
A Case Study on the Critical Role of Geometric Regularity in Machine Learning
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008).

Menlo Park, CA: AAAI Press

Jason Gauci and Kenneth O. Stanley
Evolutionary Complexity Research Group

School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816

{jgauci,kstanley}@eecs.ucf.edu

Abstract
An important feature of many problem domains in machine
learning is their geometry. For example, adjacency relation-
ships, symmetries, and Cartesian coordinates are essential to
any complete description of board games, visual recognition,
or vehicle control. Yet many approaches to learning ignore
such information in their representations, instead inputting
flat parameter vectors with no indication of how those param-
eters are situated geometrically. This paper argues that such
geometric information is critical to the ability of any machine
learning approach to effectively generalize; even a small shift
in the configuration of the task in space from what was ex-
perienced in training can go wholly unrecognized unless the
algorithm is able to learn the regularities in decision-making
across the problem geometry. To demonstrate the importance
of learning from geometry, three variants of the same evolu-
tionary learning algorithm (NeuroEvolution of Augmenting
Topologies), whose representations vary in their capacity to
encode geometry, are compared in checkers. The result is
that the variant that can learn geometric regularities produces
a significantly more general solution. The conclusion is that it
is important to enable machine learning to detect and thereby
learn from the geometry of its problems.

Introduction
Among the primary goals of any approach to machine learn-
ing is generalization. This paper argues that the ability to
represent and thereby discover regularities in the geometry
of the task domain is essential to generalization. For ex-
ample, knowing the relative positions of squares in a board
game is fundamental to mastering the mechanics of the
game. Understanding the implications of adjacency requires
recognizing the same adjacency relationships between any
two squares on the board. A general understanding of board
geometry makes it possible to learn general tactics rather
than specific actions tied to only one position. This cen-
tral role of geometric regularity to generalization extends
beyond board games to robot control, in which events at dif-
ferent relative positions often require similar responses, and
computer vision tasks, in which the same object may appear
at different positions and orientations in the retina.

To appreciate how essential geometry is to learning, imag-
ine learning to play checkers on a board whose squares are

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each torn from the board and scattered across the living room
randomly. The rules are the same and each square still rep-
resents the same position on the board as usual. The only
problem is that the adjacency relationships among the pieces
become entirely opaque to the player. Interestingly, when a
board state is input into a machine learning algorithm as a
flat vector of position values, the geometry of the board is
no less opaque to the learner than in this satirical scenario.

Recognizing that task geometry plays a critical role in
many machine learning domains, researchers have intro-
duced a variety of methods ranging from tile coding [16]
to specialized neural network topologies [3, 17] that exploit
geometric relationships in different ways. However, such
approaches typically require the user to specify a priori how
different regions of the task domain should be broken apart
or assorted, which means the learner cannot itself discover
the most essential regularities and relationships.

To demonstrate that learning geometry is critical to gener-
alization, this paper compares three established evolutionary
approaches in checkers. These approaches vary in how they
integrate geometry. The baseline approach is NeuroEvolu-
tion of Augmenting Topologies (NEAT), which evolves in-
creasingly complex artificial neural networks (ANN’s) [12].
In the second approach, NEAT is extended with additional
ANN inputs engineered to better capture the geometry of the
problem domain. The third approach is Hypercube-based
NEAT (HyperNEAT), an extension of NEAT designed to
discover geometric regularities on its own [4, 6, 15]. By
comparing NEAT to extensions of the same approach, it is
possible to isolate the effects of geometry on generalization.

Results demonstrate that even among solutions learned
by these approaches with equivalent training performance,
HyperNEAT’s solutions are significantly more general. The
ability to map regular concepts across the geometry of the
board provides HyperNEAT the advantage. An important
conclusion is that the ability to detect and learn from geom-
etry is likely important in many machine learning tasks.

Background
Machine learning algorithms often focus on optimizing the
search without special attention to geometry. This section
surveys several exceptions to this rule and then reviews the
NEAT and HyperNEAT methods.



Figure 1: Blondie24 ANN Topology [3] . The first hidden layer
contains a node for every subsquare of the board of size greater
than 2× 2. Positions on the board are linked to the corresponding
subsquares that contain these positions. This layer then connects
to hidden layers that finally connect to the output node. Each valid
square on the board connects directly to the output node.

