set of points in space and (2) a set of rules guiding their
behavior and appearance, e.g. velocity, color, size, shape,
transparency, rotation, etc. Such rule sets can be complex
and are usually hand-coded. Therefore, evolving particle
system behavior is a suitable domain for investigating content
generation technology.

The approach in this paper is built upon NEAT Particles,
a general-purpose particle effect evolver, and NEAT Pro-
jectiles, which is specialized for evolving particle weapon
effects intended for video games [26]. Both systems evolve
CPPNs with NEAT to control the motion and appearance
of particles. GAR embeds this technique into the game
through cgNEAT, an automatic content generation algorithm,
introduced in the next section.

III. C ONTENT-GENERATING NEAT (CGNEAT)

The aim of the cgNEAT algorithm is to automatically
generate computer graphics and video game content based
on user behavior as the game is played. It represents a
step beyond constrained randomization. While there are
technologies for evolving content like pictures [19] or limited
types of three-dimensional models [27], these technologies
are not designed to work in real-time during a game; rather
they require users to explicitly designate which items are the
best, which is something that a user playing a game should
not have to do. That is, constantly answering questions
about what they like and what should be produced in the
future would disrupt players’ experience. In contrast, the
cgNEAT method makes these decisions automatically based
on implicit information within usage statistics.

The main principles of cgNEAT are as follows:

1) Each content item is represented by a CPPN. Different
types of content can be represented by different CPPN
input/output configurations (the specific representation
for particle weapons is described later). In principle,
a different representation than CPPNs can also be
evolved.

2) During the game, each content item is assigned a
fitness that is computed based on how often players
actually use the content. That way, the system knows
the relative popularity of each content item currently
in the game.

3) Content is spawned in the game world, which means
that it is placed in parts of the world where users can
get it. However, unlike in most evolutionary systems,
spawned content is not eligible for reproduction until
players pick it up.

4) Content is reproduced in cgNEAT as follows: The
algorithm selects content items from among content
that players in the worldalready possessas parents that
reproduce to form new content, which is spawned as
described in step 3. The content items that are chosen
as parents are selected probabilistically based on a
roulette wheel scheme in which the chance of being
chosen as a parent is proportional to the popularity (i.e.
fitness) of the item. Reproduction, including mutation
and crossover, is performed in accordance with the
NEAT algorithm. Thus, there is a chance that CPPNs
may become more complex than their parents.

5) For any new content that is spawned, there is a
probability (selected by the designer) that it will be
chosen from aspawning pool, which is a collection
of pre-evolved content, instead of being reproduced
from parents. This pool ensures that diversity is not
lost and that good types of content from the past (i.e.
those that users liked) might reappear. Additionally, it
ensures an initial seed of good content when the game
first starts and players’ preferences are unknown. The
game designers initially select content, which may be
pre-evolved before the game is released, to put into the
spawning pool.

The cgNEAT algorithm incorporates some mechanics of
NEAT and standard evolutionary computation (EC), yet
exhibits several major differences. Unlike in normal EC,
the population size (i.e. those items that are eligible at any
given time to reproduce) is variable and depends entirely
on the number of users in the system. Furthermore, when
an offspring is produced, unlike in normal evolutionary
computation, it is not immediately placed into the population
eligible to reproduce. Instead, it is in a special temporary
state (placed somewhere in game world) in which it may join
the population only if a player chooses to acquire it. Also
unlike normal evolutionary computation, instead of fitness
determining which items are eliminated from the population,
users entirely determine which items leave the population
simply by discarding them.

Unlike standard interactive evolutionary computation (IEC



Fig. 2. Galactic Arms Race. Players in GAR pilot their space ship (screen
center) from a third person perspective. This picture demonstrates a player
destroying enemies with an evolved corkscrew-shaped weapon. Left of the
player ship is a weapon pickup dropped from a destroyed enemy base.
A particle system preview emits from the weapon pickup (i.e. “neuralium
isotope,” left of player) to visually indicate how the weapon will function
before the player picks it up. GAR is designed to look and feel like a near-
commercial quality video game to effectively demonstrate the potential of
automatic content generation in mainstream games.

