
Multirobot Behavior Synchronization through
Direct Neural Network Communication

In: Proceedings of the 5th International Conference on Intelligent Robotics
and Applications (ICIRA-2012). New York, NY: Springer-Verlang, 2012.

David B. D’Ambrosio, Skyler Goodell, Joel Lehman, Sebastian Risi, and
Kenneth O. Stanley

Department of Electrical Engineering and Computer Science
University of Central Florida

Orlando, Florida 32816-2362, USA
{ddambro,goodsky,jlehman,srisi,kstanley}@eecs.ucf.edu

http://eplex.cs.ucf.edu/

Abstract. Many important real-world problems, such as patrol or search
and rescue, could benefit from the ability to train teams of robots to
coordinate. One major challenge to achieving such coordination is de-
termining the best way for robots on such teams to communicate with
each other. Typical approaches employ hand-designed communication
schemes that often require significant effort to engineer. In contrast, this
paper presents a new communication scheme called the hive brain, in
which the neural network controller of each robot is directly connected
to internal nodes of other robots and the weights of these connections are
evolved. In this way, the robots can evolve their own internal “language”
to speak directly brain-to-brain. This approach is tested in a multirobot
patrol synchronization domain where it produces robot controllers that
synchronize through communication alone in both simulation and real
robots, and that are robust to perturbation and changes in team size.

Keywords: Evolutionary Algorithms, HyperNEAT, Multirobot Teams,
Coordination, Communication, Artificial Neural Networks

1 Introduction

As robot technology has matured and large teams of robots have become more
commonplace, a research question of growing importance is how to best coor-
dinate such robotic teams. While one approach is to coordinate robot teams
centrally, scaling such an approach to many robots and mitigating the inherent
challenges of limited bandwidth and unreliable communication in the real world
may prove problematic [1]. Thus this paper instead focuses on treating robots
as autonomous communicating agents, which notably has proven a robust and
scalable strategy in nature [2, 3]. For example, insect colonies and human society
itself operate by this principle.

Importantly, communication between agents enlarges the scope of their pos-
sible behaviors by enabling coordination and sharing of knowledge. In this way,
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teams of communicating robots may have greater potential than those without
communication. However, an open question in this context is how to best imple-
ment an artificial communication system that allows autonomous robotic agents
to coordinate their behavior. That is, it is unclear a priori how exactly robots
should pass information to each other. In nature, communication between organ-
isms takes diverse forms. For example, ants emit and detect pheromone signals
[2], bees dance and recognize visual dancing patterns [3], and humans vocalize
and interpret the complex auditory signals comprising speech. Interestingly, in
an artificial system it is possible to consider communication systems impossible
or unlikely to be exploited by nature.

In particular, if individual robotic agents’ policies are represented by artificial
neural networks (ANNs), communication between agents can be implemented by
connections between such networks. In other words, one agent’s brain can directly
feed into another’s. By analogy, one way of understanding such a system is to
imagine it as a form of telepathy; information from one agent’s brain can flow into
another’s. The advantage of such an approach is that it bypasses the complexity
of signal transduction. That is, it is unnecessary to encode a message first into an
orthogonal form such as scent, movement, or sound before transmitting it, and
it is symmetrically unnecessary for the recipient to decode it; a bee with such
connections to other bees would not need to dance to indicate to others where
to find food. While the laws of physics prevent such direct connections between
the brains of biological organisms, distributed implementations of ANNs have
no such limitation (though of course inter-network connections may incur some
communication delay).

This insight motivates the novel approach presented in this paper, called the
hive brain, in which agents are controlled by interconnected ANNs. This new
approach for creating communicating multirobot teams is built upon the foun-
dation of an established evolutionary algorithm called multiagent HyperNEAT
(MAHN [4]) that is extended to represent such ANN interdependence and can
scale to evolve teams with many robots. The hive brain extension allows one
robot’s ANN to interconnect with others’ to enable communication between
them. Interestingly, in this way the communication scheme itself can evolve.

This paper investigates a particular kind of collective behavior that such a
hive brain can facilitate. It is inspired by an interesting physical phenomenon
called odd sympathy [5], which is the tendency of pendulum clocks to synchro-
nize when mounted near each other. The cause of such synchronization is that
vibrations from one clock affect the other through the medium on which they are
mounted. In other words, a small amount of physical information is transferred
between the pendulums that results in a larger macrolevel effect, i.e. synchroniza-
tion. An interesting analogy for robot teams would arise if communicating small
amounts of information could likewise cause them to synchronize, which might
have practical applications for teams that must cooperate in tasks sensitive to
timing.

