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Abstract. A relatively rare application of artificial intelligence at the
nexus of art and music is dance. The impulse shared by all humans to
express ourselves through dance represents a unique opportunity to arti-
ficially capture human creative expression. In particular, the spontaneity
and relative ease of moving to the music without any overall plan sug-
gests a natural connection between temporal patterns and motor control.
To explore this potential, this paper presents a model called Dance Fvo-
lution, which allows the user to train virtual humans to dance to MIDI
songs or raw audio, that is, the dancers can dance to any song heard
on the radio, including the latest pop music. The dancers are controlled
by artificial neural networks (ANNs) that “hear” MIDI sequences or raw
audio processed through a discrete Fourier transform-based technique.
ANNs learn to dance in new ways through an interactive evolutionary
process driven by the user. The main result is that when motion is ex-
pressed as a function of sound the effect is a plausible approximation of
the natural human tendency to move to music.

1 Introduction

The ubiquity of dance throughout the cultures of the world [1] hints at its deep
connection to human creativity and self-expression. The power of music and
dance as a tool for self expression is further demonstrated by the popularity
of such music and rhythm-oriented games as Guitar Hero', Rock Band?, and
Dance Dance Revolution®. Yet although in recent years researchers in artificial
intelligence (AI) have begun to focus on creativity in music and art [2-5], with
few exceptions [6], dance is less explored. Nevertheless, dance can potentially
provide insight into how the auditory and motor modalities are connected in
creative self-expression. Thus its study is relevant to the enterprise of Al.
Unlike Yu [6], who focused on choreographed dance sequences, the model in
this paper investigates the more spontaneous self-expression that results from

! Guitar Hero (R) is a trademark of Activision Publishing, Inc.

2 Rock Band, Rock Band 2 and all related titles are trademarks of Harmonix Music
Systems, Inc., an MTV Networks company.

3 (C) 2008 Konami Digital Entertainment, Inc. “Dance Dance Revolution” is a regis-
tered trademark of Konami Digital Entertainment Co., Ltd. KONAMI is a registered
trademark of KONAMI CORPORATION.



simply listening to entertaining music, such as in a club setting. In a step toward
generating spontaneous dance to arbitrary music, this paper presents a model
called Dance FEvolution in which virtual dancers learn to dance to music encoded
as either MIDI or raw audio. In effect, dancers can learn to dance to any song that
you might hear in a dance club or on the radio. The model in Dance Evolution
can take MIDI sequence data or process raw audio through discrete Fourier
transforms to extract an approximation of such data. The resulting temporal
progression is input into an artificial neural network (ANN), which outputs a
sequence of motor commands that control the body of the virtual dancer. Thus
the motion of the dancer becomes a function of the beats of the song.

Of course, an important question is how the ANN can learn to make the right
moves. However, it turns out that it is possible to quickly discover mappings be-
tween audio and motor output that produce movements that appear natural,
suggesting that one reason dance is so appealing is that its search space is for-
giving. Thus the aim in Dance Evolution is not to learn an optimal dance but
rather to enable the user to effectively explore the space of possible dances. For
this purpose, the user drives an interactive evolutionary algorithm built on the
NeuroEvolution of Augmenting Topologies (NEAT) approach to evolving ANNs.
In effect, the user breeds new dancers from ones that were appealing in the past.
In fact, because each evolved ANN embodies the personality of a dancer, the
same dancer can be transferred from one song to another.

The main insight, that dance can be considerd a function of changing audio
over time, suggests a direct coupling between motor control and audio processing.
By implementing a model based on this principle, the practical result is an
interactive application in which an unbounded space of dance behaviors can be
explored and assigned to any song.

2 Background

This section reviews foundational technologies to the Dance Evolution approach.