[28]), users never explicitly communicate to the system
which content they like. Instead, the preferred content is de-
duced by the system implicitly from natural human behavior.
That is, users do not need to know that they are interacting
with an evolutionary algorithm yet evolution still works
anyway. Unlike regular NEAT, speciation is not necessary
because users determine what is popular and the diversity
of the population reflects the diversity of user preferences.
Finally, every step of the cgNEAT algorithm is asynchronous.
At any time players may cause content to join the population
or be eliminated.

The next section details how cgNEAT is applied in practice
to evolving weapons in the Galactic Arms Race video game.

IV. GALACTIC ARMS RACE (GAR)

In GAR (figure 2), the goal is to pilot a space ship to defeat
enemies, gain experience, earn money, and most importantly,
to find advantageous new weapons that are automatically
generated by cgNEAT. GAR is intentionally designed to look
and feel like a near-commercial quality video game so that
it can convincingly demonstrate the promise of automatic
content generation for mainstream games. To reach that level
of quality, it took over a year to build by a nine-member
mostly student team.

GAR is available online http://gar.eecs.ucf.edu. The game
is a full multiplayer Internet platform in which servers evolve
weapons based on the aggregate usage of all players online.
However, this initial paper focuses on GAR’s single-player
mode, in which evolution is directed by the actions of a single
player battling NPC aliens in the game, which are controlled
by scripted steering behaviors [29] and the BOIDS algorithm
[30].

Every weapon found in GAR is unique and players can
continually find novel weapons with characteristics evolved

from those weapons players favored in the past. It is impor-
tant to note that weapons evolved in GAR all fire particle
bursts with the same strength and number. Thus it is not
sheer power that is evolving, but rather the pattern in which
particles spray from the gun, which has complex tactical
implications. Therefore, the space of weapons is not a total
order from worst to best, but rather a complex multi-objective
coevolutionary landscape.

Players are limited to threeweapon slots, each of which
holds a single weapon. Destroyed enemies and enemy bases
may drop aweapon pickupthat contains a novel weapon
evolved by cgNEAT. Players choose in which weapon slot
to place the new weapon, but doing so discards the existing
weapon in that slot. Thus players must be selective about
which weapons to keep. In this context, an important goal for
any game that generates unpredictable content is to indicate
what that content will be like before it is taken. To give
players an idea of how a weapon functions before picking it
up, weapon pickups emit a miniature particle system preview
that behaves exactly as the actual weapon does. In the game
this preview is called aneuralium isotope(figure 2, left side).

The remainder of this section details the integration of
cgNEAT in GAR, including (1) CPPN representation, (2)
calculating weapon fitness, (3) evolving new weapons, and
(4) starter weapons and the spawning pool.

A. Particle System Weapon CPPNs

Particle system CPPNs in GAR are based on the tech-
niques developed in NEAT Particles and NEAT Projectiles
[26]. Each player weapon contains a single evolved CPPN
(figure 3). Every frame of animation, each particle issued
from the weapon inputs its current position relative to the
ship (px, pz) and distance from the ship(dc) into the CPPN.
There are two, rather than three, spatial inputs because the
game is entirely situated on they = 0 plane. The CPPN
is activated and outputs the particle’s velocity(vx, vz) and
color (r, g, b) for that animation frame. Representing particle
velocity and color in this manner produces a wide of variety
of vivid patterns [26].

B. Calculating Weapon Fitness

Because it would disrupt the gameplay experience to query
the player’s opinion of every piece of content, weapon fitness
is automatically calculated based on usage statistics. Players
possess up to three weapons at one time. When a player
fires a weapon, that weapon (which is a unique member
of the population) gains fitness at a constant rate and the
other weapons in that player’s arsenal lose fitness at the same
rate. There is no maximum fitness and the minimum fitness
is 1.0. Thisfitness decaymechanism for unused weapons
emphasizes emerging new weapon trends.

