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ABSTRACT
Minimal Criterion Coevolution (MCC) is a recently-introduced algo-
rithm that demonstrates how interactions between two populations,
each subject to a simple reproductive constraint, can produce an
open-ended search process. Unlike conventional quality diversity
(QD) algorithms, which also promote divergence, MCC does not
require an explicit characterization of behavior or a comparison
of performance, thereby addressing bottlenecks introduced by an
intrinsically-finite behavior descriptor and by an assessment of com-
parative quality. Genetic speciation, a common method of diversity
preservation, maintains population diversity in MCC; however, it
requires an unnatural explicit comparison of genetic similarity. In
nature, organisms are implicitly segregated into niches that each
have a carrying capacity dictated by the amount of available re-
sources. To show that MCC can be simpler and more natural while
still working effectively, this paper introduces a method of diver-
sity preservation through resource limitation, thereby alleviating
the need to formalize and compare genetic distance. Experimental
results in a maze navigation domain demonstrate that resource
limitation not only maintains higher population diversity in both
the maze and agent populations, but also accelerates evolution
by forcing individuals to explore new niches, thereby suggesting
that resource limitation is an effective, simpler, and more natural
alternative for diversity preservation in MCC.
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1 INTRODUCTION
Natural evolution has long served as an inspiration for the field
of evolutionary computation (EC) [9, 11, 12, 17]. For most of its
history, however, simulated evolution has been primarily harnessed
for producing solutions to specific problems [9], ignoring perhaps
the most unique and profound attribute of its in-vivo counterpart:
the perpetual generation of increasingly complex and diverse forms.
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Rather than converging to a defined optimization objective, nature
branches out into multiple evolutionary trajectories, producing a
rich ecosystem that bears little resemblance to its humble origins.

The creative properties of natural evolution that led to a com-
plexity explosion are inspirational to the notion of open-endedness
in artificial systems – a concept with a long history of investigation
in the field of artificial life (alife) [1, 25, 27, 48], but which has never-
theless only recently been framed as a tool that can be leveraged for
solving problems of practical interest [49]. Quality diversity (QD)
algorithms [38] are one such example of divergent search meth-
ods that capture some flavor of evolution’s affinity for functional
diversity. Instead of converging on a global optimization target,
QD algorithms explicitly seek out novel discoveries while ranking
those that are behaviorally similar against an objective measure
of performance. However, while conventional QD algorithms em-
body some of the attributes of an open-ended system, they require
an explicit characterization of behavior (i.e. to maintain a record
of points visited in the behavior space) to assess novelty. Conse-
quently, as a wider breadth of the finite behavior space is sampled,
pressure toward novelty diminishes, thus limiting the open-ended
expression of most QD algorithms.

In contrast, a recently-introduced algorithm called minimal cri-
terion coevolution (MCC) [4, 5] is predicated on the observation that
nature requires no such behavioral formalism; rather, reproduction
is the sole criterion for the continuation of one’s lineage, and within
that constraint, divergence is a byproduct of genetic drift. In MCC,
two populations are coevolved, each subject to a minimal criterion
(MC) of reproduction with respect to the other. MCC was initially
benchmarked in a maze navigation domain where mazes are coe-
volved with maze navigating agents controlled by neural networks
(NNs). To meet their MC, agents are required to solve at least one
maze, while mazes meet their MC by being successfully navigated
by at least one agent. Within this simple evaluation framework,
MCC discovers diverse mazes that vary in both size and structure,
with agents continually solving larger and increasingly non-trivial
challenges. The idea in MCC of coevolving agents and environ-
ments has also informed alternative open-ended approaches like
the recent POET algorithm [55].

While MCC has shown promising results that suggest its poten-
tial for open-ended innovation, its method of diversity preservation
remains ad-hoc and without natural precedent. Like many other
evolutionary algorithms (EAs), conventional [9, 12] or QD-based
[22, 35, 38, 39], MCC employs speciation to segregate members of
both populations into one of a predetermined number of species
based on an explicit comparison of genetic similarity. Though spe-
ciation in nature is a well-established ecological phenomenon, its
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implementation in MCC is contrived and furthermore, determining
how to meaningfully compare similarity imposes a priori structure
on the system, which conflicts with the intention in the long run
to produce novel and perhaps unanticipated artifacts.

