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Abstract Multiagent systems present many challenging,
real-world problems to artificial intelligence. Because it is
difficult to engineer the behaviors of multiple cooperating
agents by hand, multiagent learning has become a popular
approach to their design. While there are a variety of tradi-
tional approaches to multiagent learning, many suffer from
increased computational costs for large teams and the prob-
lem of reinvention (that is, the inability to recognize that
certain skills are shared by some or all team meManum-
ber). This paper presents an alternative approach to mul-
tiagent learning called multiagent HyperNEAT that repre-
sents the team as a pattern of policies rather than as a set
of individual agents. The main idea is that an agent’s loca-
tion within a canonical team layout (which can be physi-
cal, such as positions on a sports team, or conceptual, such
as an agent’s relative speed) tends to dictate its role within
that team. This paper introduces the term policy geometry to
describe this relationship between role and position on the
team. Interestingly, such patterns effectively represent up to
an infinite number of multiagent policies that can be sam-
pled from the policy geometry as needed to allow training
very large teams or, in some cases, scaling up the size of a
team without additional learning. In this paper, multiagent
HyperNEAT is compared to a traditional learning method,
multiagent Sarsa(λ ), in a predator-prey domain, where it
demonstrates its ability to train large teams.

Keywords Multiagent Learning, Indirect Encoding,
HyperNEAT, Neural Networks

David B. D’Amborsio · Kenneth O. Stanley
Department of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd. , Orlando FL 32816-2362 USA
E-mail: ddambro@eecs.ucf.edu, kstnaley@eecs.ucf.edu

1 Introduction

Cooperative multiagent learning focuses on training groups
of autonomous agents to work together to solve problems.
By intelligently dividing responsibility among the agents,
such teams can solve difficult problems that may be pro-
hibitive for a single agent [78, 100, 107]. Researchers across
artificial intelligence are interested in multiagent systems
because they apply to real world problems and the chal-
lenge of controlling and coordinating multiple interacting
agents provides a compelling opportunity to demonstrate the
promise of sophisticated learning techniques [8, 66, 100].

At present, two leading approaches to multiagent learn-
ing are cooperative coevolutionary algorithms (CCEAs; [31,
67, 68, 73, 74]) and multiagent reinforcement learning
(MARL; [10, 17, 47, 102]). At heart, these approaches pose
multiagent learning as an extension of single-agent learn-
ing in the sense that teams are trained as multiple instances
of the single-agent learning problem that are also rewarded
for effectively cooperating. In contrast, this paper provides
a novel perspective on how to represent and train a team of
agents based on discovering how their roles relate to each
other.

An interesting property of real life teams is that the be-
haviors and policies of team members tend to be dictated by
their canonical position within the team. The result is that
the policies (what an agent should do given a certain situa-
tion) of agents on a team are often distributed in a pattern
according to their positions. In other words, the team has a
policy geometry that dictates how each member should be-
have based on their location within the team. For example, in
a soccer (that is, football) team (Fig. 1), the positions closest
to the goal are defensive and become incrementally more of-
fensive the farther they are from the goal. Also importantly,
even as policies vary, agents tend to share common skills; in
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Fig. 1: Role as a Function of Geometry. In the soccer team
in the picture, the defensive to offensive dimension of vari-
ation spans from left to right. The question marks represent
a hypothetical new line of players whose roles can be in-
ferred from their positions. An important observation is that
the policies are distributed in a pattern in space.

the soccer example, all players know how to pass and kick.
Note that these positions need not be related to the physical
location of the team members. For example, in a team of col-
laborating robots that move at different speeds, their “posi-
tion” along the dimension of speed defines a conceptual pol-
icy geometry that similarly can dictate the roles of the robots
(that is, slower robots should perform different tasks than
faster ones). An intriguing implication of the idea of policy
geometry for multiagent learning is that, rather than learn-
ing the policies of individual agents, the training method can
learn how the pattern of policies relates to the geometry of
the team and derive the policies of individual agents based
on that relationship.

To see the benefits of this perspective, consider that
in traditional approaches, the complexity of the multiagent
learning problem increases with the size of the team because
the number of possible team states grows with the number of
agents, as does the uncertainty of individual agents, which
limits the size of teams that can be trained [14, 67]. How-
ever, representing multiagent teams as a pattern of policies,
that is, as a set of related policies, rather than as individual
agents, eliminates this problem because all that needs to be
learned and represented is the pattern. Even more interest-
ing is that such a pattern effectively represents up to an infi-
nite number of multiagent policies that can be sampled from
the policy geometry as needed; thus multiagent teams repre-
sented in this way have no a priori bound on their team size.
This capability means that large teams can be trained. It also
provides a heuristic for scaling the size of a team that was
trained to complete a task with a specific number agents up

and down dynamically, depending on the number of agents
available when the task is attempted in the real world.

While homogeneous and heterogeneous learning are
usually separated conceptually in discussions of multiagent
learning [67, 99, 115], another important insight is that het-
erogeneity can alternatively be viewed as a continuum that
begins at pure homogeneity and ends at radical differentia-
tion. For example, in this view, it is possible for a team to be
nearly homogeneous but not completely. In such a team, to
a large extent, many skills and behaviors are shared among
agents on the team even though individuals possess their
own unique tendencies, suggesting the possibility to avoid
redundantly discovering and representing common skills.
Such intermediate configurations between pure homogene-
ity and extreme heterogeneity are common in human teams.
For example, in soccer, players share many fundamental
abilities, from low-level universal human faculties such as
visual recognition to high-level skills such as passing and
dribbling the ball. In fact, it is difficult to think of a kind of
team that is purely heterogeneous (that is, no team members
share any traits or skills whatsoever).

This view of heterogeneity as extending from pure ho-
mogeneity exposes a potential problem with approaches that
treat heterogeneous agents as separately learned entities.
This problem of reinvention is that many of the shared skills
that often should dominate the policies of every agent in fact
must be reinvented separately for each agent. Thus a more
principled approach should be able to represent the com-
monalities as a regularity that only needs to be discovered
and encoded once. The novel approach in this paper shows
how such team encoding is possible through learning policy
geometry.

In effect, this paper introduces a method that both ad-
dresses the problem of reinvention and provides a way to
overcome the computational obstacles to scaling the size of
multiagent teams by representing them as patterns of poli-
cies rather than as individual agents. To implement this idea,
hypercube-based neuroevolution of augmenting topologies
(HyperNEAT), an approach to evolving artificial neural net-
works (ANNs) that has demonstrated success in single agent
control and in encoding large, scalable neural networks
[18, 35, 96, 113], is extended to encode patterns of ANNs
distributed across space with a single genome. The spatial
distribution of ANNs matches with the locations (physical or
conceptual) of agents on the team, thereby allowing Hyper-
NEAT to learn a pattern of policies (that is, the policy geom-
etry), all generated from the same genome. In this way, Hy-
perNEAT can reuse critical information by learning the ways
in which roles relate to one another to conquer the prob-
lem of reinvention and scale teams to new sizes by sampling
from the policy geometry. The idea of applying HyperNEAT
to multiagent learning in this way was first raised in confer-
ences papers by D’Ambrosio and Stanley [26], D’Ambrosio
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et al [25], and later Knoester et al [52], but is significantly
expanded and comprehensively investigated in this paper for
the first time.

To demonstrate its promise, the multiagent HyperNEAT
method is tested in a multiagent predator-prey domain in
which a team of multiple predators that cannot see each
other is trained to round up a team of prey that try to run
away. This task is challenging because the predators must
coordinate their behavior to avoid pushing the prey away
from each other. To show that multiagent HyperNEAT in-
deed gains an advantage by distributing heterogeneous poli-
cies across space, it is compared to the more traditional mul-
tiagent Sarsa(λ ) reinforcement learning technique, focusing
on how both methods fare with very large team sizes. Fur-
thermore, smaller HyperNEAT-trained teams are scaled af-
ter training to much larger sizes, up to 1,024 agents, that
still coordinate seamlessly, thereby establishing the ability
to scale afforded by learning the policy geometry.

Thus the main conclusion is that by representing teams
as a pattern of policies rather than as individual agents, Hy-
perNEAT can train much larger effective multiagent teams
than have heretofore been possible and provides a heuristic
to scale already-trained teams to larger sizes. Additionally,
by viewing the team as a point on the continuum of het-
erogeneity, rather than as purely heterogeneous or homoge-
neous, HyperNEAT is able to vary existing singleton poli-
cies into effective team-wide strategies. In contrast, multia-
gent Sarsa(λ ) does not have access to such tools and is only
able to find piece-wise solutions for smaller teams. Thus,
the new ideas in multiagent HyperNEAT contribute a novel
practical advantage. In the future, by exploiting policy ge-
ometry, this advantage may also be possible to extend to
more traditional approaches such as multiagent Sarsa(λ ) as
well.

The paper begins with a review of cooperative multi-
agent learning, NEAT, and HyperNEAT in the next sec-
tion. The multiagent HyperNEAT approach is then detailed
in Section 3. Section 4 describes and presents results in a
predator-prey domain. Section 6 then discusses the implica-
tions of these results and outlines future work, followed by
conclusions in Section 7.

2 Background

This section reviews relevant multiagent approaches and the
NEAT and HyperNEAT methods that form the backbone of
multiagent HyperNEAT.

2.1 Cooperative Multiagent Learning

Multiagent systems confront a broad range of domains, cre-
ating the opportunity for real-world applications such as

room clearing, pursuit [27], and synchronized motion [77].
In cooperative multiagent learning, which is reviewed in this
section, agents are trained to work together to accomplish a
task, usually by one of several alternative methods. Teams
can sometimes share a homogeneous control scheme, which
means that all agents have the same control policy and thus
only one policy is learned. However, it has been shown [122]
that teams of agents with heterogeneous behaviors can solve
tasks that homogeneous teams cannot; thus this paper will
focus mainly on teams with heterogeneous policies but ho-
mogeneous physical capabilities.

2.1.1 Traditional Approaches

There are two major classes of approaches to multiagent
learning: multiagent reinforcement learning (MARL; [23,
58, 87, 97]) and cooperative coevolutionary algorithms
(CCEAs; [31, 67, 72]). While these approaches are mainly
the focus of separate communities, Panait et al [71] noted re-
cently that they share a significant common theoretical foun-
dation. One key commonality is that they break the learn-
ing problem into separate roles that are semi-independent
and thereby learned separately through interaction with each
other. Although this idea of separating multiagent problems
into parts is popular, it does create challenges for certain de-
sirable objectives such as scaling to larger team sizes, which
is a focus in this paper. The problem is that when individ-
ual roles are learned separately, there is no representation of
how roles relate to the team structure and thus it is difficult
to assign new roles automatically to new individuals; they
must somehow be derived through interactions or inferences
[9, 15]. Nevertheless, these approaches have produced sig-
nificant insight into multiagent learning, and are reviewed in
this section.

MARL encompasses several specific techniques based
on off–policy and on–policy temporal difference learning
[10, 17, 47, 102]. The basic principle that unifies MARL
techniques is to identify and reward cooperative or benefi-
cial states and actions among a team of agents to encourage
their repetition, eventually resulting in an effective team af-
ter a number of repetitions [13, 67]. For example, if a group
of predator agents is tasked with capturing a prey, agents are
all rewarded at least in part when the prey is captured. The
reward is a signal that their recent actions were useful and
should be repeated with greater probability. Conversely, ac-
tions that are not rewarded or that are punished are less likely
to be repeated. Rewards can be given globally (to the entire
team) or locally (to single agents or groups of agents) and
agents may update their own policies or maintain a single
group policy depending on the specific method chosen.