C. Evolving New Weapons

When players destroy an enemy base or a boss enemy, a
new weapon is spawned either through reproduction within
the current population or from the spawning pool. Any novel
weapon created by cgNEAT is evolved from the current



(a)

p
x

p
z

d
c bias

v
x

v
z

r g b

hidden nodes
(topology evolved by cgNEAT)

(b)
Fig. 3. How CPPNs Represent Particle Weapons. (a) Each frame of
animation, each particle separately inputs the position(px, pz) and distance
(dc) from where it wasinitially fired into the CPPN (py is ignored because
the game is situated entirely on they = 0 plane). (b) The CPPN is activated
and particle velocity(vx, vz) and color(r, g, b) are obtained from CPPN
outputs. This method provides GAR with smooth particle animations and a
wide variety of possible evolved weapons.

weapon population. In single-player GAR, the weapon pop-
ulation is only the three weapons the player currently holds.
In multi-player GAR, the weapon population includes the
weapons currently held by all players. Thus single-player
evolution is to some extent greedy; however, it is not equiv-
alent to a normal evolutionary algorithm with a population
of three because the player encounters a significant number
of weapon previewsin addition to the weapons in the ship’s
current arsenal. Therefore, the player is in effect judging such
previews by taking them or not. Furthermore, the spawning
pool ensures a diverse set of jumping-off points are injected
at regular intervals. As results in this paper show, the net
effect is that a single player can genuinely discover a diverse
array of highly specialized and effective weapons.

The roulette method, based on weapon fitness, decides
which weapon reproduces. Figure 4 illustrates weapon evo-
lution in GAR with two genealogies of related weapons.

D. Starter Weapons and the Spawning Pool

When the game begins players have no history of weapon
preference. One possible policy is to initially give players
three random weapons. However, such randomization could
cause new players to receive three undesirable weapons.

A better solution is for players to begin the game with
a predefined set ofstarter weapons. The starter weapons
in GAR (1) shoot only in a straight line, and (2) are not
eligible to reproduce during evolution. Thus, new players
are guaranteed to begin with viable weapons.

Because starter weapons cannot reproduce and players
begin the game with only starter weapons, a method is
needed to start evolution. For this purpose, thespawning pool
is a diverse collection of good weapons evolved by the game
developers. If cgNEAT selects a starter weapon to reproduce
because it is fired often, a random spawning pool weapon is
spawned instead. The advantages of the spawning pool are
(1) it jump starts evolution at the beginning of the game and
(2) it enables developers to influence what weapons players
will see early on, which is a critical time to make a good first
impression on players. The spawning pool can also serve as a
hall of fame, to which popular weapons are retired, possibly
reappearing later in game.

The next section describes the experience of weapon
evolution in the game and presents examples of weapons
evolved by players.

V. PLAYING GAR

The aim of the experiment in this section is to determine
whether GAR can produce a convincing variety of weapons
both tactically and aesthetically. To investigate the creativity
of GAR in single-player mode, a group of ten test players
piloted space ships in separate games for at least one hour
each. The results in this section (including figure 5) are
from these test sessions. The main result is that players
indeed discovered a variety of genuinely unique weapons
with compelling tactical implications and aesthetics.

As the weapons showcased in this section will show, the
gameplay implications of evolved content sometimes seem
intentional, as if designed purposely to create a specific
capability. Thus it is important to keep in mind thatall the
weapons are entirely invented by the game itself with no
forethought by the game creators. In many cases powerful
guns were invented that were unlike anything the developers
had seen or imagined before. They often exhibit both appeal-
ing tactical and aesthetic (through changing color patterns)
qualities. Yet of course these guns are not the result of
random luck either; just as in other evolutionary algorithms,
they result from selection pressure, which is wrought by the
preferences of the player in GAR. In this way, GAR is a
credible demonstration of the potential of this approach.