Responding to this opportunity to simplify MCC while making it
also more natural, this paper introduces an alternative method of di-
versity preservation through resource limitation. As with prior MCC
experiments, the benchmark maze domain demonstrates coevolu-
tionary complexification involving mazes and agents; however,
rather than segregating the two populations by genetic similarity, a
resource limit is imposed on mazes such that a given maze can only
be used (i.e. successfully navigated) by a finite number of agents
for satisfying any given agent’s MC. That way, agents are forced
to satisfy their MC through different mazes. The results of this
simple constraint demonstrate that enforcing resource limitation
boosts population diversity by producing mazes with highly vari-
able solution paths, while also accelerating evolution compared to
explicit speciation by exposing agents to a broader array of new
and challenging environments.

Resource limitation ensures that evolution remains unencum-
bered by potentially biased, a priori assumptions by alleviating
the need to explicitly characterize and compare solution structure,
while also facilitating the application of MCC to new domains for
which such characterizationsmay be non-trivial or computationally-
expensive. In this way, it opens up MCC to a wider breadth of po-
tential applications while also simplifying it and making it easier
to implement in practice.

2 BACKGROUND
This section provides an overview of recent research in open-
endedness, discusses conventional diversity-preservation methods
in EC, and reviews the MCC algorithm.

2.1 Open-endedness
Evolution in nature has consistently captivated researchers in ar-
tificial life (alife) and evolutionary computation (EC) because of
its unparalleled propensity for creativity, and its ability to produce
increasingly complex organisms and adaptations that continue to
diverge along many dimensions of variation [2, 3, 32, 40, 51]. This
characteristic of evolution is broadly known as open-endedness, but
the conditions that lead to an open-ended process are an active area
of study that is hotly-debated within multiple scientific disciplines
[27, 42, 48].

In alife, hypotheses regarding how individuals might interact are
formulated and often tested in a simulation, or alife worlds [6, 33, 37,
40, 56]. Ultimately, the hope is to discover a set of conditions that
lead to a complexity explosion reminiscent of that observed on earth
[49]. Prevailing evolutionary theory posits that selective pressure
induces a drive toward increasing complexity [31]; however, recent
research has suggested that complexity may instead be an artifact
of random genetic drift [26, 27, 32].

Soros and Stanley [47] recently introduced an alife world called
Chromaria that relies on a strategy of genetic drift to test sev-
eral hypothesized conditions for producing open-ended evolution.
Chromaria has no fitness function or method of quantifying and
comparing solution quality; instead, individuals are required to
satisfy a simple, binary minimal criterion (MC) to reproduce and

propagate their lineage. An important insight, however, is that forc-
ing individuals to interact while satisfying their MC results in a
continual flux of MC difficulty, leading to increasingly novel and
complex discoveries.

Early hints of a more open search process in ECwere first demon-
strated by an algorithm called Viability Evolution (ViE) [28, 30].
ViE is a form of multi-objective search that encloses the space of
possible solutions inside of viability boundaries, each of which cor-
respond to a constraint that individuals must satisfy to reproduce.
The boundaries are incrementally tightened, producing a set of
solutions that satisfy the most stringent constraint values while
permitting variation within the enclosed space. While ViE has no
requirement for an objective function, it is still a convergent algo-
rithm that prunes away population diversity instead of encouraging
it.

Rather than converging toward a set of a priori optimization
targets, a new class of non-objectivemethods induce evolutionary di-
vergence by promoting behavioral novelty. For example, the novelty
search algorithm [20, 21] ignores objective-oriented performance
entirely; instead, individuals are rewarded according to their de-
gree of behavioral novelty as compared to past discoveries, thereby
encouraging diversity and exploration by pushing outward across
the search space. This approach is particularly effective for decep-
tive domains, where following the gradient of fitness may lead to
sub-optimal regions of the search space. Novelty search inspired a
succession of new quality diversity (QD) algorithms [22, 35, 38, 39]
that combine the search for novelty with objective performance, col-
lecting many diverse artifacts, each as high-performing as possible
with respect to a separate measure of quality.