One reason that MARL is attractive is because it is pos-
sible to prove convergence to Nash equlibria in some situa-
tions [46, 87]. Yet such guarantees rely on having complete
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or at least significantly large amounts of information about
the world state, and lacking such information is often what
makes multiagent domains challenging [85]. Even in scenar-
ios with sufficient state information, the number of possible
states the team can grow with the number of agents, making
the full state space difficult to approximate and increasingly
uncertain. Additionally, there is also the credit assignment
problem [61], wherein it is not always possible for the in-
dividual agents to associate the rewards with the correct ac-
tions. Thus experimenters must carefully identify the correct
reward states manually to minimize this uncertainty. Nev-
ertheless, MARL has provided several successes including
intrusion detection [84] and trading strategies [56].

The other major approach, CCEAs, is an established
evolutionary method for training teams of agents that must
work together [31, 48, 67, 68, 73]. The main idea is to main-
tain one or more populations of candidate agents, evaluate
them in groups, and guide the creation of new candidate
solutions based on their joint performance. An important
distinction among coevolutionary methods is the population
model chosen, which can range from a single-population
from which all team members are drawn [12, 76] to separate
populations for each agent on the team [73]. Recent work by
Panait et al [69] has shown that CCEA performance is en-
hanced by keeping an archive of informative collaborators,
an idea that is also relevant to MARL.

In cooperative coevolution, agents are explicitly re-
warded for their cooperative abilities and multiple combina-
tions may be evaluated in the same population, potentially
leading to more robust solutions. However, depending on
the population model employed, trade-offs between special-
ization and skill sharing must be made. In the single pop-
ulation model, genetic information is easily spread among
the entire population; thus if an agent finds a good gen-
eral strategy other agents can potentially adopt it. However,
with only one population it is difficult for agents to special-
ize to specific roles [119]. In contrast, multiple populations
encourage specialization, yet the separate populations must
reinvent basic, useful policies. Additionally, by evaluating
agents with many different teams, depending on the evalua-
tion scheme there is a risk of encouraging too much gener-
alization [70], which means the resulting team may not be
the best possible. Another significant problem is that adding
more agents to the team results in a significant increase in
computational complexity; the need for more sampling and
potentially more populations and can significantly impact
the ability to optimize the performance of the final team
[62]. The approach in this paper addresses this problem with
training large teams.

Both CCEAs and MARL face the problem of reinven-
tion. That is, because agents are treated as separate sub-
problems they must usually separately discover and repre-
sent all aspects of the solution, even though there may be a

high degree of overlapping information among the policies
of each agent. CCEAs commonly separate agents into dif-
ferent populations, creating strict divisions among agents,
and in MARL methods, each agent may learn a separate
value function based upon individual experiences. There
have been attempts to address the problem of reinvention
such as introducing existing agents that “train” new agents
[75, 107] or implementing specially designed genetic oper-
ators [42]. However, an intriguing alternative is to exploit
the continuum of heterogeneity, which means distributing
shared skills optimally among the agents and only repre-
senting such skills once. At the same time, unique abilities
could be isolated and assigned appropriately. The method in
this paper addresses the problem of reinvention by finding
the right point on the continuum of heterogeneity.

There are several extensions to these basic approaches
that attempt to make the problem of multiagent learning
more tractable. Layered learning [45, 98] takes inspiration
from multiagent learning in the sense that a complex prob-
lem is broken into smaller sub-problems that should be eas-
ier to learn. In layered learning, the policy of each agent is
first broken up by the experimenter into subtasks through
a hierarchical decomposition. These subtasks are then ar-
ranged into layers based on their interdependencies. Sub-
tasks are learned independently, in layer order. That is, sub-
tasks that do not depend on other subtasks are learned first,
followed by subtasks that depend on those subtasks and so
on. When all subtasks are learned they are combined into a
single policy for the agent. A possible downside to this ap-
proach is that when the subtasks are trained independently
there may be inconsistencies between the sub-domain in
which they were trained and the actual domain to which
they will be applied. Concurrent layered learning [118] ad-
dresses this issue by allowing lower layers to continue to
learn when higher layers are being trained. Both versions of
layered learning have proven successful in many domains,
particularly Robocup soccer. However, both methods also
require significant effort by the researcher to properly de-
compose the agent policies and to design sub-domains that
effectively train the subtasks. Additionally, both methods re-
strict the search space of the algorithm, which can speed up
search, but also restricts the types of solutions and strategies
employed. The approach in this paper avoids the up-front ef-
fort of dividing tasks by hand while also bypassing the need
for such restrictions.

Another technique that can benefit multiagent learning
is transfer learning [106, 108], wherein agents trained in one
domain (source task) can be transferred to another domain
(target task) while maintaining and exploiting knowledge
gained in the original domain. If the target task is similar
enough to the source task (that is, the state-action space is
the same) teams may immediately be applicable and thereby
simply continue learning in the new domain. However if the
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domains are very different, a mapping must be constructed
between the two tasks [109]. In this paper, teams of agents
are trained at one size and then transferred to another size,
which has been explored previously [109]. However, unlike
such previous work, the approach in this paper often does
not require retraining to perform tasks at the new team sizes.

In this paper, multiagent Sarsa(λ ), an on-policy MARL
approach [101, 104, 112] is compared to multiagent Hyper-
NEAT. Sarsa(λ ) is ideal for this comparison for several rea-
sons. In terms of computational complexity, training large
teams with CCEAs would be too expensive for large teams
due to the combinatorial properties of team evaluations;
Sarsa(λ ) does not have this combinatorial problem. Addi-
tionally, it has preformed well in high-profile multiagent
tasks [101]. Finally, as mentioned earlier, research indicates
theoretical similarities between MARL and CCEAs, thus a
comparison against one serves as a comparison against both.

2.1.2 Alternative Techniques

Breaking the team into separate parts is not the only way to
distribute policies. This section reviews several alternative
approaches.

One such approach is to optimize a single, monolithic
controller that takes inputs from all the agents and outputs
the actions of all the agents. Such consolidation allows in-
formation sharing but generally increases the dimensional-
ity of the search significantly, while ignoring separability
[122]. Such a model also assumes the existence of global,
instantaneous communication, which is infeasible in most
real world scenarios. A related approach is to directly en-
code several disconnected policies in a single monolithic de-
scription [6, 59, 62], which gains separability at the expense
of information sharing. In both cases, adding more agents to
the teams causes large increases in the search space, espe-
cially in the single controller case.

One solution to reduce dimensionality in either case
without combining multiple individuals is to assign the same
homogeneous control system to each agent [4, 11]. If all the
agents are controlled by separate instantiations of a single
controller, then it is only necessary to discover that one pol-
icy, and the problem of sharing discoveries disappears. This
approach has produced significant results in swarm robotics,
such as a team of four connected robots that exhibit coor-
dinated trajectories [4]. However, Yong and Miikkulainen
[122] show that in predator-prey tasks with three preda-
tors and one prey, heterogeneous teams learn more effective
strategies than homogeneous ones. Thus, while a homoge-
neous team may be easier to train and scale, there are limits
to what it can do [115]: Pure homogeneity is only a single
point on the continuum, while heterogeneity is the contin-
uum.

In summary, there are many challenges faced by multi-
agent learning, and choosing one method over another gen-
erally leads to trade-offs among several competing factors.
However, in almost all cases, adding more agents to the team
greatly impacts the efficiency of search and, as a result, the
overall quality of the resulting multiagent team.

2.2 Evolution and Indirect Encodings

In the context of reinforcement learning problems (such as
in multiagent learning), an interesting property of evolution-
ary computation (EC) is that it is guided by a fitness function
rather than from an error computation derived from a reward
prediction. The independence of the fitness function from
direct error computation has encouraged much experimenta-
tion with alternative representations because representations
in EC do not need to support an algorithm for optimizing
error. Such freedom has led to the advent of innovative rep-
resentations for neural networks and also to novel methods
for encoding complex structures, as described in this section.

The specific subfield of EC that is implemented in this
paper is called neuroevolution (NE), which employs EC to
create artificial neural networks (ANNs) [32, 121]. In this
approach, the phenotype is an ANN and the genotype is an
implementation-dependent representation of the ANN. As-
suming that the representation is sufficiently robust, NE can
evolve any type of ANN, including recurrent and adaptive
networks [79, 88]. Early attempts at NE used fixed-topology
models that were designed by the experimenter [64]. In the
fixed-topology approach, the genotype is simply an array of
numbers that represented the weights of each connection in
the network. However, this approach is also restrictive be-
cause the solution may be difficult to discover or may not
exist at all in the chosen topology. Thus new techniques
that allowed evolving both connection weights and network
topology were developed [44, 55, 90]. One such method,
NeuroEvolution of Augmenting Topologies or NEAT, which
is described next, has proven successful and serves as the
foundation for the multiagent learning approach introduced
in this paper.

2.2.1 NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential decision tasks
[90, 92, 94]. In this paper, it is significantly extended to
evolve the representation of teams of agents. Nevertheless,
the basic principles of NEAT, reviewed in this section, still
supply the foundation of the approach.

Traditionally, ANNs evolved by NEAT control agents
that select actions based on their sensory inputs. NEAT
is unlike many previous methods that evolved neural net-
works, that is, neuroevolution methods, which historically



6 David B. D’Ambrosio, Kenneth O. Stanley

evolved either fixed-topology networks [37, 80], or arbitrary
random-topology networks [3, 39, 121]. Instead, NEAT be-
gins evolution with a population of small, simple networks
and increases the complexity of the network topology into
diverse species over generations, leading to increasingly so-
phisticated behavior. A similar process of gradually adding
new genes has been confirmed in natural evolution [60, 117]
and shown to improve adaptation in a few prior evolution-
ary [2] and neuroevolutionary [41] approaches. However,
a key feature that distinguishes NEAT from prior work in
evolving increasingly complex structures is its unique ap-
proach to maintaining a healthy diversity of structures of
different complexity simultaneously, as this section reviews.
This approach has proven effective in a wide variety of do-
mains [1, 93, 95, 111]. Complete descriptions of the NEAT
method, including experiments confirming the contributions
of its components, are available in Stanley and Miikkulainen
[90, 92] and Stanley et al [94].

The NEAT method is based on three key ideas. First, to
allow network structures to increase in complexity over gen-
erations, a method is needed to keep track of which gene is
which. Otherwise, it is not clear in later generations which
individual is compatible with which in a population of di-
verse structures, or how their genes should be combined
to produce offspring. NEAT solves this problem by assign-
ing a unique historical marking to every new piece of net-
work structure that appears through a structural mutation.
The historical marking is a number assigned to each gene
corresponding to its order of appearance over the course of
evolution. The numbers are inherited during crossover un-
changed, and allow NEAT to perform crossover among di-
verse topologies without the need for expensive topological
analysis.

Second, NEAT speciates the population so that individ-
uals compete primarily within their own niches instead of
with the population at large. Because adding new structure
is often initially disadvantageous, this separation means that
unique topological innovations are protected and therefore
have the opportunity to optimize their structure without di-
rect competition from other niches in the population. NEAT
uses the historical markings on genes to determine to which
species different individuals belong.