Interactive Evolutionary Computation IEC is a growing field within ma-
chine learning that takes advantage of humans’ ability to make sophisticated
subjective judgments [7]. Early IEC implementations include Richard Dawkins’s
[8] Biomorphs, which evolved visual patterns, and the pioneering work of Sims [5,
9], who evolved both art and virtual creatures. In IEC the user is presented with
a set of (usually visual) alternatives and evaluates their fitness. The evolutionary
algorithm generates a new generation of candidates based on this feedback. The
process repeats until the user is satisfied. While the risk is that the user may
become fatigued before finding a satisfactory candidate [7], the hope in Dance
Evolution is that watching dancers is sufficiently motivating in part to mitigate
the effect of fatigue.

NeuroEvolution of Augmenting Topologies Dance Evolution encodes dance
policies as ANNs that “hear” input from a music file and output requests for limb



movement. The ANNs in Dance Evolution are trained through the NeuroEvo-
lution of Augmenting Topologies (NEAT) method, which has proven successful
in a variety of control and decision making tasks [10-12]. Thus NEAT makes a
good platform for evolving controllers for dancers.

NEAT begins evolution with a population of small, simple networks and
grows the network topology over generations, leading to increasingly sophisti-
cated behavior. For evolving dance, this process means that dances can become
more elaborate and intricate over generations. Stanley and Miikkulainen [12]
provide complete introductions to NEAT.

Music Processing If dancers can only dance to processed MIDI files, the user
can only enjoy a limited library of songs. To broaden the possibilities, this paper
takes the significant step of extending the functionality to the popular MPEG-1
Audio Layer 3 (MP3) music format. This capability allows the user to enjoy
a normal library of songs. Thus the problem is to parse raw sound in such a
way that the ANN can interpret it. The approach in this paper is inspired by
an algorithm described by Scheirer [13] that can determine the beat from raw
musical input.

3 Approach

Dance Evolution was implemented in the Panda3D* simulator, which was chosen
for its rapid prototyping capabilities and ability to simulate articulated bodies.
This section details the main approach, starting with inputs.

3.1 ANN Inputs

To allow the ANN to “hear” the music, data from the song is input over time as a
vector representing the current pulses as the song unfolds. For MIDI (i.e. musical
instrument digital interface) files, this vector contains four parameters. The first
three are periodic functions of the beat, measure, and length of the song. The last
signal in the vector represents the volume of the low drum track, which adds
song-specific variation. In this way, the ANN is aware of the major temporal
building blocks of music and generates dance as a function of that information.
Because MIDI files represent this data explicitly, it is easily extracted and input
into the ANN. However, the MIDI format only allows a proof of concept of the
technique because most popular songs are available only in raw audio. Thus a
key focus of this research is to extend the capability to dancing to raw audio.

3.2 Audio Processing

As Scheirer [13] explains, a beat is a repeating pulse with a regular period
throughout a piece of music. To discover the beat, these pulses must be identified;

4 Panda 3D Software Copyright (c) 2000-2005, Disney Enterprises, Inc. All rights
reserved



however they can appear distinctly within different subbands of the song. There-
fore, to recognize pulses, the song must first be decomposed into its subbands.
This task is accomplished efficiently with a Fast Fourier Transform (FFT).

The FFT in Dance Evolution decomposes the amplitude vector formed from
1,024 samples of the song, which combined represent approximately 4—10 of a
second, into multiple subbands that represent the average energy of the song in
several frequency-ranges. In particular, Dance Evolution decomposes the song

N o N
into 15 subbands whose ranges are [(15 *1;4)*]05, 15*(H]1,)+4)*fe} Hz with 7 €
[0,14] , N = 1,024, and f, set to the sampling rate of the song, which is usually
about 44,100 Hz (the constant 4 is the remainder of dividing 1,024 by 15). As
noted by Scheirer [13], differing range divisions do not have a significant effect

on results. The FFT also calculates the direct current (DC) term, i.e. the non-
periodic component of the vector that represents the average energy of the song.