2.2 Diversity Preservation in EC
Most evolutionary algorithms (EAs) model search as a convergent
process that selects only the most fit individuals for reproduction, it-
eratively honing in on high-fitness areas of the search space [41]. As
a population-based search method, however, EAs rely on maintain-
ing a diverse sample of candidate solutions to avoid convergence
to areas of the search space that are only locally optimal. Diversity
preservation techniques are generally loosely based on niching
in natural evolution, where organisms are segregated into distinct
species and competition occurs primarily within each species’ niche
rather than at a population level [43, 54]. In EC, such methods are
employed to manage the conflicting goals of exploration and ex-
ploitation, ensuring that multiple evolutionary lineages are main-
tained to avoid naively committing to a single evolutionary path
without adequately vetting the alternatives [29].

Conventionally, similarity is assessed at the genotype-level [15,
29], though individuals may also be grouped based on age [18, 46] or
fitness [19]. The Neuroevolution of Augmenting Topologies (NEAT)
method [50], which evolves and complexifies NNs (and is modified
to control maze-navigating agents in this paper), typically speci-
ates genotypes by comparing shared evolutionary lineage between
each topological component (nodes and connections). Speciation
and other niching methods encourage diversity in the genotype
space without regard for whether genetic disparity translates into
meaningful phenotypic differences; however, recent QD research
has found that many distinct genotypes may collapse into the same



Diversity Preservation in Minimal Criterion Coevolution through Resource Limitation GECCO ’20, July 8–12, 2020, Cancún, Mexico

phenotypic expression, suggesting that augmenting genetic speci-
ation with an explicit search for behavioral novelty may be more
effective at preserving functional diversity in deceptive or ambi-
tious domains [21]. Nature, however, does not explicitly measure
genotypic or behavioral similarity. Instead, diversity is in part a
byproduct of finite, yet essential resources [24, 43] – an insight that
motivates the present work.

2.3 Minimal Criterion Coevolution
While QD algorithms capture some of the divergent aspects of nat-
ural evolution, their capacity for open-ended discovery is limited
by the requirement to characterize and compare behavioral novelty.
Defining all possible dimensions of behavioral variation a priori
for a system meant to continue indefinitely is not practical, and as-
sessing the comparative novelty of an ever-expanding evolutionary
repertoire is computationally infeasible. Nature does not imple-
ment an explicit drive toward novelty, nor does it rank individuals
against an optimization criterion. Fundamentally, natural evolution
imposes only one constraint: survive long enough to reproduce.

Inspired by this perspective, Minimal Criterion Coevolution
(MCC) offers a different take on divergent evolutionary search [4, 5]
– one that is inspired by the simplicity of nature’s binary, repro-
ductive criterion for survival. MCC is a coevolutionary algorithm
that evolves two populations in accordance with their respective
minimal criterion (MC), which is a baseline constraint on function-
ality. Where conventional coevolutionary algorithms issue reward
according to a competitive or cooperative objective, MCC evaluates
individuals only against their MC, allowing diversity to flourish
while avoiding trivial discoveries (which would fail the MC).

MCC adopts the population structure and selection process orig-
inally introduced in Chromaria [47], the alife world developed to
examine evolutionary interactions subject only to the MC. Indi-
viduals who satisfy the MC are admitted to a population queue
and selection from the queue is determined only by the order of
insertion (i.e. there is no notion of explicit fitness beyond the MC).
Removal from the queue is then age-based, thereby ensuring that
each individual who satisfies their MC gets at least one chance to
reproduce. This selection and removal method is free of fitness and
novelty bias, which keeps many evolutionary paths open while
avoiding expensive comparative assessments of behavioral similar-
ity and facilitating parallel evaluation by leveraging the MC as an
independent measure of performance.

While most EAs begin evolution with a randomly-initialized
population, MCC requires that all individuals in the population
satisfy a non-trivial MC, which necessitates a bootstrap process
in which individuals are evolved with the MC as an explicit initial
objective. Those who satisfy the MC seed their respective popu-
lation queue. Prior MCC experiments have utilized non-objective
algorithms, such as novelty search [21], for evolving seed genomes
because of their propensity to produce a diverse initial population;
however, in principle, any EA, fitness-based or otherwise, could be
used.