Third, many approaches that evolve network topologies
and weights begin evolution with a population of random
topologies [39, 121]. In contrast, NEAT begins with a uni-
form population of simple networks with no hidden nodes,
differing only in their initial random weights. Because of
speciation, novel topologies gradually accumulate over evo-
lution, thereby allowing diverse and complex phenotype
topologies to be represented. No limit is placed on the
size to which topologies can grow. New nodes and connec-
tions are introduced incrementally as structural mutations
occur, and only those structures survive that are found to

be useful through fitness evaluations. In effect, then, NEAT
searches for a compact, appropriate topology by incremen-
tally adding complexity to existing structure.

The next section reviews the HyperNEAT extension to
NEAT that is itself extended in this paper to generate multi-
agent teams.

2.2.2 CPPNs and HyperNEAT

A key similarity among many neuroevolution methods, in-
cluding NEAT, is that they employ a direct encoding, that
is, each part of the solution’s representation maps to a sin-
gle piece of structure in the final solution. For example, in
NEAT, the genome is a list of connections and nodes in
the neural network in which each item corresponds to ex-
actly one component in the phenotype. Yet direct encodings
impose the significant disadvantage that even when differ-
ent parts of the solution are similar, they must be encoded
and therefore discovered separately. This challenge is re-
lated to the problem rediscovery in multiagent systems: Af-
ter all, if individual team members are encoded by separate
genes, even if a component of their capabilities is shared,
the search algorithm has no way to exploit such a regularity.
Thus this paper leverages the power of indirect encoding in-
stead, which means that the description of the solution is
compressed such that information can be reused, allowing
the final solution to contain more components than the de-
scription itself.

For example, if a hypothetical solution ANN required all
weights to be set to 1.0, NEAT would separately have to dis-
cover that each such weight must be 1.0 whereas an indirect
encoding could instead discover that all weights should be
the same value. Indirect encodings are often motivated by
development in biology, in which the genotype (DNA) maps
to the phenotype (the living organism) indirectly through a
process of growth [5, 57, 91]. Indirect encodings are power-
ful because they allow solutions to be represented as a pat-
tern of policy parameters, rather than requiring each param-
eter to be represented individually. This capability is the fo-
cus of the field called generative and developmental systems
[5, 7, 30, 43, 57, 63, 86, 89, 91].

HyperNEAT, reviewed in this section, is an extension of
NEAT that allows it to benefit from indirect encoding. Hy-
perNEAT has become a popular neuroevolution method in
recent years and is proven in a wide range of domains such
as board games [33–36], adaptive maze navigation [79],
quadruped locomotion [21], keepaway soccer [113, 114]
and a variety of others [18–20, 22, 28, 40, 96, 120]. For a
full description of HyperNEAT see Stanley et al [96] and
Gauci and Stanley [35].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [89]) instead of ANNs. CPPNs are a high-level ab-



Scalable Multiagent Learning through Indirect Encoding of Policy Geometry 7

straction of the development process in nature, intended to
approximate its representational power without the compu-
tational cost. The idea is that regular patterns such as those
seen in nature can be approximated at a high level by com-
positions of functions, wherein each function in the compo-
sition loosely corresponds to a canonical event in develop-
ment. For example, a Gaussian function is analogous to a
symmetric chemical gradient. Each such component func-
tion also creates a novel geometric coordinate frame within
which other functions can reside. For example, any function
of the output of a Gaussian will output a symmetric pattern
because the Gaussian is symmetric. In this way, the Gaus-
sian is a coordinate frame like a chemical gradient in natural
development that provides a context for growing symmetric
structures.

The appeal of this encoding is that it allows a represen-
tation akin to developmental processes to be encoded as net-
works of simple functions (that is, CPPNs), which means
that NEAT can evolve CPPNs just like ANNs. CPPNs are
similar to ANNs, but they rely on more than one activation
function (each representing a chemical gradient common to
development) and are an abstraction of development rather
than of brains. Also, unlike other artificial developmental
encodings, CPPNs do not require an explicit simulation of
growth or local interaction, yet still exhibit their essential
representational capabilities [89].

Specifically, CPPNs produce a phenotype that is a func-
tion of n dimensions, where n is the number of dimen-
sions of the desired solution, for example, n = 2 for a two-
dimensional image. For each coordinate in that space, its
level of expression is output by the CPPN, which encodes
the phenotype. Fig. 2 shows how a two-dimensional pheno-
type can be generated by a function of two parameters that
is represented by a network of composed functions. Because
CPPNs are a superset of traditional ANNs, which can ap-
proximate any function [24], CPPNs are also universal func-
tion approximators. Thus a CPPN can encode any pattern
within its n-dimensional space.

The appeal of the CPPN as an indirect encoding is that
it can compactly encode patterns with regularities such as
symmetry, repetition, and repetition with variation [82, 83,
89]. For example, simply by including a Gaussian function,
which is symmetric, the output pattern can become symmet-
ric. A periodic function such as sine creates segmentation
through repetition. Most importantly, repetition with varia-
tion (for example, the fingers of the human hand) is easily
discovered by combining regular coordinate frames (for ex-
ample, sine and Gaussian) with irregular ones (for example,
the asymmetric x-axis). For example, a function that takes
as input the sum of a symmetric function and an asymmetric
function outputs a pattern with imperfect symmetry. In this
way, CPPNs produce regular patterns with subtle variations
reminiscent of many seen in nature. The potential for CPPNs

CPPN
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Fig. 2: CPPN Encoding. (a) The CPPN takes arguments x
and y, which are coordinates in a two-dimensional space.
When all the coordinates are drawn with an intensity corre-
sponding to the output of the CPPN, the result is a spatial
pattern, which can be viewed as a phenotype whose geno-
type is the CPPN. (b) Internally, the CPPN is a graph that
determines which functions are connected. As in an ANN,
the connections are weighted such that the output of a func-
tion is multiplied by the weight of its outgoing connection.
The CPPN in (b) actually produces the pattern in (a)

to represent patterns with natural motifs has been demon-
strated in several studies [89] including an online service
on which users collaboratively breed patterns represented by
CPPNs [82, 83].

The main idea in HyperNEAT is that CPPNs can also
naturally encode connectivity patterns [33–35, 96, 113].
That way, NEAT can evolve CPPNs that represent large-
scale ANNs with their own symmetries and regularities.
This capability will prove essential to encoding multiagent
policy geometries in this paper because it will ultimately al-
low connectivity patterns to be expressed as a function of
team geometry, which means that a smooth gradient of poli-
cies can be produced across possible agent locations. The
key insight in HyperNEAT is that 2n-dimensional spatial
patterns are isomorphic to connectivity patterns in n dimen-
sions, that is, in which the coordinate of each endpoint is
specified by n parameters, which means that CPPNs can ex-
press both spatial and connectivity patterns with the same
kinds of regularities.
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 1,0      1,1
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-0.5,0     0,1
  ...
-1,-1    -0.5,0
  ...
-1,-1      - 1,0
  ...

2) Feed each coordinate pair into CPPN

X

Fig. 3: Hypercube-based Geometric Connectivity Pattern In-
terpretation. A collection of nodes, called the substrate,
is assigned coordinates that range from −1 to 1 in all di-
mensions. (1) Every potential connection in the substrate is
queried to determine its presence and weight; the dark di-
rected lines in the substrate depicted in the figure represent
a sample of connections that are queried. (2) For each query,
the CPPN takes as input the positions of the two endpoints
and (3) outputs the weight of the connection between them.
Thus, CPPNs can produce regular patterns of connections in
space.

Consider a CPPN that takes four inputs labeled x1,y1,x2,

and y2; this point in four-dimensional space also denotes the
connection between the two-dimensional points (x1,y1) and
(x2,y2), and the output of the CPPN for that input thereby
represents the weight of that connection (Fig. 3). By query-
ing every possible connection among a set of points in this
manner, a CPPN can produce an ANN, wherein each queried
point is a neuron position. Because the connections are pro-
duced by a function of their endpoints, the final structure is
a product of the geometry of these points and the CPPN can
thus exploit the relationships between them in the network
it encodes. In effect, the CPPN is painting a pattern on the
inside of a four-dimensional hypercube that is interpreted
as the isomorphic connectivity pattern, which explains the
origin of the name hypercube-based NEAT (HyperNEAT).
Connectivity patterns produced by a CPPN in this way are
called substrates so that they can be verbally distinguished
from the CPPN itself, which has its own internal topology.

Each queried point in the substrate is a node in a neu-
ral network. The experimenter defines both the location and
role (that is, hidden, input, or output) of each such node. As
a rule of thumb, nodes are placed on the substrate to reflect
the geometry of the task [20, 21, 34, 35, 96, 113]. That way,
the connectivity of the substrate is a function of the the task
structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot (Fig. 4). Outputs for moving left
or right can also be placed in the same order, implying a
relationship between the sensors and effectors. In this way,

1

2
3

5

4

(a) Robot

1 2 4 53                                               X

   -1                                         1

1    Y

L RF

(b) Substrate

Fig. 4: Substrate Configuration. An autonomous robot (a) is
equipped with five sensors, spanning a 180◦ arc in front of
it and labeled 1 through 5 from left to right. The substrate
that controls the robot (b) is arranged such that the place-
ment of inputs in the ANN corresponds to the physical loca-
tions of the sensors on the robot (for example, the leftmost
sensor corresponds to the leftmost input). Similarly, the out-
puts of the network are related to their effects on the agent
and correspond to the sensors (for example, the left turn out-
put is on the left side of the network and above the leftmost
sensor input). Such placement allows the CPPN to generate
connectivity patterns easily that respect the geometry of the
problem, such as left-right symmetry.

knowledge about the problem geometry can be injected into
the search and HyperNEAT can exploit the regularities (for
example, adjacency, or symmetry) of a problem that are in-
visible to traditional encodings.

In summary, HyperNEAT is a method for evolving
ANNs with regular connectivity patterns that uses CPPNs as
an indirect encoding. This capability is important for multia-
gent learning because it provides a formalism for producing
policies (that is, the output of the CPPN) as a function of
geometry (that is, the inputs to the CPPN). The evolutionary
algorithm in HyperNEAT is the same as NEAT except that
it evolves CPPNs that encode ANNs instead of evolving the
ANNs directly. As the next section explains, not only can
such an approach produce a single network but it can also
produce a set of networks that are each generated as a func-
tion of their location in space.

3 Approach: Multiagent HyperNEAT

Recall that the policy geometry of a team is the relationship
between the canonical positions (physical or conceptual)
of agents and their behavioral policies. Multiagent Hyper-
NEAT is based on the idea that policy geometry is the right
level of description for a team because it can be encoded
naturally as a pattern, thereby describing the relationship of
policies to each other. To understand how the policy geome-
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try of a team can be encoded, it helps to begin by considering
homogeneous teams, which in effect express a trivial policy
geometry in which the same policy is uniformly distributed
throughout the team at all positions. Thus this section be-
gins by exploring how teams of purely homogeneous agents
can be evolved with an indirect encoding, and then transi-
tions to the method for evolving heterogeneous teams that
are represented by a single genome in HyperNEAT.

3.1 Pure Homogeneous Teams

A homogeneous team only requires a single controller that
is copied once for each agent on the team. To generate such
a controller, a four-dimensional CPPN with inputs x1,y1,x2,

and y2 (Fig. 5a) queries the substrate shown in Fig. 5c, which
has five inputs, five hidden nodes, and three output nodes, to
determine its connection weights. This substrate is designed
to correlate sensors to corresponding outputs geometrically
(for example, seeing something on the left and turning left).
Thus the CPPN can exploit the geometry of the agent [96]
when generating the ANN controller. However, the agents
themselves have exactly the same policy no matter where
they are positioned. Thus while each agent is informed by
geometry, their policies cannot differentiate genetically.