Geometric Regularity in Machine Learning
Tile coding is a common reinforcement learning technique
that partitions the state space of a task into small (often over-
lapping) chunks. Because the state space is often geomet-
ric, e.g. in maze navigation [9], the partitions separate dif-
ferent geometric locations. By breaking the geometry into
parts, each part can be learned separately as a simple sub-
task. While advantageous in several problem domains, a
downside is that because tile coding breaks the geometry
into pieces, it prevents the learner from discovering patterns
and regularities that vary across whole dimensions of the ge-
ometry. Leffler et al. [7] show how this problem can be al-
leviated by a priori specifying to the learning method which
tiles are related, thereby conveying useful regularities. How-
ever, they note that an ideal approach would exploit geomet-
ric regularities autonomously.

An interesting attempt to integrate geometry into evo-
lutionary computation is Blondie24, an evolved checkers-
playing artificial neural network (ANN) [3]. The main idea
in Blondie24 is that the ANN topology can be better engi-
neered to respect the regularities inherent in the game. In
particular, the weights of an ANN topology engineered by
hand are evolved. Every subsquare (i.e. set of positions ar-
ranged in a square shape) of the board is input to a sepa-
rate hidden node responsible for only that subsquare (figure
1). Connections are specified from the actual board inputs
to their respective subsquares, and also between the inputs
and the final output node. The main idea in this engineered
structure is that independent local relationships within each
subsquare can be learned separately and then combined at
a higher level in the network. Through coevolution (i.e.
candidates were evaluated by playing against each other),
Blondie24 was able to reach expert-level play on a popular
internet checkers server [3]. However, as with reinforcement
learning, an ideal approach would remove the need for engi-
neering by learning geometric regularities on its own.

NeuroEvolution of Augmenting Topologies (NEAT)
The approaches compared in this paper are variants of
the NEAT method [12, 14], which, like the approach in
Blondie24 [3], evolves ANNs. In addition to evolving
weights of connections, NEAT can build structure and add

complexity. NEAT is a leading neuroevolution approach that
has shown promise in board games and other challenging
control and decision making tasks [13, 14].

NEAT is based on three key ideas. First, to allow net-
work structures to increase in complexity over generations,
a method is needed to keep track of which gene is which.
Otherwise, it is not clear in later generations which individ-
ual is compatible with which, or how their genes should be
combined to produce offspring. NEAT solves this problem
by assigning a unique historical marking to every new piece
of network structure. The historical marking is a number as-
signed to each gene based on its order of appearance over
the course of evolution. The numbers are inherited during
crossover unchanged, and allow NEAT to perform crossover
without the need for topological analysis. That way, net-
works of different organizations and sizes stay compatible
throughout evolution.

Second, NEAT divides the population into species, so that
individuals compete primarily within their own niches in-
stead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before competing with other niches in the popula-
tion. NEAT uses the historical markings on genes to deter-
mine to which species different individuals belong.

Third, NEAT begins with a uniform population of simple
networks with no hidden nodes, differing only in their ini-
tial weights. Speciation protects new innovations, allowing
diverse topologies to gradually increase in complexity over
evolution. Thus, NEAT can start minimally, and grow the
necessary structure over generations. Through increasing
complexity, high-level features can be established early in
evolution and then elaborated and refined as new genes are
added [1]. The next section reviews an extension of NEAT
that allows it to learn geometric relationships automatically.

CPPNs and HyperNEAT
Like many methods in machine learning, the reason that reg-
ular NEAT cannot explicitly learn geometric regularities is
that when it learns to represent important local relationships
(e.g. how a checkers piece in one square can be threatened
by another in an adjacent square), it cannot extend that rela-
tionship as a pattern of connectivity across the entire neural
structure connecting to the board. In other words, it needs to
rediscover similar concepts multiple times.