Thus this paper applies the hive brain approach for the first time to evolving
robot teams that synchronize their movements over time. Teams that success-
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fully synchronize are artificially evolved in a computer simulation, demonstrating
that the hive brain can facilitate “odd sympathy”-like behavior in robot con-
trollers. Furthermore, evolved teams are successfully transfered to the real world
in Khepera III robots, illustrating the real-world potential of the technique. The
conclusion is that the hive brain is an interesting new technique for evolving
communicating teams of robots that merits further exploration.

2 Background

This section reviews past work in cooperative multiagent learning that requires
communication and the NEAT and HyperNEAT methods applied in the exper-
iments presented in this paper.

2.1 Cooperative Multiagent Learning

There are two primary traditional approaches to training multiple agents to
collaborate to solve a given task. The first, multiagent reinforcement learning
(MARL), encompasses several specific techniques based on off-policy and on-
policy temporal difference learning [6–8]. The basic principle that unifies MARL
techniques is to identify and reward promising cooperative states and actions
among a team of agents [9, 10]. The other major approach, cooperative coevolu-
tionary algorithms (CCEAs), is an established evolutionary method for training
teams of agents that must work together [11, 12, 10]. The main idea is to main-
tain one or more populations of candidate agents, evaluate them in groups, and
guide the creation of new candidate solutions based on their joint performance.
However, while these approaches are effective in a number of domains [6–10],
their focus is usually not on agents with explicit communication channels.

2.2 Communicating Robots

While communication among robots is not always necessary, tasks that require
coordination without a central controller can benefit from robots that are able
to share information about the world.

One such class of problems, which has been the subject of many studies, is
known as the consensus problem [13]. In the consensus problem multiple agents
must reach an agreement about the current state of the world, which requires
shared information. Consensus schemes have been applied to various multiagent
tasks, ranging from vehicle formations [14], coupled oscillators [15], and robot
position synchronization [16]. While previous work on the consensus problem has
focused on analytical approaches [13], if the individual robotic agents’ policies are
represented as ANNs, the agents should in principle be able to reach consensus
through minimal communication as well.

Different ANN-based approaches to communication have been investigated in
the past, in which the communication between the agents takes diverse forms. In
Yong and Mikkulainen [17], each agent receives directly the position of the other
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agents as input. Di Palolo [18] studied agents that cooperate acoustically, while
the focus of Floreano et al.’s [19] work was evolving robots that communicate by
emitting light. However, unlike the approach introduced in this paper, all these
approaches rely on signal transduction (i.e. a message is encoded, sent and then
decoded) between a sender and a receiver.

Nevertheless, if the agents in a distributed system are controlled by neu-
ral networks, communication between agents could potentially also be imple-
mented by direct connections between such networks. In other words, one agent’s
brain can directly feed into another’s, which makes encoding and decoding mes-
sages unnecessary. The HyperNEAT approach should allow such controllers to
be evolved because it can easily represent such ANN interdependence. The next
section reviews the Neuroevolution of Augmenting Topologies (NEAT) approach,
the foundation of HyperNEAT.

2.3 Neuroevolution of Augmenting Topologies

The HyperNEAT approach extended in this paper is itself an extension of the
original NEAT algorithm that evolves increasing large ANNs. NEAT starts with
a population of simple networks that then increase in complexity over generations
by adding new nodes and connections through mutations. By evolving ANNs
in this way, the topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to find a suitable level of
complexity. Because it starts simply and gradually adds complexity, it tends to
find a solution network close to the minimal necessary size. However, as explained
next, it turns out that directly representing connections and nodes as explicit
genes in the genome cannot scale up to large brain-like networks. For a complete
overview of NEAT see Stanley and Miikkulaninen [20].

2.4 HyperNEAT

Many neuroevolution methods are directly encoded, which means each component
of the phenotype is encoded by a single gene, making the discovery of repeating
motifs expensive and improbable. Therefore, indirect encodings [21–23] have
become a growing area of interest in evolutionary computation and artificial life.

One such indirect encoding designed explicitly for neural networks is the
Hypercube-based NEAT (HyperNEAT) approach [24, 25], which is itself an in-
direct extension of the directly-encoded NEAT approach [26, 20] reviewed in
the previous section. This section briefly reviews HyperNEAT; a complete in-
troduction is in Stanley et al. [24] and Gauci and Stanley [25]. Rather than
expressing connection weights as distinct and independent parameters in the
genome, HyperNEAT allows them to vary across the phenotype in a regular
pattern through an indirect encoding called a compositional pattern producing
network (CPPN; [27]), which is like an ANN, but with specially-chosen activa-
tion functions.