3.2 Teams on the Continuum of Heterogeneity

Heterogeneous teams are a greater challenge; how can a sin-
gle CPPN encode a set of networks in a pattern, all with
related yet varying roles? Indirect encodings such as Hy-
perNEAT are naturally suited to capturing such patterns by
encoding the policy geometry of the team as a pattern. The
remainder of this section discusses the method by which Hy-
perNEAT can encode such teams.

The main idea is that the CPPN is able to create a pattern
based on both the agent’s internal geometry (x and y) and its
position on the team (z) by incorporating an additional input
(Fig. 5b,d). The CPPN can thus emphasize connections from
z for increasing heterogeneity or minimize them to produce
greater homogeneity. Furthermore, because z is a spatial di-
mension, the CPPN can literally generate policies based on
their positions on the team. Note that because z is a single
dimension, the policy geometry of this team (and those in
this paper) is on a one-dimensional line. However, in prin-
ciple, more inputs could be added, allowing two- or more
dimensional policy geometry to be learned as well.

Thus each agent is assigned a z-coordinate based on its
relationship to the other agents (for example, starting loca-
tion) and a CPPN determines the weight of every connection
within the agent’s ANN by querying the connections using
the five-dimensional CPPN as shown in Fig. 5b. The process

X1 Y1 Y2

Out

X2

CPPN
Topology 
Evolves

(a) Homogeneous CPPN

X1 Y1 Y2

Out

X2 Z

CPPN
Topology 
Evolves

(b) Heterogeneous CPPN

                                               X

      -1                                      1

1    Y

-1

(c) Homogeneous Substrate

Z

(d) Heterogeneous Substrate

Fig. 5: Multiagent HyperNEAT Encoding. The CPPNs and
substrates in two approaches to encoding multiple agents
with HyperNEAT are shown. The CPPN in (a) generates a
single controller for a single agent or a homogeneous team
of agents. The single controller substrate that is queried by
this CPPN to produce a neural network is shown in (c). In
contrast, the CPPN in (b) encodes heterogeneous teams by
sampling the heterogeneous substrate (d), which is made up
of the single substrate (c) copied a number of times along
the z-axis. Each discrete value of z corresponds to a new set
of x and y coordinates that contain the controller for a single
agent. By creating patterns across z, multiagent HyperNEAT
can, in effect, exploit the policy geometry of the team. Note
that CPPNs depicted in (a) and (b) increase in complexity
over evolution through the NEAT algorithm.

for querying the networks for a team of agents is formalized
in Algorithm 1.

The heterogeneous substrate (Fig. 5d) formalizes the
idea of encoding a team as a pattern of policies. This ca-
pability is powerful because generating each agent with the
same CPPN means they can share tactics and policies while
still exhibiting variation across the policy geometry. In other
words, policies are spread across the substrate in a pattern
just as role assignment in a human team forms a pattern
across a field. However, even as roles vary, many skills are
shared, an idea elegantly captured by indirect encoding. The
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For each agent a
For each connection c in a

output = CPPN(c.source.x,c.source.y,c.target.x,c.target.y,a.z)
If |output|> threshold

c.weight = Sign(output) |output|−threshold
1−threshold

Algorithm 1: Querying a Multiagent Substrate (for example, Fig. 5d). The main idea is that if the CPPN output is above a
threshold, then the connection is created and assigned a weight based on the CPPN output.

complete multiagent HyperNEAT algorithm is enumerated
in Algorithm 2.

Importantly, the complexity of the CPPN is independent
of the number of agents in the substrate, which is a benefit
of indirect encoding. Therefore, in principle, teams with a
high number of agents can be trained without the additional
cost that would incur to traditional methods. Another key
property of the heterogeneous substrate is that if a new net-
work is added to the substrate at an intermediate location,
its policy can theoretically be interpolated from the policy
geometry embodied in the CPPN. Thus, as the next section
describes, it becomes possible to scale teams without further
training by interpolating new roles.

3.3 Scaling After Learning

As discussed in Section 2.1.1, there are typically no rules
or principles to determine how additional agents could be
added after learning has taken place in traditional methods.
However, in real world tasks, it would be most convenient
if the number of possible agents is unbounded and indepen-
dent of the number initially trained. Whether in search and
rescue operations or futuristic nanotechnology procedures,
the potential utility of deploying hundreds of agents should
be achievable through multiagent learning. Furthermore, be-
cause agents may break down or additional ones may be-
come available, ideally the size of a learned team should be
dynamically adjustable after deployment. While in the ho-
mogeneous case scaling is simply accomplished by adding
or subtracting agents with the same control policy, scaling
heterogeneous teams is in principle significantly more com-
plicated.

Recall the soccer team in Fig. 1, which includes eleven
agents with assigned roles. How can additional agents be
added to such a team, for example, between the midfielders
and the forwards? Intuitively, the implicit policy geometry
suggests that these new agents should interpolate between
the policies of the surrounding agents, that is, they should
be relatively offensive, but not as offensive as the players in
front of them. Traditional techniques have no way to exploit
this policy geometry because they treat each agent indepen-
dently and would thus require retraining to assign roles to

the new agents. However, because teams in multiagent Hy-
perNEAT are represented by the CPPN as a pattern of poli-
cies rather than as individual agents, the CPPN effectively
encodes an infinite number of heterogeneous agent policies
that can be sampled as needed without the need for addi-
tional learning. Thus if more agents are required, the sub-
strate can be updated to encompass the new agents and re-
sampled to assign policies to them without further evolving
the CPPN.

In fact, the heterogeneous substrate in Fig. 5d accommo-
dates additional agents by simply redistributing their con-
trollers on the z-axis so that they are uniformly spaced in
accordance with their new number (Fig. 6).

Note that these steps can be taken after learning is com-
pleted and the new agent policies will be automatically in-
terpolated based on the policy geometry by simply requery-
ing the CPPN. There is no limit to the size to which such a
substrate can be scaled in this way. Thus, through this ap-
proach, a new form of heuristic for post-deployment scaling
is introduced.

3.4 Seeding

Seeding each agent of a multiagent team with the behavior
of a single pre-trained agent exploits the fact that effective
teams often lie close to pure homogeneity on the continuum
of heterogeneity. That is, most teams include agents that
share a number of skills and policies. For example, all mem-
bers of a soccer team know how to kick, pass, and dribble a
ball. Thus it would be inefficient if each agent had to learn
these basic skills separately. In this way, training a single
agent to master the core skill set is not only computationally
more efficient (that is, only one agent needs to be simulated),
but generally leads to more efficient learning of team-wide
strategies. While most multiagent learning methods can seed
teams or bootstrap learning intelligently through techniques
such as layered learning [45, 98] (Section 2.1.1), because
they are indifferent to the team policy geometry, they cannot
subsequently vary the seed policy intelligently to coincide
with the policy geometry.

In contrast, multiagent HyperNEAT creates teams as a
function of their policy geometry and can alter the seed
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1. Set up the substrate to contain the necessary number of agents.
2. Initialize a population of minimal CPPNs with random weights that correspond to the chosen substrate configuration.
3. Repeat until a solution is found or the maximum number of generations are reached:

(a) For each CPPN in the population:
i. Query its CPPN for the weight of each connection in the substrate within each agent’s ANN (Algorithm 1 and

Fig. 3).
ii. Assign the generated ANNs to the appropriate agents and run the team in the task domain to ascertain fitness.

(b) Reproduce the CPPNs according to the NEAT method to create the next generation’s population.

Algorithm 2: Multiagent HyperNEAT

Z

(a) 5 Agent Team

scaled to

Z

(b) 7 Agent Team

Fig. 6: Heterogeneous scaling. Because multiagent HyperNEAT represents teams as a pattern of policies, it is possible to
interpolate new policies in the policy geometry for additional agents by sampling new points on the substrate. The original
substrate (a) is scaled by inserting new two-dimensional substrate slices along the z-axis (b).

policy by gradually shifting it away from pure homogene-
ity along the continuum of heterogeneity. The challenge for
multiagent HyperNEAT is to extend a strong single policy to
represent the policies of an entire team. As with scaling, pure
homogeneous teams are trivial to seed because such teams
only require one controller that is copied to each member of
the team; thus seeding the team requires only that evolution
is started with a population of controllers derived from the
seed. However, the same method does not work with het-
erogeneous teams because a CPPN that represents a single
agent does not automatically represent a whole team. To ad-
dress this problem, the remainder of this section describes
how a CPPN that represents a single agent’s controller can
be slightly altered to encode the controllers of every agent
on a team.

Recall that a CPPN that represents a single agent takes
the four inputs x1, y1, x2, and y2 (Fig. 5a). This CPPN repre-
sents a two-dimensional connectivity pattern, whereas the
stacked agent substrate is three-dimensional. Therefore, a
new z input is added to the network, although with no con-
nections to the existing network (Fig. 7). Only one z in-
put is necessary because each agent exists at an infinitesi-
mal point on the z-axis. In this way, the previously single-
agent CPPN can now be queried for the policies of a team
of agents. However, because the only factor that differenti-
ates the agents, z, is not connected to the network, the team
is initially homogeneous. However, once z is connected to

X1 Y1 Y2

Out

X2

Evolved Seed

converted to
X1 Y1 Y2

Out

X2 Z

Team Genome

Fig. 7: Heterogeneous seeding. From a CPPN that gener-
ates a successful single agent, multiagent HyperNEAT can
generate a team of agents. To allow the CPPN to differen-
tiate between team members, the CPPN at left is modified
by giving it a new z input that determines which agent is
being sampled. This method preserves the original seed pat-
tern, but allows multiagent HyperNEAT to create a pattern
of policies relevant to the team’s policy geometry, which
varies along z.

the network by mutation, the CPPN can create variations of
the seed policy based on the policy geometry along z. Fig. 8
gives an example of how this idea works.

3.5 Applicability of Approach

The multiagent HyperNEAT approach is a heuristic that can
be exploited to train teams of heterogeneous agents. Like
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W

X1 Y1 X2 Y2

(a) Single-Agent Behavior

W

ZX1 Y1 X2 Y2

(b) Initial Seeded Team

W

ZX1 Y1 X2 Y2

(c) Mutated Seeded Team

Fig. 8: Seeding Example. A single agent (depicted as a square above its CPPN) learns the behavior of turning left (a), which
is represented by its CPPN. This behavior can be used as a seed for a team of agents by simply adding a z input to the CPPN
that represents the single agent’s behavior. However, such a team is initially homogeneous because the z-input is initially
unconnected (b). Through mutations the z input can become connected, allowing the CPPN to vary the initial seed policy
among the agents on the team (c).

all heuristics, it is not ideal for all conceivable cases. For
example, teams in which the agents do not ideally exhibit
a clear or easily definable relationship, such as the relative
aggressiveness of soccer players mentioned earlier, would
be difficult to represent in this manner. However, as noted
earlier, it is difficult to think of any real teams in which the
members do not share some meaningful information even
if it is as simple as how to move towards a target. Addi-
tionally, for teams where homogeneous behaviors are prefer-
able a priori, multiagent HyperNEAT would be inefficient;
although homogeneous teams can easily be represented by
multiagent HyperNEAT (by ignoring the z input), the search
process would continue to also search the super-set of het-
erogeneous solutions. In any case, it is incumbent upon the
researcher to provide a substrate geometry that sufficiently
encompasses these relationships in a manner that can be ex-
ploited by multiagent HyperNEAT. It is at this stage that do-
main knowledge can play a key role. For example, if a team
must perform a symmetric task, ensuring that the agents are
laid out symmetrically along z-coordinates and across the
origin can be vital to solving the task. Additionally, while
the first domain in this paper exploits the initial positioning
of agents to define a policy geometry, there may exist other
approaches that can also be effective. For example, policies
could be assigned according to agent maximum velocities
(for example, if agents are physically heterogeneous) instead
of starting positions.