A beat occurs when the energy in a subband increases dramatically with
respect to the average energy of the subband. The FFT of the 1,024 samples
represents the near-instantaneous energy of each channel. To search for a beat,
this energy is averaged with the previous 43 samples, which represents about
one second of time for the common sampling rate of 44,100 Hz. This interval
was selected to allow real time processing while maintaining sufficient fidelity.

The ratio of the instantaneous energy to the average energy amplifies differ-
ences between them such that a high ratio means that the pulse may be a beat.
This pulse information can be input directly into an ANN, causing a spike in the
input to correspond to a pulse in the music. This procedure both reduces time
spent processing the music and preserves non-beat pulses, which may still be
important to the dance. The non-beat pulses have a similar affect to the drum
track information from the MIDI files. 16 values representing the pulses from
each of the 15 subbands as well as the DC component are input into the ANN.
The input vector is calculated and fed into the ANN in real time in each frame.?

To make pulse data suitable for ANN input, it must be (1) normalized and
(2) lengthened. Because the magnitude of a raw audio pulse is unbounded, the
sigmoid function f(z) = m is applied to each input to both limit the
pulse values to [0, 1] and further separate the strong pulses from the weak ones,
in effect filtering out the weak signals. Based on an analysis of several songs, o
and 3 are set to 1 and 6 respectively to keep the point of inflection above the
bulk of the weaker pulses.

The second problem is that the pulses occur over short periods of time,
which does not give the ANN enough time to properly react before the input
pulse terminates. Dances produced with such short pulses thus appear jerky. To
address this problem, the ANN is provided with a “memory” of the last few
inputs by adding a fraction of the previous input into the current one such that
I, = f(x) 4+ I;—1. This final step provides the ANN with smooth decay curves
following each pulse. The result is smooth, natural-appearing motion.

5 The engine updates the visual display each such frame.
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Fig. 1. Dance Evolution User Interface. The user can click on dancers to
breed them and control the degree to which they change with the mutation slider
in the lower-left.

3.3 ANN Outputs

The ANN controls three-dimensional models within an interactive environment.
The output nodes of the ANN request the actuation of the joints of the model.
The models’ joints are chosen from the head, spine, arms, hips, and legs such
that each joint has enough mobility to noticeably affect the dances. Each output
affects the angle of an axis (heading, pitch, or roll) of one joint, for a total of 34
outputs. Every frame, the outputs of each ANN are queried and the angles of
the models are updated accordingly. Activation travels through the the ANN at
a rate of one link per frame. It is important to note that because ANNs evolved
by NEAT can contain recurrent connections, in principle it is possible to react
to more than just the current beat.

To display the dance, the outputs of the ANN must be converted into ac-
tuation commands to move the models. Each frame, the next input vector is
calculated from the most recently heard music and loaded into the ANN. Each
output of the ANN is in the range [0, 1] and scaled linearly into [—.2,.2]. This
activation is scaled according to the frame rate so that dancers are consistant re-
gardless of frame rate. Finally, the joint is moved along a sine curve between the
physiological limits at a rate determined by the activation, creating a rhythmic
motion that avoids being stuck at the limits. That is, the limbs continually os-
cillate between their limits with a frequency determined by the activation, such
that higher activation causes faster movement.

In this way, because each input represents the most recent pulses in the song
as heard by the user, the ANN is able to react in real time to the music.

3.4 ANN Training

ANNs in Dance Evolution are trained through IEC, which allows the user to
direct their evolution intuitively. Left-clicking on one of the five model dancers
produces a new generation of mutants of that model’s ANN. The model that
is clicked keeps its ANN, which ensures the favorite dancer is not lost. Right-
clicking creates a set of hybrids by crossing over the clicked model’s ANN with
each of the other models’” ANNs following the NEAT method, and replacing



the old ANNs of each unclicked model with the new offspring. The user can
control the mutation power through a slider provided at the bottom of the
screen, which gives the user significant control over evolution. The interface is
shown in figure 1. The population can be initialized randomly or from ANNs
saved from previous sessions. In addition to saving trained dancer ANNs, the
user can load any previously saved ANN.