In GAR it is possible for player projectiles to intercept
enemy projectiles. Therefore, several key tactical trade-offs
are explored by evolution. Slow projectiles make it easier
to block incoming fire whereas fast projectiles are easier to
aim at distant enemies. Weapons with a wide spread are
more effective at blocking incoming projectiles; however,
concentrated patterns more effectively destroy distant targets
quickly. Hybrid weapons with variable spread pattern and
speed over time evolve as well. Yet these tactical principles
are only the beginning. In fact, figure 5 presents a sample
of the wide range of generated weapons and describes some



(a) (b) (c)

(d) (e) (f)
Fig. 4. Weapon Evolution Examples. As weapons evolve over the course of the game, players are likely to find weapons with qualities similar to those
they favored in the past. In this example from actual gameplay, the player often fired a spread weapon (a). Later in the game, new spread gun variations
(b,c) evolved. Another interesting spread gun (d) fires two slower-firing outer projectiles and a fast inner projectile. Later descendants of this weapon (e,f)
exaggerated the speed difference between the inner and outer projectiles, diversified the color pattern, and modified the spread width. These examples
illustrate how cgNEAT evolves novel content based on past user preferences.

of their tactical implications. To highlight the creativity of
cgNEAT, we have assigned descriptive names to each such
gun to help to more easily appreciate their concept. Two
especially interesting evolved weapon types arewallmakers
(figure 5j,k), which literally create a wall of particles in
front of the player, andtunnelmakers(figure 5h,l), which
create a line of particles on either side of the player.
Both weapon types are defense-oriented, enabling players to
switch between them and more offense-oriented weapons, as
the tactical situation dictates. Most importantly, the authors
had never conceived of such guns, yet cgNEAT invented
them. These examples demonstrate that cgNEAT evolves
unique and tactically diverse weapons as the game is played.

Finally, it is important to point out that it does not take
long for players to begin to find effective weapons. As figure
5 shows, compelling weapons often arise within the first ten
generations (e.g. thetunnelmakeris from generation two).
Furthermore, weapons continue to evolve into novel forms
over dozens of generations, such as theblue ladder(figure
5f) from generation 42.

The next section discusses implications and other possible
applications of cgNEAT.

VI. D ISCUSSION ANDFUTURE WORK

GAR demonstrates that automatic content generation is a
viable new technology. The main application is in simulations
and games wherein the designers want users to be able to
discover and experience a continual stream of new content
beyond what the original artists and programmers are able
to provide. For players the main implication is a new kind

of experience in which not only is novelty a constant, but
the pursuit of novelty itself is an integral part of the game.
In fact, players informally indicated enjoying the consistent
satisfaction of novel discovery. For some game designers, this
loss of control will be viewed as a risky sacrifice; yet others
will see it for its potential, just as any new frontier opens
up an unknown world of possibilities. In fact, the interactive
evolutionary dynamic automatically creates a kind of implicit
game balance because, as soon as a player acquires a weapon
that tips the equilibrium, variants of that weapon become
available to other players in proportion to its use, thereby
continually balancing the game.

In addition to weapons, a wide variety of other game
content could potentially be generated by cgNEAT including
two-dimensional textures, three-dimensional models, other
types of particle effects, and programmable shader effects.
Video games that automatically generate their own content
(e.g. characters, clothing, weapons, houses, vehicles, music,
special effects, etc.) could keep players engaged much longer
in such a constantly evolving game world than in a static one.
Thus the potential future applications are broad.

At the time of this publication, GAR has recently
been released as a multiplayer Internet game. While
the single player results in this paper demonstrate the
promise of the idea, full-blown multiplayer evolution
on persistent servers can yield a significantly broader
explosion of content. Furthermore, the tactical implications
of human players fightingeach other (instead of robotic
enemies) with a constantly changing arsenal promises
to produce a coevolutionary effect heretofore never



(a) Multispeed (7 gens) (b) Ultrawide (13 gens) (c) Three Prong (3 gens)

(d) Corkscrew (3 gens) (e) Yellow Ladder (35 gens) (f) Blue Ladder (42 gens)

(g) Double Bolt (12 gens) (h) Trident (2 gens) (i) Subatomic Heat (9 gens)