The next section describes a multiagent learning exper-
iment designed to test the overall multiagent HyperNEAT
approach and compare it to an existing multiagent learning
method.

4 Predator-Prey Experiment

The aim of this experiment is to establish the advantage
of representing a team as a pattern of policies and to
demonstrate the novel capability to scale (with and with-
out further training) that results. While traditional learning
techniques offer potential solutions to multiagent problems
[67, 97, 122], such approaches do not exploit fundamental
regularities that govern the distribution of policies on a team,
or the fact that such policies tend to overlap partially and
can thus benefit from a representation that does not need
to relearn shared information. To test that exploiting such
regularities is beneficial, teams trained with multiagent Hy-
perNEAT are compared against teams trained with Sarsa(λ )
[104], a traditional reinforcement learning technique that
was chosen because it has been applied to multiagent learn-
ing [53, 101], in a multiagent predator-prey problem. There
are many domains (such as Robocup soccer[100]) that can
benchmark an approach. However they are typically not de-
signed with scalability in mind; Adding or removing agents
can trivialize or overly complicate the problem being solved.
With that in mind, cooperative multiagent predator-prey is
a good platform to test this idea because the task is chal-
lenging yet easy to understand. Both methods are equally
challenged because this domain, like many multiagent do-
mains, is partially observable (that is, non-Markovian) and
both temporal difference methods and the feed-forward neu-
ral networks that control multiagent HyperNEAT’s agents
(Fig. 5d) in this task typically could only provide perfor-
mance guarantees in Markovian domains. However, both
methods have been successfully applied in particular to mul-
tiagent predator-prey problems in the past [25, 49, 54] (al-
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though at different team sizes), so this task will provide a
good benchmark.

The version of predator-prey in this paper is similar to
that described when multiagent HyperNEAT was first in-
troduced [25]: Agents cannot see their teammates nor can
they communicate with each other. Also, because prey run
away from nearby predators, it is easy for one predator to
undermine another’s pursuit by knocking its prey off its
path. Therefore, predators must learn consistent roles that
complement those of their allies. At the same time, agents
need basic skills in interpreting and reacting to their sen-
sors. Because multiagent HyperNEAT creates all the agent
ANNs from the same CPPN, it has the potential to balance
these delicate ingredients. An important difference between
the predator-prey domain in this investigation and in others
[49, 50, 54] is that the environment is neither a fixed size nor
toroidal, allowing an arbitrary number of predators and prey
to fit in the world, and facilitating the later scaling experi-
ments. The domain also differs from the original multiagent
HyperNEAT predator-prey domain in that the agents are
limited to a set of discrete actions, which makes the domain
more amenable to reinforcement learning techniques such
as Sarsa(λ ). Also unlike previous scaling experiments with
multiagent HyperNEAT [25], the domain difficultly (that is,
number of prey) scales with the number of predators, pro-
viding an additional challenge for scaled teams.

4.1 Predators and Prey

The goal of the predators is to capture (that is, intercept)
the prey agents by positioning themselves so that a prey
is within three units of the predator. The predators are
equipped with five rangefinder sensors evenly spanning a
180◦ arc that detect prey within 50 units. Predators can-
not sense each other. Thus, the state of each agent is the
five continuous floating-point values (0.0−1.0) returned by
the sensors, representing the distance of the closest prey
in the corresponding arc (as in Fig. 4a). In the case of the
HyperNEAT-controlled agents, these five values correspond
to the five inputs on the substrate (Fig. 4b) that is queried
by the CPPN to generate the agent’s controller. In contrast,
to facilitate reinforcement learning, Sarsa(λ ) encodes these
values with Sutton’s tile coding algorithm [105], with eight
tilings and a tile width of 0.2 to create the state representa-
tion. Tile coding is a coarse coding method used to increase
generalization and encode large or continuous state spaces
compactly for reinforcement learning, and has previously
been applied to MARL [101, 116]. The state space is par-
titioned into several tilings, which are further broken into
tiles, such that each tile representing a discrete feature. The
number of tilings and tile width were chosen to encourage
generalization, and because they produced the best results in

preliminary experiments. For a complete description of tile
coding see Sutton [103].

At each discrete moment of time, a predator can turn
90◦ left or right or move one unit forward. HyperNEAT-
controlled agents have three outputs in their neural networks
(Fig. 4b), one for each such action, and perform the action
with the highest activation after the network is activated.
Reinforcement learning agents independently maintain and
update their own Q-functions and select actions with an ε-
greedy approach during training, where ε = 0.01, and pure-
greedy action selection during testing. For both methods,
ties default to moving forward.

Prey agents are programmed to maintain their current lo-
cation until they are threatened; if there is a predator within
5 units the prey moves in the direction exactly opposite to
the direction of the closest predator; thus the prey are not
restricted to discrete actions and can adjust their heading to
any angle (for example, a prey can move diagonally to es-
cape a predator). Prey move at twice the maximum speed of
predator agents. That way, it is impossible for a single preda-
tor to catch a prey and the predators must work together to
accomplish their goal.

The predator team starts each trial in a line, 4 units apart,
facing the prey (Fig. 9). The environment the agents in-
habit is physically unbounded, and each trial lasts 1,000
time steps. On Sarsa(λ ) teams, each agent receives the same
reward r at each time step, where r = pc

pt
−1, pc is the num-

ber of prey captured, and pt is the total number of prey, un-
til either the time limit expires or all prey have been cap-
tured. This reward scheme follows precedent in prior ap-
plications of MARL that reward all agents collectively for
team success [101]. Trials were also attempted with individ-
ual rewards, but performance was markedly worse, further
supporting the chosen scheme. Because they are evolved,
HyperNEAT teams do not receive rewards over the trial; in-
stead they are given a fitness value of (1,000 pc

pt
)+(500− t),

where t is the time taken to capture all the prey or 500 if
not all prey were captured. Both measures incentivize the
predators to capture as many prey as possible, as quickly as
possible.

The major challenge for the predators is to coordinate
despite their inability to see one another or communicate.
This restriction encourages establishing a priori policies for
cooperation because agents thus have little information to
infer each others’ current states. Such scenarios are not un-
common. Military units often form plans, split up, and ex-
ecute complicated maneuvers with little to no contact with
each other [29].
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(a) Line Formation

(b) L Formation

Fig. 9: Prey Formations. The prey (red circles) are arranged
in either a line (a) or an L (b) formation, thereby testing
both symmetric and asymmetric scenarios. This figure de-
picts both formations with eight predators (blue squares),
although the number of predators and prey can change. The
predators are always placed in an evenly-spaced line below
the prey.

4.2 Prey Formations

Agent teams are trained on one of two formations: the line or
the L (Fig. 9a and 9b, respectively), both of which presents
a different challenge to the teams.

In the line, there are half as many prey as predators. The
prey are positioned 10 units away from the predators ver-
tically and spaced 4(2pt−1)

pt
units apart horizontally, starting

from the same x-coordinate as the predators, but shifted by
half the normal spacing amount. Thus the prey are spread
across the same distance as the predators, but with a slight
space on the edges to encourage predators to approach the
prey. An interesting property of the line regarding coopera-
tion is that it is symmetric, so teams should in principle be
able to develop symmetric strategies to capture the prey. Ad-
ditionally, all the prey are seen by at least one predator at the
start of the simulation so exploration is not required, that is,

together the predators have complete information about the
prey. However, because they cannot communicate, individ-
ual predators still have limited state information.

The L formation is a more complex test of coordina-
tion for the teams because it is asymmetric. Thus the agents
have to learn specific roles for specific locations. Prelimi-
nary multiagent HyperNEAT experiments only tested sym-
metric prey formations, but were able to develop both sym-
metric and asymmetric strategies [25], suggesting that such
blind coordination should be possible in principle. Also, the
prey are not fully-observable from the start, that is, many
of them cannot be seen by any predators when the simula-
tion begins. Thus exploration is necessary to solve the task.
Finally, the L has almost double the prey of the line, which
makes the task more complex and time-consuming. The first
half of the prey are placed exactly as in the line formation.
The remaining prey are placed behind the left-most prey in a
straight line back, five units apart. Note that unlike the line,
in the L formation the maximum distance between a preda-
tor and a prey increases depending on the number of prey.
Thus in sizes 128 and 256 of the L a predator cannot actu-
ally reach all the prey within the time limit, so these sizes
will not be investigated. Also, size two of the L is identical
to the line at size two, so it will also not best tested in these
experiments.

4.3 Scaling

As technology progresses, the demand for larger, more com-
plex multiagent teams increases. Thus, the ability to train
scalable teams of agents is critical. In this paper, two types of
scaling will be investigated: pre-training and post-training.

A multiagent learning algorithm should be able to han-
dle training a large number of agents simultaneously. In this
paper such scaling is referred to as pre-training scaling be-
cause the number of agents in the team is known before
training is started. Thus this type of scaling tests the scala-
bility of the learning algorithm itself. Such a property is im-
portant if large-scale, real world problems are to be solved
with the method.

Post-training scaling, in contrast, is defined as chang-
ing the size of the team after training is already completed
and without further learning. Such scaling is challenging
because the policies of the new agents must be assigned
automatically. However, this capability would benefit real-
world multiagent applications such as unmanned aerial ve-
hicle (UAV) or unmanned ground vehicle (UGV) swarms.
For example, imagine that additional UGVs become avail-
able to an existing swarm of UGVs on a search and rescue
operation. The ability to integrate these new agents into the
team immediately could be critical. Many traditional multi-
agent learning approaches are not designed to facilitate such
scaling because they represent agents as discrete entities. In
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contrast, because multiagent HyperNEAT represents a team
of agents as a pattern of policies, it is possible to dynami-
cally change the size of a team by sampling new points in
this pattern (Section 3.3). This kind of interpolated scaling
is a unique capability of HyperNEAT, making a direct post-
training comparison between methods difficult. Therefore,
because Sarsa(λ ) lacks such a capability, its post-training
scaling will be tested by duplicating the policies of existing
agents such that when a team is scaled up by a factor of S,
the first S agents will have the first agent’s policy, the second
S agents will have the second agent’s policy, and so on.

Therefore, both methods will be tested in their ability
to scale both pre and post-training with team sizes ranging
from 2−1,024 agents, wherein each team size is double the
last (that is, 2, 4, 8, etc.). Teams will be trained on sizes of
up to 256 agents for the line and 64 for the L and tested on
up to 1,024 for the line and 64 for the L.

4.4 Seeding

Simulating multiagent teams is typically computationally
expensive. Post-training scaling is one way to mitigate this
issue. However, another is to take existing single-agent poli-
cies and build a team from them as a starting point for further
learning. In this way, knowledge about fundamental or im-
portant skills and strategies can be injected into the search
from the beginning. Such a capability is powerful because
starting with fundamental skills means they do not need to
be discovered by the search algorithm. Also, it can be much
less expensive to simulate and train a single agent to perform
the required skills.