When MCC was first introduced, two variants were evaluated:
one utilizing genetic speciation and the otherwithout anymethod of
diversity preservation. Speciation was found to markedly increase
population diversity by maintaining reproductive viability among
several distinct lineages [4]. The approach to speciation in the

original MCC is adapted to work with population queues: Species
assignment is determined through k-means clustering, where pre-
evolved individuals that seed the two population queues act as the
initial cluster centroids. Genetic similarity is computed between
each pair of population occupants to determine species membership,
and individuals are assigned to the species with whom they share
the greatest genetic similarity. Queue capacity is subdivided into
equally-sized partitions such that each species 𝑖 has a carrying
capacity equivalent to 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑖) = 𝑛/𝑠 , where 𝑛 is the maximum
population queue capacity and 𝑠 is the number of species. Selection
extracts a proportionate number of individuals from each species
for reproduction in accordance with their queue insertion order. If
adding a new individual to the queue causes a species to exceed
its carrying capacity, the oldest member of the assigned species is
removed.

Like other methods of diversity preservation, speciation in MCC
is inspired by ecological niching, where each niche has a limited
carrying capacity, thereby encouraging population divergence by
founding new niches. In practice, however, speciation requires an
experimenter to dictate several critical parameters, including the
species count and distance metric, a priori. For a method like MCC
aiming to take inspiration from natural evolution while introduc-
ing as little additional machinery as possible, the overhead of the
speciation component is undesirable. To address this challenge, this
paper introduces an alternative method for diversity preservation
that exploits the mutually-dependent MC of two populations to in-
stead induce a competition for limited resources, allowing diversity
to vary more naturally as both populations coevolve in accordance
with their respective MCs.

3 APPROACH: RESOURCE LIMITATION
In nature, species occupy niches whose carrying capacity is lim-
ited by environmental factors, including the availability of natural
resources (i.e. consumable material that is required for the per-
sistence of an organism, such as habitat and nutrients) and the
frequency of predation [43, 54], both of which impose a form of
local regulation on niche membership. A long-standing hypothe-
sis in population ecology is that competition for limited resources
has played a critical role in adaptive radiation and the formation
of ecological communities [44, 52, 53]. In particular, as resources
become increasingly scarce, organisms are forced to diverge and
found new niches in which to continue their lineages. Those organ-
isms capable of exploiting underutilized resources will be favored
over those who cling to resource-depleted niches [45].

Using the Avida digital evolution platform [37], Cooper and Ofria
[7] demonstrated that competition for limited resources can have
a stabilizing affect on simulated community structures. Resource
limitation was also shown to be effective in diversity preservation
in EC [10, 13, 14], but it has primarily been leveraged in the context
of objective-driven, convergent search processes. Recent work in
EC, however, has shown that genetic drift (a process on which
MCC heavily relies) can lead to the founding of new niches [8, 23],
thereby creating novel and varied opportunities for individuals to
persist. This effect is especially true for organisms who exhibit a
high degree of evolvability because they are innatelymore adaptable
to new niches, thereby promulgating lineages of similarly evolvable
offspring.
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Viewing speciation as a process that emerges from limited envi-
ronmental resources and random drift across the genotype space is
well-aligned with MCC’s open-ended approach to search. Rather
than computing a genetic distance between individuals and group-
ing the most similar into one of a predefined number of species,
in this new version of MCC a limitation is placed on the number
of times an individual in one population can “use” an individual
from the other population to satisfy their MC. This approach is par-
ticularly intuitive when individuals in one population are framed
as evaluation environments and those in the other population as
organisms whose MC is to interact with an environment in some
desirable manner.

This way, each member of the population on which a resource
limit is imposed maintains a tally of the number of times it has
been utilized by a member of the opposite population for satisfying
their MC. When the usage tally reaches the predefined resource
limit, it can no longer be used for MC satisfaction. Algorithm 1
formalizes the MCC selection, evaluation and removal process with
the resource-limited population. Maintaining diversity through
resource limitation negates the requirement for computing genetic
distance, creating a dynamic, self-regulating system that exploits
MCC’s propensity for open-ended divergence to discover new and
varied adaptations.