The main idea in HyperNEAT is that it is possible to learn
such relationships if the solution is represented indirectly,
which means that it is a generative description of the con-
nectivity of the ANN rather than embodying the connec-
tion weights of ANN itself. Unlike a direct representation,
wherein every dimension in the solution space (i.e. the phe-
notype in evolutionary computation) is described individu-
ally (i.e. by its own gene), an indirect representation can
describe a pattern of values in the solution space without
explicitly enumerating every such value. That is, informa-
tion is reused in such an indirect encoding, which is a major
focus in the field of generative and developmental systems,
the subfield of evolutionary computation from which Hyper-
NEAT originates [2, 8, 11, 18]



fx
y

value 
at x,y

x

y

f...

...

(applied at
each point)

(CPPN)

(a) Mapping
x y

output pattern

(b) Composition
Figure 2: CPPN Encoding. (a) A CPPN is a function f that takes
arguments x and y, which are coordinates in a two-dimensional
space. When all the coordinates are drawn with an intensity corre-
sponding to the output of f , the result is a spatial pattern. (b) Inter-
nally, the function produced by the CPPN is encoded as a graph that
specifies how a set of simpler canonical functions (e.g. Gaussian,
sigmoid, and sine) are connected. Like in an ANN, the connections
are weighted such that the output of a function is multiplied by the
weight of its outgoing connection.

HyperNEAT is based on an indirect encoding called Com-
positional Pattern Producing Networks (CPPNs) [10]. The
idea behind CPPNs is that patterns such as those seen in
nature can be described at a high level as a composition of
functions that are chosen to represent several common mo-
tifs in patterns. For example, because the Gaussian function
is symmetric, when it is composed with any other function,
the result is a symmetric pattern. The appeal of this encod-
ing is that it allows patterns with regularities such as sym-
metry (e.g. with Gaussians), repetition (e.g. with periodic
functions such as sine), and repetition with variation (e.g.
by summing periodic and aperiodic functions) to be repre-
sented as networks of simple functions, which means that
NEAT can evolve CPPNs just as it evolves ANNs. While
CPPNs are similar to ANNs, the distinction in terminology
is particularly important for explicative purposes because in
HyperNEAT, CPPNs describe ANNs. Formally, CPPNs pro-
duce a phenotype that is a function of n dimensions, where n
is the number of dimensions in a geometric space. For each
coordinate in that space, its level of expression is an output
of the function that encodes the phenotype. Figure 2 shows
how a two-dimensional pattern can be generated by a CPPN
that takes two inputs.

The main idea in HyperNEAT is to extend CPPNs, which
encode two-dimensional spatial patterns, to also represent
connectivity patterns [4, 6, 15]. That way, NEAT can evolve
CPPNs that represent ANNs with symmetries and regular-
ities that are computed directly from the geometry of the
task inputs. The key insight is that 2n-dimensional spatial
patterns are isomorphic to connectivity patterns in n dimen-
sions, i.e. in which the coordinate of each endpoint is speci-
fied by n parameters.

Consider a CPPN that takes four inputs labeled x1, y1, x2,
and y2; this point in four-dimensional space can also denote
the connection between the two-dimensional points (x1, y1)
and (x2, y2), and the output of the CPPN for that input
thereby represents the weight of that connection (figure 3).
By querying every possible connection among a set of points
in this manner, a CPPN can produce an ANN, wherein each
queried point is the position of a neuron. Because the con-
nection weights are produced as a function of their end-
points, the final structure is produced with knowledge of its

Figure 3: Hypercube-based Geometric Connectivity Pattern
Interpretation. A grid of nodes, called the substrate, is assigned
coordinates such that the center node is at the origin. (1) Every po-
tential connection is queried to determine its presence and weight;
the dark directed lines in the substrate in the figure represent a sam-
ple of connections that are queried. (2) For each query, the CPPN
takes as input the positions of the two endpoints and (3) outputs the
weight of the connection between them. Thus, CPPNs can produce
regular patterns of connections in space.

geometry. In effect, the CPPN paints a pattern on the inside
of a four-dimensional hypercube that is interpreted as an iso-
morphic connectivity pattern, which explains the origin of
the name Hypercube-based NEAT (HyperNEAT). Connec-
tivity patterns produced by a CPPN in this way are called
substrates so that they can be verbally distinguished from
the CPPN itself, which has its own internal topology.