Seeding in multiagent problems has been used in both
evolution [45] and Sarsa(λ ) [110] with success. For mul-
tiagent HyperNEAT, Section 3.4 described how a team
is formed from a single seed genome. For Sarsa(λ ), the
weights of a single agent are normalized and copied to all
agents on the team. In both cases the single, seed agent was
trained to chase prey as closely as possible (recall that a sin-
gle predator cannot capture prey, so chasing is the best start-
ing point possible). Solutions were found in both cases in
under 5,000 evaluations and form the basis for seeding ex-
periments.

Although the initial seeded team for both methods (that
is, a homogeneous group of predators that can chase prey) is
unlikely to be able to solve the problem directly, such a team
should provide a good starting point for agents to differenti-
ate and then solve the problem. The key difference between
Sarsa(λ ) and multiagent HyperNEAT in this respect is that
multiagent HyperNEAT can discover a policy geometry with
which to vary this base policy, whereas Sarsa(λ ) must inde-
pendently learn how to change each agent’s individual be-
havior to best suit the team’s goal. To verify that this ca-

pability is important, multiagent HyperNEAT and Sarsa(λ )
are also tested with seeded policies.

4.5 Experimental Parameters

Because HyperNEAT differs from original NEAT only in its
set of activation functions, it uses the same parameters [90].
Experiments were run with a modified version of the public
domain SharpNEAT package [38]. The size of each popu-
lation was 150 with 20% elitism. Sexual offspring (50%)
did not undergo mutation. Asexual offspring (50%) had 0.96
probability of link weight mutation, 0.03 chance of link ad-
dition, and 0.01 chance of node addition. The coefficents for
determining species similarity were 1.0 for nodes and con-
nections and 0.1 for weights. The available CPPN activation
functions were sigmoid, Gaussian, absolute value, and sine,
all with equal probability of being added to the CPPN. Pa-
rameter settings are based on standard SharpNEAT defaults
and prior reported settings for NEAT [90, 92, 94]. They were
found to be robust to moderate variation through preliminary
experimentation.

In the Sarsa(λ ) runs, the standard Sarsa(λ ) update rule
is used [104] with λ = 0.9, ε = 0.01, and α = 0.05. In addi-
tion, the implementation uses Sutton’s tile coding software
[105] with five variables (the sensor readings), eight tilings
(different discretizations of the state space), and a tile width
of 0.2 (size of the tiles in the discretizations). These values
were found to produce the best results through preliminary
experimentation.

5 Results

To test the pre-training ability of each method to scale, teams
were trained on sizes 2, 4, 8, 16, 32, 64, 128, and 256 for the
line and 4, 8, 16, 32, and 64 for the L. The main question is
whether the methods can continue to find effective solutions
as team size (and also the number of prey) increases. Note
that because the states of the agents are egocentric and the
agents do not see each other, the state-space does not nec-
essarily grow for individual agents as in other multiagent
problems. However, as more prey are added, the possibility
of more sensors being simultaneously activated at different
values does increase, meaning that an agent is more likely
to encounter a larger number of more varied states as the
number of prey increase. Additionally, as more agents are
added, the potential for conflicts among agent policies in-
creases. Figs. 10 and 11 show how each method scales with
pre-training (that is, the teams were trained at the desired
team size) on the line and L formations, respectively. In both
figures, the first graph shows the average number of evalua-
tions until the first solution was found and the second graph
shows the average number of timesteps during simulation
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until all the prey are captured for the best solution of each
run. In both cases lower values are better and if a bar is at
the maximum value (50,000 evaluations or 500 timesteps),
it means that no teams were able to solve the problem at that
size for that method.

For the line formation, the most striking result is that
while HyperNEAT is consistently able to find solutions for
teams of up to 256 agents, Sarsa(λ ) stops being able to find
solutions above only 16 agents. In fact, each time the num-
ber of predators and prey doubles, the number of evaluations
Sarsa(λ ) requires to solve the problem increases by an or-
der of magnitude. The results are similar in the L: multiagent
HyperNEAT finds solutions for all tested sizes, but Sarsa(λ )
can only find solutions for size four. Therefore, multiagent
HyperNEAT, with the ability to encode and learn the policies
of an entire team and the relationships among them simulta-
neously, is better able to deal with the conflicts that arise in
a large multiagent domain.

For the team sizes that both methods could solve, mul-
tiagent HyperNEAT was only significantly faster in terms
of capture speed at eight and 16 on the line formation and
four for the L (p < 0.01 according to Mann-Whitley U test
for all), implying that at smaller sizes both methods are able
to refine existing solutions once they are found, but that ac-
tually finding an initial solution with separately-represented
agents is a more difficult problem. Furthermore, for a two-
predator team, the smallest size, Sarsa(λ ) finds solutions
significantly faster (p < 0.01) than multiagent HyperNEAT,
implying that reinforcement learning may be more efficient
for small teams and demonstrating that team size is the rel-
evant variable in this comparison.

Note that the fact that HyperNEAT and Sarsa(λ ) are
comparable up to about eight agents is an important vali-
dation that the Sarsa(λ ) implementation works. Of course,
an important concern in comparisons between different ap-
proaches is that all are implemented properly; the com-
petitive results at the smaller scales provide evidence that
the disparity at higher scales is not only implementation-
dependent.

Seeding generally improved multiagent HyperNEAT’s
performance, although there are some instances where both
seeded and unseeded teams were able to find an optimal so-
lution or where seeding hurt performance. With Sarsa(λ ),
seeding was only beneficial at size 16 on the line, indicating
that just having a good seed policy may not be enough; the
way in which these policies are manipulated during learning
is also critical.

Post-training scaling is more challenging: More agents
are added to the team without further training, which means
the policies of the new agents must somehow be intelli-
gently derived from the old. Because HyperNEAT encodes
the team as a pattern, it can create the policies of the new
agents by querying the CPPN at an intermediate location,

thereby creating an interpolation of the existing policies.
Multiagent Sarsa(λ ) has no such mechanism to automati-
cally generate new policies. In this sense it is difficult to
compare them when Sarsa(λ ) lacks an analogous capabil-
ity. However, it is still an important question whether inter-
polating new policies gains any real advantage over simply
duplicating the range of existing policies to make a larger
team. Therefore, to validate the contribution of role interpo-
lation, scaled Sarsa(λ ) teams contain multiple duplicates of
the agents in the unscaled version, as described previously.
The post-training results were obtained by testing all saved
champions (that is, teams that scored better than all previ-
ous teams during the run) on all sizes to determine the best
scalers for each run. This method of testing generalization
follows Gruau et al [39] and is designed to compare the best
overall individuals. In addition to scaling up, scaling down
is also tested. Because the number of opportunities to scale
up or down depends on the training size being tested, teams
are tested and evaluated separately on scaling up and down,
but they are displayed together.

Figs. 12 and 13 show post-scaling results on the line and
L formations, respectively. Each graph shows the number of
runs in which the best scaler from each run can scale to a
target size out of ten runs, starting from teams trained at dif-
ferent sizes. If a method was not able to find a solution at a
particular pre-trained team size then that size is not included
as a starting point for post-scaling training. For the line,
Sarsa(λ ) was only able to scale at all from the smallest two-
agent size and only some runs were able to find scalable so-
lutions. In contrast, multiagent HyperNEAT found scalable
solutions from all starting sizes (except in the case of size
64 on the L, which is the largest L size possible within the
time limit). For small team sizes, multiagent HyperNEAT
was consistently able to find solutions that can scale at least
up to the next team size, although in most cases teams scaled
several sizes up and down. The results were similar on the
L, with the exception of size 64, from which it is not pos-
sible to scale within the time limit. Scaling up above 128
agents on the line proved to be difficult for multiagent Hy-
perNEAT, which typically only found solutions that could
scale to such sizes one to three times out of ten. However,
seeded multiagent HyperNEAT was able to rarely find so-
lutions that scaled up to 1,024 agents, a team size that no
method could solve when trained to solve it. Thus policy
interpolation produces a significant new potential to scale
already-trained teams.

5.1 Post-training Scaling with Further Learning

While it is interesting from a research perspective that multi-
agent HyperNEAT can scale to different team sizes without
further learning, as a practical matter, there is no reason that
the teams cannot continue learning at the new size to further
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Fig. 10: Line Pre-Training Scaling. The performance of each method for pre-training scaling on the line formation is shown.
In almost all cases multiagent HyperNEAT teams are able to find better solutions more quickly than Sarsa(λ ). After 16
agents, Sarsa(λ ) can no longer solve the task, while HyperNEAT is still able to solve it up to 256 agents. Results are
averaged over ten runs.
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Fig. 11: L Pre-Training Scaling. The L formation was more difficult than the line due to the exploration necessary to solve
the problem. However, multiagent HyperNEAT was able to find solutions consistently for all tested sizes. Sarsa(λ ) could
only find solutions at the smallest size of four, and seeded Sarsa(λ ) was unable to find any solutions. Note that because the
distance between the furthest prey and the predators doubles each time the size increases, it is also reasonable for the time to
capture the prey to double as well. Results again are averaged over ten runs.
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(g) 128 Agent Scaling
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Fig. 12: Line Post-Training Scaling (higher is better). The number of successful scalings (both up and down) out of ten runs
for different team sizes is shown. For each graph the training size is shaded black. While HyperNEAT is able to find scalable
solutions at all sizes without further learning, Sarsa(λ ) can only scale from two-agent solutions (up to at most 16).
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Fig. 13: L Post-Training Scaling (higher is better). Successful scalings (out of 10) are shown on these graphs for different
team sizes. The training size from which teams are scaled is shown in black. HyperNEAT was able to find scalable solutions
for all sizes that fit within the time limit, while Sarsa(λ ) could not scale at all.

optimize or correct minor imperfections in the scaled policy.
This approach is similar to incremental evolution and shap-
ing techniques that have been applied in other multiagent
scenarios [16, 65, 81]. In fact, while many policies gener-
ated by multiagent HyperNEAT are able to scale to different
team sizes, those that do not scale perfectly still generally
display an appropriate (though not perfect) strategy based
on policy geometry, indicating that the scaled policy is close
to a correct solution but may exhibit some artifacts in the
policy geometry that were not sampled at the training size.
Previous HyperNEAT research [96] showed that similar ar-
tifacts are present when scaling the sensors and effectors of
a single agent, but that such artifacts are easily smoothed by
additionally learning. To test that scaled teams trained with

multiagent HyperNEAT can be further trained to correct im-
perfections, the three best scaling teams at size 64 are further
trained at size 256 (to which no unseeded team trained on 64
agents could scale without further learning) on the line for-
mation. Although Sarsa(λ ) was not able to train a team of
64 agents, to facilitate some comparison, and to test whether
this capability is unique to HyperNEAT, teams trained by
Sarsa(λ ) with four agents are scaled to eight agents and fur-
ther trained.