4 EXPERIMENT
Prior work demonstrated MCC through an evolving maze domain
[4, 5], where maze-navigating agents are coevolved with maze en-
vironments whose size and structure varies throughout evolution.
Maze navigation is often used as a test-bed for non-objective algo-
rithms because solution path structure serves as a proxy for overall
task complexity, while deceptive fitness gradients are easily visu-
alized as trajectories that move in the direction of the goal, but
ultimately lead to a dead-end [20, 21, 34, 36, 38]. However, while
other non-objective algorithms may produce multiple novel solu-
tions to a single maze, MCC coevolves agents and mazes in tandem,
creating a potentially endless curriculum of new and varied mazes,
each with effective adaptations.

Agents are controlled by NNs whose weights and topology are
evolved using a modification of the Neuroevolution of Augmenting
Topologies (NEAT) algorithm [50] (without speciation in the new
MCC variant in this paper). NEAT starts with minimal architectures
(few nodes and connections) and gradually adds structure to the
extent that those additions result in improved task performance.
NEAT has a long history in complex control tasks [50] and is par-
ticularly well-suited to open-ended domains where the addition
of tunable parameters can be exploited to produce increasingly
complex behaviors. The NN architecture for the maze domain is
identical to that of Brant and Stanley [4, 5], with six rangefinder
sensors that measure distance to line-of-sight obstructions and four
pie slice sensors that activate when the goal is within the sensor’s
arc.

Mazes are represented as square grids with a fixed starting lo-
cation in the upper-left corner and a fixed goal location in the
lower-right corner. Agents begin a trial at the starting location,
and their objective is to reach the target location within a limited
simulation time, which is a function of maze size and solution path
length (i.e. agents are allotted more time to navigate larger mazes

Algorithm 1 MCC Evaluation Process with Resource Limitation
Require:
𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 - # of individuals to evaluate simultaneously
𝑛𝑢𝑚𝑆𝑒𝑒𝑑𝑠 - # of seed genomes to evolve that satisfy the MC
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑚𝑖𝑡 - max # of evaluations that count toward MC
⊲ Evolve seed genomes that satisfy MC
𝑟𝑎𝑛𝑑𝑃𝑜𝑝 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()
𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝 ← 𝐸𝑣𝑜𝑙𝑣𝑒𝑆𝑒𝑒𝑑𝐺𝑒𝑛𝑜𝑚𝑒𝑠 (𝑟𝑎𝑛𝑑𝑃𝑜𝑝, 𝑛𝑢𝑚𝑆𝑒𝑒𝑑𝑠)
loop

⊲ Reproduce children and add parents back into queue
𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← 𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝐷𝑒𝑞𝑢𝑒𝑢𝑒 (𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒)
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
for all 𝑐ℎ𝑖𝑙𝑑𝑖𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

if 𝑝𝑜𝑝𝑇𝑦𝑝𝑒 (𝑐ℎ𝑖𝑙𝑑) = 𝑎𝑔𝑒𝑛𝑡 then
for all 𝑒𝑛𝑣 ∈ 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 do

⊲ Only select environments below resource limit
if 𝑒𝑛𝑣 .𝑈𝑠𝑎𝑔𝑒 < 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑚𝑖𝑡 then

𝑒𝑣𝑎𝑙𝐼𝑛𝑑𝑖𝑣 ← 𝑒𝑛𝑣

break
end if

end for
else

𝑒𝑣𝑎𝑙𝐼𝑛𝑑𝑖𝑣 ← 𝑛𝑒𝑥𝑡 (𝑎𝑔𝑒𝑛𝑡𝑠)
end if
𝑚𝑐𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝐶 (𝑐ℎ𝑖𝑙𝑑, 𝑒𝑣𝑎𝑙𝐼𝑛𝑑𝑖𝑣)
if 𝑚𝑐𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 then

𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑐ℎ𝑖𝑙𝑑)
end if

end for
if 𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝑆𝑖𝑧𝑒 > 𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 then

𝑛𝑢𝑚𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠 ← 𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝑆𝑖𝑧𝑒 − 𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝.𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑅𝑒𝑚𝑜𝑣𝑒𝑂𝑙𝑑𝑒𝑠𝑡 (𝑣𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝, 𝑛𝑢𝑚𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠)

end if
end loop

with longer solution paths). The maze encoding is first briefly re-
viewed, after which resource limitation for preserving population
diversity and encouraging coevolutionary divergence is explained.