Recall that each queried point in the substrate is a node
in an ANN. The experimenter defines both the location and
role (i.e. hidden, input, or output) of each such node. As a
rule of thumb, nodes are placed on the substrate to reflect
the geometry of the task, which makes the setup straightfor-
ward [4, 6, 15]. This way, the connectivity of the substrate
becomes a direct function of the task structure.

For example, in a board game, the inputs can be placed
on the substrate in a two-dimensional plane just as their
corresponding squares are arranged on the board. In this
way, knowledge about the problem can be injected into the
search and HyperNEAT can exploit the regularities (e.g. ad-
jacency, or symmetry) of a problem that are invisible to tra-
ditional encodings. For full descriptions of HyperNEAT see
[4, 6, 15]. The next section explains in detail how checkers
is represented and learned by HyperNEAT.

Approach: Learning Regularities in Checkers
This paper focuses on the need to learn from geometry.
While approaches like Blondie24 engineer geometry into the
ANN topology to take advantage of it, the idea in Hyper-
NEAT is to learn from geometry by generating the policy
network as a direct function of task geometry. This section
explains how that is done in the game of checkers.

To apply HyperNEAT to checkers, the substrate input
layer is arranged in two dimensions to match the geometry
of the checkers board (figure 4). To distinguish the flow of
information through the policy network from the geometry
of the game, a third dimension in the substrate represents



Figure 4: Checkers Substrate. The substrate (at left) contains
a two-dimensional input layer (A) that corresponds to the geome-
try of a game board, an analogous two-dimensional hidden layer
(B), and a single-node output layer (C) that returns a board evalu-
ation. The two CPPNs (at right) are depictions of the same CPPN
being queried to determine the weights of two different substrate
connections. The bottom CPPN depiction receives as input the x
and y coordinates of a node in A and a node in B and returns the
weight of this connection from its AB output node. Similarly, the
top depiction of the same CPPN is being queried for the weight
of a connection between B and C and therefore returns this weight
from its BC output. In this way, a four-input CPPN can specify the
connection weights of a two-layer network structure as a function
of the positions, and hence the geometry, of each node.

information flow from one layer to the next. Along this
third dimension, the two-dimensional input layer connects
to an analogous two-dimensional hidden layer so that the
hidden layer can learn to process localized geometric config-
urations. The hidden layer then connects to a single output
node, whose role is to evaluate board positions. The CPPN
distinguishes the set of connections between the inputs and
the hidden layer from those between the hidden layer and
the output node by querying the weights of each set of con-
nections from a separate output on the CPPN (note the two
outputs in the CPPN depiction in figure 4). That way, the
x and y positions of each node are sufficient to identify the
queried connection and the outputs differentiate one connec-
tion layer from the next. Because the CPPN can effectively
compute connection weights as a function of the difference
in positions of two nodes, it can easily map a repeating con-
cept across the whole board.

In this way, the substrate is a board evaluation function.
The function inputs a board position and outputs its value for
black. To evaluate the board when it is white’s turn to move,
the color of the pieces can be reversed and then the sign of
the result inverted. To decide which move to make, a mini-
max search algorithm runs to a fixed ply depth. Alpha-beta
pruning and iterative deepening techniques increase perfor-
mance without changing the output. The output of the sub-
strate is the heuristic score for the minimax algorithm.

This approach allows HyperNEAT to discover geometric
regularities on the board by expressing connection weights
as a function of geometry. It is therefore unnecessary to
manually engineer the network topology, or divide the in-
put space into subsections in an attempt to inject a priori
theories about the key regularities in the game into the rep-

resentation. Because HyperNEAT discovers geometric rela-
tionships on its own, an identical substrate can be applied
to other board games even without knowledge of the game
rules, making the approach highly general.

Experiment
The experiment aims to determine whether encoding geom-
etry helps machine learning to generalize. The idea is to
learn to defeat a single fixed training opponent and then test
for generalization against variations of this opponent.