CPPNs in HyperNEAT encode the connectivity patterns of ANNs as a func-
tion of geometry. That is, if an ANN’s nodes are embedded in a geometry, i.e.
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assigned coordinates within a space, then it is possible to represent its con-
nectivity as a single evolved function of such coordinates. In effect the CPPN
paints a pattern of weights across the geometry of a neural network. To un-
derstand why this approach is promising, consider that a natural organism’s
brain is physically embedded within a three-dimensional geometric space, and
that such embedding heavily constrains and influences the brain’s connectivity.
Topographic maps (i.e. ordered projections of sensory or effector systems such
as the retina or musculature) are realized within brains that preserve geomet-
ric relationships between high-dimensional sensor and effector fields [28, 29]. In
other words, there is important information implicit in geometry that can only
be exploited by an encoding informed by geometry.

In particular, geometric regularities such as symmetry or repetition are per-
vasive throughout the connectivity of natural brains. To similarly achieve such
regularities, CPPNs exploit activation functions that induce regularities in Hy-
perNEAT networks. The general idea is that a CPPN takes as input the geomet-
ric coordinates of two nodes embedded in the substrate, i.e. an ANN situated in
a particular geometry, and outputs the weight of the connection between those
two nodes. In this way, a Gaussian activation function by virtue of its symmetry
can induce symmetric connectivity and a sine function can induce networks with
repeated elements. Note that because the size of the CPPN is decoupled from
the size of the substrate, HyperNEAT can compactly encode the connectivity of
an arbitrarily large substrate with a single CPPN.

HyperNEAT also allows the evolution of controllers for teams of agents. This
multiagent HyperNEAT algorithm was first introduced by D’Ambrosio and Stan-
ley [30] and D’Ambrosio et. al [4]. It is designed to work with homogeneous and
heterogeneous teams; however, in this paper the tasks only necessitates the ho-
mogeneous case. While previous experiments with multiagent HyperNEAT did
not involve communication between the agents, the next section introduces such
a model, which should allow the agents to synchronize their movements over
time.

3 Hive Brain Approach

While HyperNEAT has been applied to multiagent problems in the past [4,
31, 30], these previous experiments did not involve communication between the
agents. This paper extends HyperNEAT by allowing it to define inter-network
connections that act as communication channels between agents. Such commu-
nication can be advantageous in situations where agents must cooperate closely
or come to consensus, such as in this paper. Because the agents communicate
through regular ANN connections, the experimenter does not need to define a
specific “language” for communication, and in fact, the agents can devise one of
their own that is easily integrated into their neural architecture.

For simplicity, the teams in this paper are composed of homogeneous agents,
that is, agents who all have the same control policy. Thus HyperNEAT needs
only to create a single ANN and communication scheme and copy this plan to all
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agents in the team. The substrate (i.e. the controller ANN and its geometry) for
a single agent is shown in figure 1b and is made up of five layers: input, receive,
hidden, transmit, and output. The input, hidden, and output layers are familiar
ANN constructs, but the transmitting and receiving layers are additions that
facilitate communication between agents. The transmit layer takes input from
one agent’s hidden layer and sends it to another agent’s receiving layer, which
in turn inputs into the target agent’s hidden layer. In this way messages can
be passed among the entire team of agents. The weights of these connections
are encoded by the CPPN through the inclusion of CPPN input zt (figure 1a)
that defines the target agent of a connection. In this paper communication is
limited to left and right neighbors, so zt is defined as −1 for left neighbors, 0
for intra-agent connections, and 1 for the right neighbor, although more general
communication schemes are possible.

BW

ztx1 y1 x2 y2
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Topology

Evolved by NEAT
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Fig. 1: Hive brain substrate. The CPPN (a) that encodes the connection weights
in a hive substrate (b) is augmented with a zt input that determines the target of
the connection. The hive substrate (b) includes input, output, and hidden layers.
However two of the hidden layers are designated as transmitting and receiving
layers that are used for communication. The flow of information between agents
is shown by the dashed lines. The inputs are the left and right sensors and the
output is interpreted as a motor command, which are discussed in Section 4.