4.1 Maze Encoding
The enhanced maze encoding of Brant and Stanley [5] is again the
testbed in this paper. Maze genomes specify the overall maze size
(i.e. length of the outer boundaries) and consist of genes that encode
waypoints (referred to as “path” genes) and walls. Waypoints are
coordinates that are linked by a set of rules, thus forming a solution
path. Mutation operators probabilistically shift waypoints a single
unit in one of four directions (up, down, left or right), while also
controlling the rate at which new waypoints are added.

Wall genes dictate the position and orientation (i.e. horizontal
or vertical) of partitions that bisect sub-spaces carved out by the
solution path. Eachwall gene also encodes a passage location, which
specifies the location of an opening in the wall through which an
agent can pass. Wall locations are relative, in the range [0, 1], and
are scaled to the dimensions of the space in which they are placed.
Passage locations adopt the same relative range and are scaled to
the length of the wall. Wall genes are subject to mutation operators
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that probabilistically add and remove walls, and shift wall and
passage location. The maze size is modified by a separate mutation
parameter that controls the rate at which the maze expands.

Maze genomes are decoded by first placingwaypoints to form the
solution path, then arranging walls within the adjoining sub-spaces.
Walls iteratively bisect each sub-space according to a randomly
assigned orientation. Each wall’s relative position is scaled to the
dimensions of the space in which it is placed, and the position of
the wall’s passage is scaled to the length of the wall. For example, if
a wall with a horizontal orientation, a relative position of 0.5 and a
passage position of 0.6 is placed within a square space of length 10,
the wall will start at coordinate (0, 5) and end at coordinate (10, 5),
and the passage will be placed at (6, 5). Figure 1 visually depicts
the effect of each mutation operation.

4.2 Resource Limitation
While a differing arrangement of walls may increase or decrease
the level of domain deception, it may or may not necessitate modi-
fication of an agent policy for successful navigation. Conversely,
perturbing a path gene directly modifies the solution path, which
is more likely to require explicit adaptation. Path genes are the
fundamental units of maze genomes, and were therefore used to
assess maze similarity for speciation in the original MCC experi-
ments. Specifically, maze similarity was computed as theManhattan
distance between every pair of path waypoints. If mazes had an
unequal number of path genes, the last waypoint in the maze with
fewer path genes was used for remaining distance calculations. In
the agent population, the standard NEAT method of speciation
was used [50] wherein similarity is determined by the number of
connections with matching historical markings.

While deriving an intuitive distance metric is fairly straightfor-
ward for simple structures such as mazes, there may exist other
domains for which quantifying distance is more difficult or less
informative. For example, in a robot locomotion domain where
MCC is used to coevolve morphology and control, the dimensions
by which to characterize morphology distance are perhaps less
intuitive, and could also vary substantially based on the physical
substrate (e.g. rigid joints andmaterials vs. soft body structures with
varying degrees of material compliance). More importantly, nature
requires no such ad-hoc means of explicitly measuring organism
distance to encourage diversity. Instead, evolutionary divergence is
in part a byproduct of niche carrying capacities, or resource limits.

To emulate such limitation, each maze is assigned a fixed re-
source limit, and only successful navigations within that limit are
counted toward satisfying an agent MC. For example, if a maze
has a resource limit of five, and five agents have already solved
the maze, then it has reached its resource limit and is no longer
available for agent evaluation (because successful navigation would
not count toward satisfying an agent’s MC, and would thus be an
inefficient use of computation). Note also that resource limitation
is applied asymmetrically in that it is only imposed on the maze
population; agents do not have an associated resource limit, so
there is no restriction on the number of times they can be used to
satisfy a maze MC. In practice, implementing resource limitation in
only one direction is sufficient to promote diversity in both popula-
tions, because as individuals in one population maintain viability

by using alternate, under-utilized individuals in the other, they nat-
urally evolve a wider range of adaptations that enable continued
divergence in the opposite direction as both populations interlock
to satisfy a mutual MC. For example, in the maze domain, agents
must evolve diverse navigation strategies to solve mazes that have
not reached their resource limit, which, conversely, enables them
to successfully navigate similarly diverse mazes, thus satisfying the
MC of those mazes.