Board games are an effective platform to discern the im-
portance of geometry because they depend heavily on ge-
ometric relationships that often repeat across the board.
Therefore, this paper compares three evolutionary ap-
proaches that take geometry into account to varying degrees
in the domain of checkers. Each approach is trained against
the same hand-engineered deterministic opponent [5]. The
opponent is a linear combination of several heuristics, in-
cluding material possession, positional bias, whether pieces
on the back row have been moved (which would lower the
score), whether a double corner is intact, and who controls
the center and the edge of a board. Thus, the deterministic
opponent is nontrivial, i.e. not just a simple piece counter.
During evolution, each candidate plays a single game as
black against the opponent to determine its fitness. Fitness
is computed as a function of both the final game state and
intermediate board states. At each turn, fitness is awarded
based on the current board state according to the equation:

100 + 2ms + 3ks + 2(12−mo) + 3(12− ko), (1)

where ms and mo are the number of regular pieces pos-
sessed by the learner and the opponent, respectively, and
ks and ko are the number of kings. This function rewards
incremental progress and provides a smoother learning gra-
dient than simply awarding fitness based on the final score.
Fitness is always awarded over 100 turns, even if the game
ends earlier. That way, winning early is not penalized. If the
candidate wins against the training opponent, an additional
30,000 is added to the total fitness.

The learned strategies are then tested against a non-
deterministic variant of the same opponent. This variant
has a 10% chance of choosing the second-highest scoring
move instead of the optimal move found in minimax search.
Methods that evolve more general solutions should produce
policies that win more such games.

The three compared approaches are carefully chosen to
isolate the issue of geometric processing. Therefore, they
are all variants of the same NeuroEvolution of Augmenting
Topologies (NEAT) approach. This shared basis means that
differences in performance are attributable to the way each
approach processes its inputs. For all three approaches, in-
put values of 0.5 and -0.5 encode black and white pieces,
respectively. Kings are represented by a magnitude of 0.75
(Chellapilla and Fogel [3] showed that multiplying the stan-
dard piece input magnitude by 1.3 produces a good magni-
tude for kings). A single output expresses the value of the
current board state for black.

Regular NEAT inputs a vector of length 32 in which each
parameter represents a square on the board that can poten-



tially hold a piece. NEAT evolves the topology and weights
between the input and output nodes.

NEAT-EI is an attempt to enhance NEAT’s ability to take
into account geometric regularities across the board by sup-
plying additional engineered inputs (EI). It has the same in-
puts as NEAT; however, the starting network topology is en-
gineered as in Blondie24 [3] (figure 1). The result of train-
ing NEAT-EI in this paper cannot be compared directly to
Blondie24 because Blondie24 is the result of coevolution
while the policies in this paper are evolved against a fixed
opponent. While the goal for Blondie24 was to evolve the
best possible player, the goal in this paper is to fairly com-
pare the generalization of different representations, thereby
isolating the issue of generalization.

HyperNEAT inputs are arranged in a two-dimensional
8× 8 grid that forms the first layer of a three-layer substrate
(figure 4). For HyperNEAT, NEAT evolves the CPPN that
computes the connection weights of the substrate.

If geometry is indeed essential to effective play, the bet-
ter an approach can represent geometric relationships (ei-
ther through learning or a priori engineering), the better that
method should generalize.
Experimental Parameters
Because both HyperNEAT and NEAT-EI extend NEAT, they
all use the same parameters [12]. The population size was
120 and each run lasted 200 generations. The compatibil-
ity threshold was 6.0 and the compatibility modifier was
0.3. Available CPPN activation functions were sigmoid,
Gaussian, sine, and linear functions. Recurrent connections
within the CPPN were not enabled. Signed activation was
used, resulting in a node output range of [−1, 1]. By con-
vention, a connection is not expressed if the magnitude of
its weight is below a minimal threshold of 0.2 [6]. These
parameters were found to be robust to moderate variation in
preliminary experimentation.

Results
Performance in this section is measured in two ways. First,
the fitness of each approach is tracked during training over
generations, which gives a sense of relative training per-
formance. Second, after training is complete, the best so-
lutions from each run play 100 games against the random-
ized opponent, yielding generalization. The main question is
whether HyperNEAT’s ability to learn from geometry bene-
fits its performance and generalization.