Multiagent HyperNEAT was able to find solutions that
solved the new size in 1,220 evaluations on average, which
is significantly faster than finding a solution from scratch on
256 agents (which takes on average 24,650 evaluations). In
contrast, the number of evaluations for Sarsa(λ ) to find a
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solution at the large size after scaling (average 4,764 evalu-
ations) did not differ significantly from the number required
to find a solution for eight agents from scratch (which takes
on average 3,804 evaluations). Thus while it is possible for
multiagent HyperNEAT to find solutions that scale without
further learning, even those that do not scale perfectly still
retain the information necessary to solve the problem at dif-
ferent scales; the solution simply must be tweaked through
a small amount of additional learning to accommodate the
new size. Additionally, the fact that Sarsa(λ ) does not ben-
efit from this bootstrapping approach implies that policy ge-
ometry plays a critical role in further training after scaling.

5.2 Typical Behaviors

This section describes the typical behaviors produced by
both learning methods. These qualitative results are impor-
tant because they illuminate why the quantitative results
make sense. Videos of these behaviors can be found online.1.

In the line, on the smallest team sizes (two, four, and
eight), the typical strategies employed by multiagent Hyper-
NEAT and Sarsa(λ ) do not differ greatly. The first solution
discovered at these sizes involves one or more agents mov-
ing behind the group of prey and pushing them towards the
remaining agents. On sizes four and eight, teams then tran-
sition into some or all of the predators surrounding and cap-
turing the prey agents. At size 16, Sarsa(λ ) continues to em-
ploy the same strategies (Fig. 14a, b,and c), but because the
prey line is longer and there are more agents to coordinate it
takes much longer to find a solution and for that solution to
capture the prey. In contrast, while multiagent HyperNEAT
also first finds such solutions, it quickly discovers different
strategies that divide the prey into two groups that the preda-
tors independently surround (Fig. 14d, e,and f), exploiting
the symmetry of the team. Beyond size 16, Sarsa(λ ) stops
solving the problem because a more coordinated approach
is needed.

The first solutions multiagent HyperNEAT finds at sizes
32 and 64 tend to be the same strategies as at 16, but at
these sizes they are suboptimal and act as stepping stones
to strategies that divide the prey into multiple groups that
are captured independently (Fig. 15a, b, and c). Multiagent
HyperNEAT is able to find such strategies by repeating co-
ordinate frames within the policy geometry.

Finally, at sizes 128 and 256 simple strategies are no
longer viable due to the length of the line of prey, as seen by
the fact that successful scaling to these sizes from smaller
sizes drops off sharply in Fig. 12. Thus the first strategies
that are found are those that split the prey into multiple
groups. Some runs at these large sizes were also able to find
an alternative strategy wherein every other predator does

1 http://eplex.cs.ucf.edu/demos/multiagentcompared

nothing and the remaining predators move forward, caus-
ing the prey to bounce between each pair, until each prey
runs into one of the predators while trying to avoid the other
(Fig. 15d, e, and f). Such a strategy is simple and effective,
but would be very difficult to learn if all agents were repre-
sented independently. Seeded and unseeded versions of the
same method did not cause a significant qualitative differ-
ence in behavior; better behaviors were just found faster.

On the L, at size four, both methods used the same strat-
egy of surrounding the prey to capture them. At size eight,
Sarsa(λ ) can no longer solve the problem, but multiagent
HyperNEAT teams learn a strategy to deal with the vertical
portion of the L similar to that of the large teams on the line,
that is, the first and third agent move forward and capture the
entire line by bouncing the agents between them. The hori-
zontal portion of the line is captured by the remaining preda-
tors through a surround strategy. The remaining sizes (16,
32, and 64) capture the vertical part of the line by sending
a group of agents down one side of the prey, pushing them
slightly to the right, while another group charges straight
at them. The combination of these two actions forces the
prey into a compact ball that is pushed downward by the
charging predators. When the first group of predators reach
the end of the vertical portion of the L, they turn right to
form a barrier between the charging predators and the ball
of prey, and when the two meet, the entire ball is captured.
The horizontal portion is again captured by a simple sur-
rounding strategy. There is little incentive for the predators
to improve upon the horizontal capture speed at these sizes
because the time taken to capture the vertical portion of the
prey dominates the problem. Nevertheless, the results on the
L formation show that multiagent HyperNEAT can discover
effective asymmetric strategies for capturing prey.

The few Sarsa(λ ) solutions that could scale up post-
training did not typically resemble the solutions they scaled
from, although the only scalable solutions came from two-
predator, one-prey experiments in which the overall policy
is difficult to discern. In contrast, most post-training scaled
multiagent HyperNEAT solutions did resemble the solu-
tions from which they were scaled, but sometimes contain
some inefficiencies such as a predator pushing the prey in
the wrong direction initially. A key factor in determining
whether a team will scale post-training is whether the team
employs a strategy that is effective at a higher level. For ex-
ample, if a team trained at size 16 exhibits the strategy of
positioning a single agent behind all the prey and pushing
each of them towards the predators, the strategy has less of a
chance of transferring to larger teams. However if the team
instead learned how to divide the prey and capture them as
groups at size 16, its chances of scaling are much greater.



22 David B. D’Ambrosio, Kenneth O. Stanley

(a) Sarsa(λ ) 16 Initial (b) Sarsa(λ ) 16 Mid (c) Sarsa(λ ) 16 End

(d) MAHN 16 Initial (e) MAHN 16 Mid (f) MAHN 16 End

Fig. 14: Typical Strategies for 16 Predators. At size 16 predators (blue squares at the top of the pictures), Sarsa(λ )-trained
teams typically try to surround the prey (green squares closer to the bottom) by employing the predators on the edges to
move to behind the prey (a) and push them towards the center (b) where they can be captured (c). Multiagent HyperNEAT
teams also learn this strategy, but eventually develop a more complex version wherein the predators divide the prey into two
groups (d) and then surround (e) and capture them independently (f). The multiagent HyperNEAT result is more efficient
because more prey are captured in parallel, and it is more scalable because eventually the size of the prey lines becomes too
large to traverse within the time limit.

6 Discussion

In the predator-prey domain, the result that heterogeneous
teams trained with multiagent HyperNEAT significantly
outperform teams trained with Sarsa(λ ) in both training and
scaling demonstrates the importance of exploiting team ge-
ometry in multiagent learning. Whereas teams trained with
Sarsa(λ ) were unable to solve problems with over 16 agents,
pre-trained multiagent HyperNEAT teams solved up to 256
agents. In this way, the ability to encode patterns of behavior
across a team is critical to success in multiagent learning and
thereby addresses a major challenge in the field. Multiagent
HyperNEAT allows team behavior to be represented as vari-
ation on a theme encoded in a single genome, which means
that key skills need not be rediscovered for separate agents,
overcoming the problem of reinvention. Furthermore, be-
cause multiagent policies are represented by a CPPN, they
are assigned to separate agents as a function of their rela-
tive geometry, while simultaneously exploiting the agents’
internal geometries.

The number of evaluations taken by multiagent Hyper-
NEAT to find a solution increases greatly at 128 agents. This
change reflects a fundamental discontinuity in the policies
required to solve the problem at smaller and larger sizes. At
smaller sizes, a common early solution is for a small subset
of agents to capture all the prey while the others are not in-
volved. While such a solution is suboptimal, it is a solution
nonetheless and is a stepping stone to more efficient solu-
tions that make use of the whole team. However, if learning
is first to succeed only with a subset of the team, a subset

of predators must be able to visit each of the prey. Yet when
there are 128 predators, the line of prey becomes longer than
the distance a single predator can traverse in the time limit.
Thus, at large sizes, such suboptimal policies represent local
optima that cannot lead to efficient solutions and the only
viable strategies are the more complex coordinated ones
that employ more predators and take longer to find. While
HyperNEAT can find these with effort, the required coor-
dination is too much for Sarsa(λ ). There do exist specific
approaches for encouraging coordination, such as allowing
agents to make inferences about the behaviors of their team
mates [51]. However, such approaches add complexity to
the individual agent policies and become intractable when
agents must consider large numbers of cooperating agents.

Seeding was generally beneficial to both methods after
size 8. While performance was generally unaffected or even
hurt at smaller team sizes, where simple solutions were eas-
ily found and some of the seeded behavior may need to be
unlearned, it generally improved at the larger sizes. This ca-
pability captures the idea that real-life teams (for example,
in soccer) often share a critical basic skill set that can be
learned faster by an individual agent than by an entire team,
thereby exploiting the team’s position on the continuum of
heterogeneity. While HyperNEAT naturally encodes varia-
tions on a theme, finding the right underlying theme can ini-
tially be challenging. Seeding bootstraps the process, pro-
viding a mechanism to inject domain knowledge. In the fu-
ture, the sophistication of team behavior can be increased by
evolving seeds on many subgoals, such as running, passing,
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(a) MAHN 64 Initial

(b) MAHN 64 Mid

(c) MAHN 64 End

(d) MAHN 256 Initial

(e) MHN 256 Mid

(f) MHN 256 End

Fig. 15: Multiagent HyperNEAT Strategies for Large Teams. For larger teams such as the team of 64 predators in this figure,
multiagent HyperNEAT typically continues the strategy of dividing the prey into groups (a), surrounding (b), and capturing
them (c). The difference from smaller sizes is that they are divided into more and more groups so that larger numbers of prey
can still be efficiently captured by the predators. However, at the very largest trained size of 256, multiagent HyperNEAT
sometimes found a strategy wherein every other predator does nothing and the remaining predators move forward (d). This
strategy causes the prey to bounce between the charging predators (e) until they are all eventually captured (f). Such a tactic
is extremely efficient at this problem size and requires the strict cooperation of almost every agent to be successful.
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shooting, and defending in soccer, which can be duplicated
across the entire team and then allowed to vary by role.

Multiagent HyperNEAT was able to create teams of
agents that could perform well at sizes orders of magni-
tude larger than the training size without further training.
Such scaling is prohibitive for Sarsa(λ ) and other tradi-
tional heterogeneous multiagent learning techniques, which
do not implement interpolated scaling, yet multiagent Hy-
perNEAT accomplishes it by representing the teams as pat-
terns rather than as individual agents. Even though these
patterns are sparsely sampled during training (that is, with
orders of magnitude fewer points) the scaled teams exhibit
smooth interpolations between agent roles. A particularly
interesting result is that while multiagent HyperNEAT could
not solve the line problem with 1,024 agents when starting
from scratch, a team trained with 256 agents could solve
the problem at 1,024 when scaled up. Although it was not
common, this result implies that scaling up may offer more
than just the benefit of saving computational time, but also
may allow multiagent HyperNEAT to solve problems that
are prohibitively deceptive or complex. The impact of de-
ceptive agent interactions for large teams may diminish at
smaller team sizes where such interactions are not as devas-
tating.

However, it is true that multiagent HyperNEAT could
not always scale up perfectly post-training. As described
above, there are some cases where the policies required to
solve a larger size are fundamentally different than those at
smaller sizes. This observation separates these results from
previous multiagent HyperNEAT scaling attempts [25] in
which the size of the problem (that is, the number of prey),
and therefore the strategy required to solve the problem, re-
mained constant even as team size increased. However, even
when the number of prey increases as in this paper, the team
at the smaller size may still encode fundamental regularities
that are important to the problem regardless of scale, such
as symmetry or the ability to flank a prey. That way, this
approach to scaling can still be a good starting heuristic for
additional training. Indeed, even when HyperNEAT’s scal-
ing was not perfect, some teams could nevertheless rapidly
adapt to a new size when explicitly trained further for it.
Thus, while the policy geometry discovered at smaller team
sizes may overspecialize or may contain artifacts that were
not sampled at the training size, the general patterns remain
useful at different team sizes and can be quickly adapted for
such different sizes. Sarsa(λ ) was not able to benefit from
this capability because even though it can continue training
at new sizes as well, it is blind to the geometry of the team
and therefore cannot intelligently extrapolate the behavior
of the team as a whole.