4.3 Experimental Parameters
The bootstrap process required by MCC is executed using the nov-
elty search algorithm with parameters identical to those in Lehman
and Stanley [21]. Agents are evaluated on ten simple, randomly-
generated mazes of identical size, each with two path genes and
two wall genes. Twenty agents are evolved such that each agent is
able to solve at least one maze, while respecting the maze resource
constraints that no more than five agents can solve a single maze.
This resource limit was shown to maintain a healthy equilibrium
and promote sustained evolutionary divergence in both populations
during an initial parameter sweep. Mazes retain the resource usage
incurred during initialization, and seed the maze population queue
while the evolved agents seed the agent queue.

MCC experiments are executed in 20 runs of 2,000 batches, where
40 agents and 10 mazes are evaluated within each batch. Agents
have a maximum velocity of 3 units per second and are allotted a
simulation time of two times the maze solution path length. Sharp-
NEAT version 3.0 [16] is the neuroevolution platform, which was
extended to implement novelty search and MCC with speciation
and resource limitation, and to support encoding and evolving maze
genomes. Configuration parameters (e.g. NEAT and maze genome
mutation rates) for both the resource-limited version of MCC and
the original speciated version (the control in this paper) are iden-
tical to those used in Brant and Stanley [5], and the speciation
configuration for the control is also identical, thereby isolating ef-
fects to the selected diversity preservation method. Source code for
the experiments is available at https://bit.ly/33WsgKI.

5 RESULTS
Recall that the aim of these experiments is to investigate whether
a simple resource limitation can maintain similar levels of popu-
lation diversity as speciation, and thus serve as a much simpler
and more natural method of diversity preservation. The results of
both methods (i.e. resource limitation and speciation) are evaluated
by comparing the diversity of mazes both discovered and solved
during evolution. Diversity is calculated by measuring the Manhat-
tan distance between the solution paths of every pair of mazes in
the population, and dividing by the number of path segments to
normalize by path length, thereby accounting for larger mazes that
may have longer, but not necessarily more diverse, solutions paths.
Formally, the diversity score of a maze is given by

div(𝑚) = 1
𝑛

𝑛∑
𝑖=1
( 1
𝑙

𝑙∑
𝑗=1

dist(𝑚 𝑗 , `𝑖, 𝑗 )), (1)

where𝑚 represents the maze whose diversity is being measured,
𝑚 𝑗 is the 𝑗-th location in the maze solution path, `𝑖, 𝑗 corresponds
to the same solution path index in the maze against which 𝑚 is
compared, 𝑙 is the length of the solution path, 𝑛 is the number

https://bit.ly/33WsgKI
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Figure 1: The maze evolution process.Maze genotypes (top), respective trajectories (middle), and respective phenotypes (bottom) are
shown. The table above each maze shows the path (waypoint) and wall genes, while the visualization directly below depicts the resulting
trajectory. In the maze phenotypes at bottom, dots are shown to depict the solution path. Each path gene specifies the coordinates of a
waypoint, and each wall gene contains a wall position and passage position, both real numbers within the interval [0, 1]. The wall position
(W) describes the relatives position of a wall within a sub-space carved out by the solution path, while the passage position (P) describes the
relative position of a passage (opening) within that wall. The initial genome (first column) consists of one path gene and one wall gene; the
single wall gene is repeated to fill out all sub-spaces. The second column depicts an add wall mutation, while the third column demonstrates
an add waypoint mutation. In the fourth column, a mutate waypoint operation is carried out, shifting the first waypoint one unit to the
right. Finally, the fifth column depicts an expand maze mutation, extending the outer boundaries down and to the right, and resulting in a
corresponding extension of the solution path.
of mazes in the population, and 𝑑𝑖𝑠𝑡 represents the function that
measures distance between two solution paths (in this case, the
Manhattan distance). The figures in this section compare speciation
and resource limitation across a range of metrics, depicting the
significance of each measurement with a 95% confidence bound
(shown as an error bar) on the means.