4 Synchronization Experiment

To demonstrate the ability to communicate, the robots are tested on their ability
to synchronize their movements as they patrol a room. This domain is motivated
by the natural phenomenon called odd sympathy [5], in which closely situated
pendulums tend to synchronize their motions through tiny vibrations. In effect
these vibrations are like simple messages; thus the hive brain communication
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scheme should in principle be able to produce similar results. In this domain,
synchronization is defined for the robots as moving in unison such that their
patrol trajectories begin and end at the same time. To focus on the issue of syn-
chronization, the robots are restricted to moving left and right within a rectan-
gular room. Thus an optimal solution would be for all robots to reverse direction
at the same time before hitting a wall. Overall, the robots should oscillate back
and forth between walls in synchrony, thereby covering the room reliably and
systematically. The challenge is that the robots are not started in synchrony, so
they must cooperate to achieve it, which tests the ability of the hive to produce
a coordinated result. An interesting advantage of this approach is that it does
not require explicit positional information to be encoded in the agents, which
may not be easily obtained in the real world due to sensor ambiguity.

Each robot has left and right rangefinder sensors that return the distance of
the robot to a wall, up to 30 cm, normalized between 0.0 and 1.0. The robot has a
single effector that determines both the direction and speed of motion: an output
between 0 and 0.5 will cause the robot to move left at a speed between 2.5 cm/sec
and 5.0 cm/sec based on the value of the output. Similarly, an output between
0.5 and 1.0 will cause the robot to move right at a velocity within that same
range. To determine the output for a given timestep, each network is activated
four times: enough so that information about an agent’s current input can travel
to the output, but not enough times for information about neighbors’ inputs
to reach the output, effectively creating a communication delay. Importantly,
the robots cannot see each other and can only see walls, so they must rely on
communication to properly synchronize.

Training (i.e. evolution) occurs in a robot simulator (figure 2a) where teams of
four agents are trained on five different initial configurations of robots between
two walls between which they must patrol. These configurations are created
by lining the robots up in the center of the room and then staggering their
positions by different amounts. This approach forces the robots to find a general
syncing policy that can work from multiple starting configurations. Teams are
trained by HyperNEAT with a multiobjective reward scheme through NSGAII
[32] with three objectives: (1) minimize the distance between each robot and
its neighbors, (2) patrol back and forth in the room, and (3) maintain genomic
diversity (calculated through NEAT speciation [20]). The distance objective is
calculated by, at each time step, summing the distance from each robot to the
next robot in the line and then dividing by the number of robots minus one. The
average of these normalized sums over all time steps is the distance objective.
The patrolling objective is simply the average number of patrol cycles performed
by each robot divided by 25 (the maximum number of cycles possible in the given
time).

An ideal team should quickly synchronize their behaviors so that the dis-
tances are minimized and continually patrol the room without crashing or get-
ting stuck. Because teams start out desynchronized it is impossible to completely
maximize both objectives, so a team with a normalized sum of 1.9 or greater
is considered to have solved the problem in the simulator. The third objective,
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diversity, is only included to increase the efficiency of the optimization process,
i.e. it is not the explicit goal of the experiment, so it is not included in the
performance measure. The multiobjective approach was found useful in this do-
main because the two tasks of minimizing distance and patrolling are simple to
accomplish on their own, but deceptively complex to accomplish simultaneously.

Selected teams were later transferred to actual Khepera III robots to per-
form the same task in the real-world (figure 2b). These robots have several IR
rangefinder sensors: the rear sensor serves as the “left” sensor from simulation,
and because there is no direct front sensor, the average of the two front-most
sensors is used to determine the value of the “right” sensor. The robots are
placed on a posterboard surface between two walls 68.5cm apart that are made
of red bricks. In addition to the training size of four robots, the scalability of
the solutions was also tested in the real world by testing teams of three and five
robots from the same CPPN that was trained on only four. Furthermore, the
robustness of solutions was tested by manually desynchronizing the robots once
they already synchronized themselves.

(a) Simulated Robots (b) Actual Robots

Fig. 2: Synchronization Domain. In this domain, robots are placed inside a room
such that their positions are initially staggered. The goal is for them to move
such that their motions become synchronized.