In addition to scaling up, teams trained with multiagent
HyperNEAT were able to scale down, which could allow
recalibrating a team after some agents have been damaged.

Scaling down also exemplifies the need for policy geome-
try because the regularities discovered at larger team sizes
can be maintained at smaller sizes. However, scaling down
did not always work because the algorithm may have con-
verged onto regularities that are only useful at larger team
sizes, or may have relied on a specific agent position that no
longer exists. Nevertheless, the ability of a team to some-
times dynamically grown or shrink without further learning
is a beneficial feature imparted by multiagent HyperNEAT.

The main result is that teams that were seeded and
trained by multiagent HyperNEAT are the most effective.
Such teams exploit the continuum of heterogeneity to over-
come the problem of reinvention by starting with an exist-
ing useful policy and varying it only as much as is needed
through a pattern across the team’s geometry. Accordingly,
the typical results (Section 5.2) show the dramatic role such
regularities play in solutions at large sizes (which Sarsa(λ )
could not solve). The major contributions of this paper are
thus (1) to introduce the idea of policy geometry and show
how it can be encoded and exploited to allow scaling, (2)
to introduce the continuum of heterogeneity as a response
to the problem of reinvention, and (3) to compare a method
that takes advantage of policy geometry and the continuum
of heterogeneity to one that does not. The hope is that these
new concepts and approaches mark the beginning of a sig-
nificant new direction in multiagent learning research that
complements prior approaches.

Indeed, an unfortunate result of comparison-driven ex-
periments is often an unwarranted emphasis on determin-
ing the better method. While multiagent HyperNEAT in-
deed exhibits greater scalability both during and after train-
ing, of course it was designed from the ground up (that is,
through the scalability of indirect encoding in HyperNEAT)
to be able to scale. On the other hand, Sarsa(λ ) was not de-
signed with this aim in mind, and thus does not acquire it
in the multiagent case. At the same time, as an evolution-
ary approach, HyperNEAT does not offer the online learn-
ing capability inherent in value-function-based reinforce-
ment learning such as Sarsa(λ ). Thus rather than a critique
of Sarsa(λ ), this comparison is better interpreted as a vali-
dation that multiagent HyperNEAT brings something new to
the table through the idea of policy geometry. In this more
cooperative spirit, perhaps a more enlightened approach to
interpreting comparisons is to consider that the fruits of di-
vergent research areas may sometimes be complementary,
and thus present opportunities for cross-fertilization. How-
ever, such approaches would likely be non-trivial, for exam-
ple, beyond simply adding initial position to an agent’s state
space. The emphasis on scalability and large size that has
been a focus of research in indirect encoding within evolu-
tionary computation for many years has of yet attracted little
attention in the reinforcement learning community in gen-
eral. Perhaps this study can help to begin to bridge this gap
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by showing what we all might gain by beginning to commu-
nicate despite our foundational differences.

For example, an intriguing possibility is that indirect en-
codings such as CPPNs can be combined somehow with tra-
ditional approaches. That is, perhaps MARL can work at the
level of a team instead of on individual agents and reinforce-
ment signals can modify the weights of the CPPN. Yet this
prospect can only be realized if a method is devised to prop-
agate the reinforcement error signal through the level of in-
direction between the substrate ANN and the CPPN that en-
codes it. At present, no such indirect error propagation tech-
nique exists, though the possibility is open. Thus, at present,
multiagent HyperNEAT is unique in its capability to scale
teams through policy geometry.

In this sense, the major contribution of this work is
conceptual because it offers a novel perspective on multi-
agent learning. In their recent survey of cooperative mul-
tiagent learning, Panait and Luke [67] cite scalability as
a “major open topic” in the field and go on to say, “The
‘multi’ in multi-agent learning cries out for larger numbers
of agents, in the range of ten to thousands or more. Two-
and three-agent scenarios are reasonable simplifications to
make theoretical analysis feasible: but the experimental and
empirical literature ought to strive for more.” This paper has
shown that perhaps the impediment has been that it is sim-
ply impractical from the traditional perspective of multia-
gent learning to strive towards such large sizes given that
each doubling of team size required Sarsa(λ ) to perform
an order of magnitude more evaluations to find a solution.
However, by taking an alternative approach and exploiting
the ideas of policy geometry and the continuum of hetero-
geneity, multiagent HyperNEAT was able to create coopera-
tive heterogeneous teams of significant size that could scale
without additional learning, which directly responds to this
calling.

7 Conclusion

This paper presented a new method of training multiagent
teams called multiagent HyperNEAT that overcomes the
problem of reinvention faced by multiagent learning by ex-
ploiting team geometry and the continuum of heterogeneity.
Multiagent HyperNEAT accomplishes these goals by repre-
senting teams as a pattern of policies, rather than as several
distinct agents. Representing teams in this way also affords
multiagent HyperNEAT the ability to scale team sizes dy-
namically up to several orders of magnitude larger than the
size on which they were trained, a novel and powerful ca-
pability for heterogeneous teams. When compared against
the traditional learning method multiagent Sarsa(λ ), multia-
gent HyperNEAT significantly outperformed it in both train-
ing and scaling. Ultimately multiagent HyperNEAT offers a
new perspective on multiagent learning that focuses on how

agents on a team relate to one another and how those rela-
tionships can be exploited to foster cooperation.
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61. Matarić M (1997) Reinforcement learning in the
multi-robot domain. Autonomous Robots 4(1):73–83



28 David B. D’Ambrosio, Kenneth O. Stanley

62. Miconi T (2003) When evolving populations is better
than coevolving individuals: The blind mice problem.
In: Gottlob G, Walsh T (eds) Proceedings of the Eigh-
teenth International Joint Conference on Artificial In-
telligence (IJCAI ’03), Morgan Kaufmann

63. Miller JF (2004) Evolving a self-repairing, self-
regulating, French flag organism. In: Proceedings of
the Genetic and Evolutionary Computation Confer-
ence (GECCO-2004), Springer Verlag, Berlin

64. Montana DJ, Davis L (1989) Training feedforward
neural networks using genetic algorithms. In: Proceed-
ings of the 11th International Joint Conference on Arti-
ficial Intelligence, San Francisco: Kaufmann, pp 762–
767

65. Nolfi S, Floreano D (1998) Coevolving predator and
prey robots: Do arms races arise in artificial evolution?
Artificial Life 4(4):311–335

66. Oliveira E, Fischer K, Stepankova O (1999) Multi-
agent systems: which research for which applications.
Robotics and Autonomous Systems 27(1):91–106

67. Panait L, Luke S (2005) Cooperative multi-agent
learning: The state of the art. Autonomous Agents and
Multi-Agent Systems 3(11):383–434, DOI 10.1007/
s10458-005-2631-2

68. Panait L, Wiegand R, Luke S (2003) Improving co-
evolutionary search for optimal multiagent behaviors.
Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence (IJCAI) pp 653–658

69. Panait L, Luke S, Harrison JF (2006) Archive-based
cooperative coevolutionary algorithms. In: Proceed-
ings of the 8th annual conference on Genetic and evo-
lutionary computation, ACM New York, NY, USA, pp
345–352

70. Panait L, Luke S, Wiegand R (2006) Biasing co-
evolutionary search for optimal multiagent behav-
iors. IEEE Transactions on Evolutionary Computation
10(6):629–645

71. Panait L, Tuyls K, Luke S (2008) Theoretical Ad-
vantages of Lenient Learners: An Evolutionary Game
Theoretic Perspective. The Journal of Machine Learn-
ing Research 9:423–457

72. Potter M, De Jong K (1994) A cooperative coevo-
lutionary approach to function optimization. Lecture
Notes in Computer Science 866:249–259

73. Potter M, Meeden L, Schultz A (2001) Heterogene-
ity in the coevolved behaviors of mobile robots: The
emergence of specialists. In: International Joint Con-
ference on Artificial Intelligence, Lawrence Erlbaum
Associates Ltd, vol 17, pp 1337–1343

74. Potter MA, De Jong KA, Grefenstette JJ (1995) A co-
evolutionary approach to learning sequential decision
rules. In: Eshelman LJ (ed) Proceedings of the Sixth
International Conference on Genetic Algorithms, San

Francisco: Kaufmann
75. Price B, Boutilier C (1999) Implicit imitation in mul-

tiagent reinforcement learning. In: Machine Learning,
Morgam Kaufmann Publishers, Inc., pp 325–334

76. Puppala N, Sen S, Gordin M (1998) Shared memory
based cooperative coevolution. In: Evolutionary Com-
putation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE Interna-
tional Conference on, pp 570–574

77. Quinn M, Smith L, Mayley G, Husbands P, Quinn M,
Smith L, Mayley G, Husbands P (2003) Evolving con-
trollers for a homogeneous system of physical robots:
Structured cooperation with minimal sensors. Philo-
sophical Transactions of the Royal Society of Lon-
don Series A: Mathematical, Physical and Engineering
Sciences 361(1811):2321–2343

78. Ren Z, Williams A (2003) Lessons learned in single-
agent and multiagent learning with robot foraging.
vol 3, pp 2757–2762 vol.3

79. Risi S, Stanley KO (2010) Indirectly encoding neural
plasticity as a pattern of local rules. In: Proceedings
of the 11th International Conference on Simulation of
Adaptive Behavior (SAB2010), Springer, Berlin

80. Saravanan N, Fogel DB (1995) Evolving neural con-
trol systems. IEEE Expert pp 23–27

81. Schlachter F, Schwarzer C, Kernbach S, Michiels N,
Levi P (2010) Incremental online evolution and adap-
tation of neural networks for robot control in dynamic
environments. In: ADAPTIVE 2010, The Second In-
ternational Conference on Adaptive and Self-Adaptive
Systems and Applications, pp 111–116

82. Secretan J, Beato N, D’Ambrosio DB, Rodriguez A,
Campbell A, Stanley KO (2008) Picbreeder: Evolv-
ing pictures collaboratively online. In: CHI ’08: Pro-
ceedings of the twenty-sixth annual SIGCHI confer-
ence on Human factors in computing systems, ACM,
New York, NY, USA, pp 1759–1768, DOI http://doi.
acm.org/10.1145/1357054.1357328

83. Secretan J, Beato N, DAmbrosio DB, Rodriguez A,
Campbell A, Folsom-Kovarik JT, Stanley KO (2011)
Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evolutionary Computa-
tion , to appear

84. Servin A, Kudenko D (2008) Multi-Agent Reinforce-
ment Learning for Intrusion Detection. Lecture Notes
in Computer Science 4865:211

85. Shoham Y, Powers R, Grenager T (2004) Multi-agent
reinforcement learning: a critical survey. In: AAAI
Fall Symposium on Artificial Multi-Agent Learning

86. Sims K (1994) Evolving 3D morphology and behav-
ior by competition. In: Brooks RA, Maes P (eds) Pro-
ceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems (Artificial



Scalable Multiagent Learning through Indirect Encoding of Policy Geometry 29

Life IV), MIT Press, Cambridge, MA, pp 28–39
87. Singh S, Kearns M, Mansour Y (2000) Nash conver-

gence of gradient dynamics in general-sum games. In:
In Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence

88. Soltoggio A, Bullinaria AJ, Mattiussi C, Dürr P, Flore-
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