(j) Wallmaker (14 gens) (k) Double Wallmaker (15 gens) (l) Tunnelmaker (2 gens)
Fig. 5. Weapons Evolved During Gameplay. GAR players discovered many useful and aesthetically pleasing weapons. The number of generations of
reproduction taken to evolve each weapon is shown next to its name. Themultispeed(a) fires two slow outer projectiles, which are useful for blocking
incoming enemy fire, and a fast center projectile for quickly striking distant targets. Theultrawide (b) andthree prong(c) emit wide particle patterns that
are effective for fighting many enemies at once. Thecorkscrew(d) emits a pattern that is initially wide, for blocking, but later converges for concentrated
damage at a distance. Two version of theladder gun(e,f) fire a wide wave-like pattern that can swivel around obstacles like asteroids. Thedouble bolt(g)
demonstrates that weapons similar to those in typical space shooters can evolve. Thetrident (h) launches a single projectile forward and two perpendicular
projectiles that can block enemy fire from the sides.Subatomic heat(i) fires a chaotic multi-colored stream resembling bouncing subatomic particles. Two
types ofwallmaker(j,k) literally create defensive walls of particles in front the player. Thetunnelmaker(l) creates a defensive line of particles as well, but
on both sides of the player, yielding a defensive sheath. These results demonstrate the ability of cgNEAT to generate a tactically and aesthetically diverse
and genuinely useful array of weapons. Furthermore, useful weapons appear in early generation and continue to elaborate over successive generations.



experienced in video games. Already, the GAR client
has been downloaded over 8,500 times, appeared
on several Internet news sites includingSlashdot
(http://games.slashdot.org/story/09/07/08/1419242/Experimental-Video-

Game-Evolves-Its-Own-Content), and over 1,000 players have
registered with the 32-player official server run by our
research group. A broad array of evolutionary statistics are
being collected from the server and will be reported in
future publications.

VII. C ONCLUSION

This paper presented cgNEAT, an algorithm that auto-
matically generates game content based on perceived user
preferences, as the game is played. In cgNEAT, unlike
standard evolutionary algorithms, selection for reproduction
is controlled implicitly by player behavior within the game.
That is, content players utilize often is more likely to
reproduce. The result is a constant stream of novel content
suited to players’ tastes. The first implementation of cgNEAT
was demonstrated in the single-player mode of Galactic Arms
Race, a game in which particle system weapons evolve.
The success of GAR suggests the potential of cgNEAT,
and automatic content generation in general, to generate a
myriad of other types of content. For players, such a novel
content stream can potentially significantly increase game
replay value, keeping players engaged in the evolving world.
For the game industry, it means that it is possible to build
games that automatically create their own content to satisfy
users, possibly impacting the way games are made.

ACKNOWLEDGMENTS

Special thanks to the GAR volunteer team: Nathan Sri-
boonlue (NPC control), Jaruwan Mesit (soft-body models),
Fabian Moncada (music and sound effects), John Mar-
tin (additional design and testing), Derrick Janssen (ad-
ditional design), Kristen Martin (additional database pro-
gramming), Eric Isles (additional music and sound ef-
fects), Gordon Hart (additional music), Jonathan “Zarcath”
Chan (additional design), FourTwoOmega (additional mu-
sic), and JRWR (webstats). GAR was developed with the
Microsoft XNA Game Studio SDK at the Evolutionary
Complexity Research Group (Eplex) at University of Cen-
tral Florida (http://eplex.cs.ucf.edu). GAR is available at
http://gar.eecs.ucf.edu and the project’s official email address
is gar@eecs.ucf.edu.

REFERENCES

[1] R. Edwards, “The economics of game publish-
ing,” IGN Entertainment, 2006. [Online]. Available:
http://games.ign.com/articles/708/708972p1.html

[2] M. J. Irwin, “Game developers’ trade off,”Forbes.com, 2008.
[Online]. Available: http://www.forbes.com/2008/05/27/videogame-
art-money-tech-personal-cxmji 0528vgames.html

[3] V. Software, “Source engine SDK,” 2007. [Online]. Available:
http://developer.valvesoftware.com

[4] E. Games, “Unreal engine SDK,” 2007. [Online]. Available:
http://www.unrealtechnology.com/

[5] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the NERO video game,”IEEE Transactions on Evolu-
tionary Computation Special Issue on Evolutionary Computation and
Games, vol. 9, no. 6, pp. 653–668, 2005.