Users can choose to play any song in their library. Interestingly, ANNs can
react to any such song, including those for which they were not trained. In
this way, the same dance personality, which is embodied in an ANN, can be
transferred from one song to another.

4 Experiments and Results

This section is divided into two parts: a brief analysis of learning to dance to
MIDI and the more ambitious goal of dancing to raw audio. Please note that
the text in this section is accompanied with video demonstrations at:
http://eplex.cs.ucf.edu/dance-evolution-videos.html.

4.1 Dancing to MIDI

Learning to dance to MIDI is significantly easier than learning with raw audio
because the beat and measure are provided explicitly by the MIDI format. Show-
ing what is possible under such conditions provides a context for the results of
the greater challenge of learning to dance to raw audio.

MIDI dancers were evolved to MIDI dance songs composed by Bjorn Lynne
(Shockwave-Sound.com). The main result is that a wide variety of dances evolved
that tightly follow the rhythm of the song, demonstrating that the idea that
dance can be generated as a function of temporal information in music can work
in principle (see “MIDI Sequence” video). While some of the specific bodily mo-
tions sometimes appear unrealistic, it is possible to evolve toward more realistic
motions. The quality of results with MIDI was sufficient to win the Best Stu-
dent Video Award at the AAAI video competition [14]. The dancers perform
the most dramatic movements and changes to the beat of the song. The next
section investigates the performance of the approach when confronted with the
greater challenge of raw audio.

4.2 Dancing to Raw Audio

This section analyzes raw audio performance in detail through a variety of spe-
cific experiments. The primary aim is to provide significant insight into how the
results follow from the raw audio processing procedure, from which it will be
possible to expand and improve further in the future.

A brief sequence from the song Tubthumping® by Chumbawamba is chosen
to illustrate in detail the responsiveness of the algorithm to pertinent compo-
nents of raw music. Specifically, the inputs resulting from processing and the

S Tubthumping is from the album “Tubthumper,” released by EMI Group Ltd.



corresponding ANN outputs are graphically analyzed to test whether processing
captures important signals from the music and whether the ANN reacts accord-
ingly. Tubthumping has a very distinct chorus in which the lyrics state “I get
knocked down, but I get up again.” These lyrics provide a reference point in the
analysis of the network outputs.

Figure 2 depicts the initial three steps of the raw audio processing of the
segment with the lyrics, “I get knocked down, but I get up again,” which is
completed before inputting data into the ANNs (see “Tubthumper Clip” video
for actual footage). Figure 3 demonstrates the movement during this segment as
well as the inputs and outputs of the ANN that generated this dance.
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Fig. 2. Processing Raw Audio. The first three steps of processing the song
Tubthumping are shown. The FFT results are shown for each channel (a). The
ratio of the instantaneous to the average FFT isolates pulses in the music (b).
The sigmoid function then filters out weak pulses and normalizes the input (c).

The ANN that controls the dancer in figure 3 evolved the humorous behavior
of bobbing down when the chorus sings “I get knocked down.” Spikes in the
processed input can be observed at each of these lyrics. Note that these spikes
represent instrumental beats in various frequencies that happen to correspond to
the timing of the lyrics, which is how Dance Evolution learns to respond. Other
spikes representing a variety of instrumental sounds are also apparent, indicating
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Fig. 3. Dancing to Music. An ANN trained with Chumbawamba’s Tubthump-
ing dances to the chorus of “I get knocked down, but I get up again”. The se-
quence (a—d) are screen shots taken at regular intervals during the dance. Over
this time, the ANN sees the inputs processed from this part of the song (e). The
outputs for the left and right legs (f) cause the dancer’s legs to change direction
quickly at the words “I” and “down,” corresponding to pulses in the input (e).

that the inputs of the ANN indeed receive spikes in the music to which a human
would react. Correlated with this input, the output in figure 3f shows that the
ANN requests the right and left knees to change direction (i.e. the sign switches)
when the lyrics, “I get knocked down” are sung (approximately 33,300 ms into
the song). The act of both legs changing direction simultaneously causes the
dancer to dip. Thus figure 3 confirms that, with user input, NEAT could find a
policy to express the desired behavior as a function of change in subbands.