4.1 Experimental Parameters

Because HyperNEAT differs from original NEAT only in its set of activation
functions, it uses the same parameters [20]. The experiment was run with a
modified version of the public domain SharpNEAT package [33]. The size of the
population was 500 with 20% elitism. The number of generations was 300. Sex-
ual offspring (50%) did not undergo mutation. Asexual offspring (50%) had 0.96
probability of link weight mutation, 0.03 chance of link addition, and 0.01 chance
of node addition. The coefficients for determining species similarity were 1.0 for
nodes and connections and 0.1 for weights. The available CPPN activation func-
tions were sigmoid, Gaussian, absolute value, and sine, all with equal probability
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of being added to the CPPN. Parameter settings are based on standard Sharp-
NEAT defaults and prior reported settings for NEAT [20, 34]. They were found
to be robust to moderate variation through preliminary experimentation.

5 Results

From 20 simulated runs of evolution, 17 runs evolved a solution with performance
above or equal to the success threshold of 1.90. On average the algorithm took
41 generations to find such a solution (stddev = 52). Of these solutions, all but
two maintained a performance of 1.90 or greater when tested on untrained team
sizes of three and five in simulation.

The best-performing team in each run that produced a solution was trans-
ferred to real Khepera III robots. Of the 17 runs that were successful in simu-
lation, 15 were able to duplicate that behavior in real robots (figure 3). When
robots were agitated during evaluation, i.e. removed from formation and then
returned to the room out of sync, the teams could quickly resynchronize their
motions. Additionally, the two teams that had the highest sum of objectives dur-
ing simulation were further tested on their ability to synchronize in real robots
when scaled to teams of three and five robots (on which they were not trained)
and were able to successfully synchronize. Videos of the robots synchronizing
can be found at http://eplex.cs.ucf.edu/demos/hive-brain-patrol.

Every working solution demonstrated a similar strategy: The team moves
in the same direction towards a wall until the first agent detects the wall with
its rangefinder. At that point all other agents either move towards the wall to
catch up or oscillate near the wall while waiting for other agents to gather. Once
enough agents gather at the wall or enough time passes all agents ultimately
flip direction and run the same procedure on the opposite wall. Over several
such iterations the agents lock into phase. This behavior was observed both in
solutions running in the simulator and the solutions transfered to the actual
Khepera III robots.

Fig. 3: Synchronization Example. The robots start out disorganized and un-
aligned, but using communication they are able to synchronize their movements.

Another capability that derives from this kind of team is the ability to syn-
chronize regardless of the initial direction of each agent. With no further train-
ing the teams are able to synchronize against alternating opposite walls in real
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robots, creating a staggered patrolling pattern that covers more of the room at
any given time (as can be seen in the videos at the above address), demonstrat-
ing that a variety of behaviors can be synchronized from this approach, and
suggesting the potential for learning more complex patrol routes in the future.

6 Discussion

The results demonstrate that the hive brain approach to communication does
allow agents to learn on their own to communicate effectively. Thus even with
only the ability to communicate with direct neighbors the team is coming to
a simple consensus about when it should leave the wall, which clearly requires
communication and is the subject of many studies [35].

The hive brain approach was also often successful in real robots despite sensor
and actuator noise (and manual desynchronization), implying that the policies
discovered can be robust. The ability for teams to scale to new sizes, despite
only being trained with four agents, also suggests that a general synchronization
policy is consistently found. Perhaps most interestingly, the multiagent hive brain
makes up its own communication strategy to solve the task, without any a priori
programming.

These results open up a number of possible directions for future research
based on the hive brain. First, a natural step would be to exploit multiagent
HyperNEAT to create heterogeneous teams of communicating agents, whose
communication can also thereby be heterogeneous. The robots in this paper were
homogeneous and had predefined partners with which to communicate; however
it would also be possible to allow HyperNEAT to decide with whom they need to
talk to accomplish the task. Preliminary experiments suggest that letting every
agent talk to every other agents produces too much cross-talk, resulting in poor
performance. However, approaches like HyperNEAT-LEO [36] could potentially
allow HyperNEAT to define appropriate patterns of communication on its own.
There is also substantial room to explore how the communication connections are
configured; in this paper there are explicit transmitting and receiving layers for
communication, but other approaches such as directly connecting output layers
to hidden layers could prove useful depending on the domain. Finally, the hive
brain approach could be combined with other learning algorithms in addition to
HyperNEAT.

7 Conclusion

This paper demonstrated a new multiagent communication technique called the
hive brain, in which the ANNs of agents are directly connected to each other.
The initial demonstration of this approach in this paper allowed simulated agents
to synchronize their movements through communication and the strategies that
were discovered were verified in actual Khepera III robots. This new technique
opens the door to significant additional research and applications by suggesting
a new way of thinking about robot communication.
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