[6] J. Togelius, R. D. Nardi, and S. M. Lucas, “Towards automatic
personalised content creation for racing games,” inProceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.

[7] ——, “An experiment in automatic game design,” inProceedings of
the IEEE Symposium on Computational Intelligence and Games, 2008.

[8] F. Gomez and R. Miikkulainen, “Solving non-Markovian control tasks
with neuroevolution,” inProceedings of the 16th International Joint
Conference on Artificial Intelligence. San Francisco: Kaufmann, 1999,
pp. 1356–1361.

[9] N. Saravanan and D. B. Fogel, “Evolving neural control systems,”
IEEE Expert, pp. 23–27, June 1995.

[10] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular
encoding and direct encoding for genetic neural networks,” inGenetic
Programming 1996: Proceedings of the First Annual Conference, J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Cambridge,
MA: MIT Press, 1996, pp. 81–89.

[11] B.-T. Zhang and H. Muhlenbein, “Evolving optimal neural networks
using genetic algorithms with Occam’s razor,”CplxSys, vol. 7, pp.
199–220, 1993.

[12] X. Yao, “Evolving artificial neural networks,”Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[13] A. P. Martin, “Increasing genomic complexity by gene duplication and
the origin of vertebrates,”The American Naturalist, vol. 154, no. 2,
pp. 111–128, 1999.

[14] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M.
Weiner,Molecular Biology of the Gene Fourth Edition. Menlo Park,
CA: The Benjamin Cummings Publishing Company, Inc., 1987.

[15] L. Altenberg, “Evolving better representations through selective
genome growth,” inProceedings of the IEEE World Congress on
Computational Intelligence. Piscataway, NJ: IEEE Press, 1994, pp.
182–187.

[16] I. Harvey, “The artificial evolution of adaptive behavior,” Ph.D. dis-
sertation, School of Cognitive and Computing Sciences, University of
Sussex, Sussex, 1993.

[17] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,”Evolutionary Computation, vol. 10, pp. 99–
127, 2002.

[18] M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary and
temporal difference methods in a reinforcement learning domain,” in
GECCO 2006: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, July 2006, pp. 1321–1328.

[19] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
and K. O. Stanley, “Picbreeder: Evolving pictures collaboratively on-
line,” in Proceedings of the Computer Human Interaction Conference,
2008.

[20] T. Aaltonenet al., “Measurement of the top quark mass with dilepton
events selected using neuroevolution at CDF,”Physical Review Letters,
2009, to appear.

[21] K. O. Stanley, “Exploiting regularity without development,” inPro-
ceedings of the AAAI Fall Symposium on Developmental Systems.
Menlo Park, CA: AAAI Press, 2006.

[22] ——, “Compositional pattern producing networks: A novel abstrac-
tion of development,”Genetic Programming and Evolvable Machines
Special Issue on Developmental Systems, pp. 131 – 162, 2007.

[23] A. Hoover, , and K. O. Stanley, “Exploiting functional relationships
in musical composition,”Connection Science Special Issue on Music,
Brain, and Cognition, 2009, to appear.

[24] J. Lander, “The ocean spray in your face,”Game Developer Magazine,
pp. 13–20, July 1997.

[25] J. V. der Berg, “Building an advanced particle system,”Game Devel-
oper Magazine, pp. 44–50, March 2000.

[26] E. Hastings, R. Guha, and K. O. Stanley, “Interactive evolution of
particle systems for computer graphics and animation,”IEEE Trans-
actions on Evolutionary Computation, 2009.

[27] K. Sims, “Evolving virtual creatures,” inProceedings of the ACM
Special Interest Group on Graphics and Interactive Techniques, 1994,
pp. 50–62.

[28] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-
ities of EC optimization and human evaluation,”Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[29] C. Reynolds, “Steering behaviors of autonomous characters,” inPro-
ceedings of the Game Developers Conference, 1999, pp. 763–782.

[30] ——, “Flocks, herds, and schools: A distributed behavioral model,”
in Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, 1987, pp. 25 – 34.