A single ANN can transfer some of its characteristic behavior between songs,
but also exhibits new behavior resulting from different active frequency subbands
in different songs. Demonstrating this capability to transfer, a single ANN was
trained on George Clinton and the Parliament’s Give Up the Funk (Tear the Roof
off the Sucker)” and transferred to to Billy Joel’s Piano Man®. Characteristic

" Give Up the Funk (Tear the Roof off the Sucker) is from the album “Mothership,”
released by Casablanca Records.
8 Piano Man is from the album “Piano Man,” released by Columbia Records.



behaviors such as spreading the arms remain throughout, although the dance
slows to match the tempo of Piano Man (see “transition clip”).

There are generally several interesting dances each generation; therefore, fur-
ther evolution is most naturally directed toward curiosity-driven exploration
rather than a defined goal. Thus an entertaining strategy for Dance Evolution
is undirected search, i.e. selecting the most interesting or fun behavior.

Accordingly, five runs, evolved over two songs each, were executed with such
a strategy. Every initial ANN, with no prior training, contains 51 nodes and
578 connections. The chance of adding a node is 15% and the chance of adding
a connection is 25%. After 10, 20, 30, and 40 generations, the average number
of nodes and connections was 54.48 nodes and 579.76 connections, 54.68 nodes
and 583.56 connections, 55.28 nodes and 585.88 connections, and 56.08 nodes
and 588.36 connections, respectively. Because the songs were on average 4.1
minutes, the average number of generations per minute was 6.1, which means
approximately one generation every 9.8 seconds. This short duration suggests
that subjective impressions of dance can form quickly. The dances generated
(see “variety clip” featuring Walk Like an Egyptian®) included splits, intricate
arm and leg movements, head bobbing, toe tapping, and more, usually in concert.

In general, as evolution progresses, behaviors appear more correlated and
smooth; which is both a function of selection and the added network structure.

5 Discussion

Music is composed of a series of periodic spikes in sound energy of different
frequencies. Humans dance by reacting to these events by creatively mapping
them to motor outputs. Similarly, Dance Evolution evolves ANNs that react to
audible spikes of different frequencies through motor outputs.

Dance Evolution applies Al to a unique domain. Both the domain and the
interactive interface minimize the risk of user fatigue, allowing Dance Evolution
to exploit human intuition to solve an otherwise poorly defined problem.

A promising future extension to Dance Evolution is to embed knowledge
of the inherent symmetry of the body into the genetic encoding. Such indirect
encoding [15, 16] would bias the networks toward producing dance sequences that
are partially symmetric, which may increase their natural appeal.

One significant practical application of this achievement is within the video
game industry. Games based on music such as Guitar Hero and Rock Band are
becoming increasingly popular. For game designers, the capability to produce a
large variety of dancers to raw audio recordings can potentially enhance such
games significantly and speed up their development.

Perhaps most interesting is that the functional perspective has also been
shown plausible in music (as a function of time [2]), and art (as a function of
space [4]). By demonstrating that this model can work, Dance Evolution suggests
that human creative expression is indeed possible to model in Al.

9 Walk Like and Egyptian is from the album “Different Light,” released by Columbia
Records.
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Conclusion

This paper presented Dance Evolution, a program that takes advantage of IEC
and ANNs to approach the subjective problem of learning to dance. Additionally,
the paper described the algorithm implemented in Dance Evolution to process
raw audio files into a form suitable for ANN controllers. Dance Evolution proved
capable of training both specific and varied dances on a range of songs. Because
these ANNs simply express functions of the music, the dances that they produce
are naturally coupled to the music.
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