Training Performance
Figure 5 shows the average generation champion fitness over
evolution averaged over 20 runs. While none of the runs of
regular NEAT were able to defeat the opponent within 200
generations, both HyperNEAT and NEAT-EI learned to de-
feat it in all runs. On average, it took NEAT-EI 57.85 genera-
tions to find a winning solution. HyperNEAT succeeds much
more quickly, finding a winner in 8.2 generations. These
differences are statistically significant (p < 0.001). This
disparity highlights the critical importance of learning from
geometry. While defeating the heuristic appears challenging
with direct representations, it becomes easy if the solution is
learned as a function of the board geometry.

Figure 5: Fitness During Training. The fitness of the gen-
eration champions of each approach is shown, averaged over 20
runs. HyperNEAT generation champions perform significantly bet-
ter than NEAT-EI and regular NEAT between generations 1 and
108 (p < .01). HyperNEAT learns faster than NEAT-EI because
its CPPN solutions require fewer dimensions to represent.

Figure 6: Generalization Results. Average wins, losses, and
ties in 100 games against the randomized opponent are shown for
HyperNEAT and NEAT-EI, averaged over 20 runs of each. Only
the most general solutions of each run are included in the test. Hy-
perNEAT solutions win significantly more games (p < 0.001) and
lose significantly fewer games (p < 0.001) than NEAT-EI. The
difference in ties between the two methods is not significant.

Generalization
Every generation champion that defeats the deterministic
opponent plays 100 games against the randomized oppo-
nent. Because regular NEAT could never defeat this oppo-
nent, it cannot compete in this test. To make the comparison
fair, only the most general solutions of each run are com-
pared. That way, the generalization results focus on the best
possible generalization for both methods when they learn to
defeat an identical opponent. The best possible generaliza-
tion represents what would result from an ideal validation of
the trained opponents. While in the real world such ideal-
ized validation may not always be possible, assuming rea-
sonable effort on the part of the experimenter, it is a yard-
stick for how well a system can be expected to perform in
a reinforcement learning task. Figure 6 shows the results
of these solutions against the randomized opponent. Hyper-
NEAT wins significantly more and loses significantly less
than NEAT-EI. The geometric encoding allows HyperNEAT
to generalize across the board.

Typical Solutions
HyperNEAT’s advantage is most evident in the middle-game
and later. As the game tree branches, deviation from the
training opponent increases. Because HyperNEAT performs
better in such novel situations, it is more general. For exam-
ple, figure 7 contrasts moves chosen by NEAT-EI solutions
with those from HyperNEAT from the same unfamiliar posi-
tion. NEAT-EI players unnecessarily sacrifice pieces, while
HyperNEAT players rarely do from this position.



(a) HyperNEAT Moves (b) NEAT-EI Moves

Figure 7: Requested moves from the same board position by
HyperNEAT and NEAT-EI. This figure depicts a position sev-
eral moves into a game. Twenty moves requested by the cham-
pions of all NEAT-EI runs are contrasted with twenty from Hyper-
NEAT runs. All of the HyperNEAT runs suggest neutral or positive
moves. Six of the NEAT-EI runs make moves that lead to imme-
diate, uncompensated loss. These moves are denoted with a darker
line and a square endpoint.

The most general solution in all runs of NEAT-EI has 126
nodes and 1,106 connections. In contrast, the most general
solution of HyperNEAT is a CPPN with only 23 nodes and
84 connections, which generates an ANN with 129 nodes
and 3,979 connections. In this way, HyperNEAT is able
to explore a significantly smaller search space (i.e. CPPNs)
while still creating complex structures (i.e. substrates).

Discussion and Future Work
An important lesson is that a representation hand-engineered
to respect the task geometry (e.g. NEAT-EI), while better
than nothing (e.g. regular NEAT), may not be the best possi-
ble representation. It follows naturally that machine learning
should, ideally, learn the most critical geometric regularities
on its own, just as it learns other aspects of the problem.

The results in this paper reveal the kind of advantage
that is gained from letting it do so. HyperNEAT indeed
learns significantly faster than NEAT-EI, but more interest-
ingly, even when comparing equally successful solutions
evolved by both methods to defeat the same opponent, those
evolved by HyperNEAT generalize significantly more effec-
tively against variants of that opponent. The implication is
that HyperNEAT discovers regularities in the geometry of
the game, which is essential for general performance. Gen-
eral patterns are easier to represent than policies that sepa-
rately analyze every individual location on the board.

Another advantage of learning from geometry is simply
that it removes the need for humans to decide how to en-
gineer the representation. Thus, the primary lesson of this
study is that machine learning should begin to integrate a
capacity to learn geometric correlations and regularities in
the task domain into its algorithms by providing them ex-
plicit access to the domain geometry. The reward will be
significantly more general solutions to real world problems.

Conclusion
This paper argued that learning regularities across the geom-
etry of the problem domain is critical to effective generaliza-
tion. To demonstrate this point, three variants of the same

learning approach with differing degrees of access to geo-
metric information were trained against a single determin-
istic checkers heuristic. The main result is that the quality
of learning and generalization is directly proportional to the
representation’s ability to learn from geometry. In fact, the
most powerful representation, HyperNEAT, learns geomet-
ric regularities on its own, leading to significantly improved
generalization against a randomized version of the training
opponent. The main conclusion is that, to reach its full po-
tential, machine learning should include the ability to learn
from the geometry of the task.

References
[1] L. Altenberg. Evolving better representations through se-

lective genome growth. In Proceedings of the IEEE World
Congress on Computational Intelligence, pages 182–187,
Piscataway, NJ, 1994. IEEE Press.

[2] P. J. Bentley and S. Kumar. The ways to grow designs:
A comparison of embryogenies for an evolutionary design
problem. In Proc. of the Genetic and Evo. Computation Con-
ference, pages 35–43, San Francisco, 1999. Kaufmann.

[3] K. Chellapilla and D. B. Fogel. Evolving an expert check-
ers playing program without using human expertise. IEEE
Trans. Evolutionary Computation, 5(4):422–428, 2001.

[4] D. D’Ambrosio and K. O. Stanley. A novel generative encod-
ing for exploiting neural network sensor and output geome-
try. In Proc. of the Genetic and Evolutionary Computation
Conference 2007, New York, NY, 2007. ACM Press.

[5] M. Fierz. Simplech. http://arton.cunst.net/xcheckers/,
September 22, 2002.

[6] J. Gauci and K. O. Stanley. Generating large-scale neural
networks through discovering geometric regularities. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2007), New York, NY, 2007. ACM Press.

[7] B. R. Leffler, M. L. Littman, and T. Edmunds. Efficient rein-
forcement learning with relocatable action models. In AAAI,
pages 572–577. AAAI Press, 2007.

[8] A. Lindenmayer. Adding continuous components to L-
systems. In G. Rozenberg and A. Salomaa, editors, L Sys-
tems, Lecture Notes in Computer Science 15, pages 53–68.
Springer-Verlag, Heidelberg, Germany, 1974.

[9] A. A. Sherstov and P. Stone. Function approximation via tile
coding: Automating parameter choice. In J.-D. Zucker and
L. Saitta, editors, SARA, volume 3607 of Lecture Notes in
Computer Science, pages 194–205. Springer, 2005.

[10] K. O. Stanley. Compositional pattern producing networks:
A novel abstraction of development. Genetic Programming
and Evolvable Machines Spec. Issue on Dev. Sys., 2007.

[11] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130, 2003.

[12] K. O. Stanley and R. Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary Com-
putation, 10:99–127, 2002.

[13] K. O. Stanley and R. Miikkulainen. Evolving a roving eye for
Go. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO-2004), Berlin, 2004. Springer Verlag.

[14] K. O. Stanley and R. Miikkulainen. Competitive coevolution
through evolutionary complexification. Journal of Artificial
Intelligence Research, 21:63–100, 2004.

[15] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based indirect encoding for evolving large-scale
neural networks. Artificial Life, 2008. To appear.

[16] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

[17] J. Togelius and S. M. Lucas. Forcing neurocontrollers to ex-
ploit sensory symmetry through hard-wired modularity in the
game of cellz. In CIG. IEEE, 2005.

[18] A. Turing. The chemical basis of morphogenesis. Philosoph-
ical Transactions of the Royal Society B, 237:37–72, 1952.