Figure 2 depicts the average distance between solution paths in
mazes discovered by the speciation and resource limitation variants.
Imposing a resource limit on mazes leads to significantly more
diverse solution paths (𝑝 < 0.001; Welch’s t-test) over the course of
a run. Resource limitation also accelerates the rate at which larger
mazes are discovered and solved. Figure 3 depicts a significantly
more rapid maze expansion rate (𝑝 < 0.001 after batch 100; Welch’s
t-test) that culminates in mazes that are, on average, twice the
size of mazes evolved by the speciated variant. Resource limitation
also evolves a much broader range of maze sizes (figure 4). Note
that the sharp decline in the number of mazes at the end of both
experimental variants is caused by under-representation of mazes
in that size range; runs were terminated before evolution fully
explored the space of similarly-sized mazes.

Figure 5 depicts the rate at which new agent NN connections are
incorporated successfully. While agent controllers in the resource

limitation variant consistently add structure throughout evolution,
they remain significantly more compact than those produced by
the speciation variant (𝑝 < 0.001; Welch’s t-test), despite learning
advanced navigation policies for solving larger mazes. This trend
indicates that resource limitation may be reducing bloat by finding
effective pairings between NNs andmaze niches whereas speciation
produces arbitrary boundaries for both populations in isolation, and
without regard to their interaction dynamics. Evidence for more
advanced navigation policies also includes a significant increase
(𝑝 < 0.01 between batches 250 and 600 and 𝑝 < 0.001 thereafter;
Welch’s t-test) in the average number of deceptive junctures (figure
6) in the resource limitation variant, where agents at a juncture
(i.e. a turn in the maze solution path) are forced to choose one of
multiple possible routes with incomplete information of where the
chosen route may lead. The second, third and fifth turns in figure
7a are examples of deceptive junctures.

Figure 7 showcases a sample of agent trajectories (from evolved
NN controllers) throughmazes evolved by a single run ofMCC, each
varying in size and solution path complexity. All runs of MCC with
resource limitation discovered mazes larger than those produced
with speciation, with the largest mazes being more than three times
the size and with effective agent solutions.
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Figure 2: Solution Path Diversity by Experimental Variant.
The average solution path distance between mazes for the specia-
tion and resource limitation variants are compared. The resource
limitation variant exhibits significantly higher solution path diver-
sity.

Figure 3: Maze Size Trend. The average maze size over evolution
for the speciation and resource limitation variants are compared.
The resource limitation variant discovers larger mazes, with an
approximately linear rate of maze expansion throughout evolution.

Figure 4: Maze Size Distribution. The count of mazes discovered
over all runs for the speciation and resource limitation variants
are compared. Each column pair depicts a bin of 5 consecutive
maze sizes (e.g. the first contains sizes 10–14). Also, the y-axis is
log-scaled so that the maze counts at the tail-end of both variants
are visible. The resource limitation variant evolved a much wider
range of maze sizes, some more than twice the size of the largest
mazes discovered using speciation.

Figure 5: Agent NN Size Trend. The average agent NN connec-
tions over evolution for the speciation and resource limitation vari-
ants are compared. The resource limitation variant continues to add
structure, but maintains significantly more compact NNs through-
out evolutionwhile solvingmore complexmazes than the speciation
variant. This result suggests that resource limitation may reduce
bloat by finding effective pairings between maze and agent.

Figure 6: Maze Deceptive Junctures Trend. The average num-
ber of junctures (turns) in maze solution paths with multiple possi-
ble routes for the speciation and resource limitation variants are
compared. A higher number of such junctures requires a more ad-
vanced policy because an agent must decide along which route to
continue its trajectory with incomplete information of where that
route may lead. The resource limitation variant discovers solution
paths that are more deceptive, along with agent NN controllers that
overcome such deception.
6 DISCUSSION
By restricting the number of times a single maze can be used for
satisfying an agent MC, agents are forced to sample a wider variety
of mazes that each vary in size and complexity. Those who are more
evolvable are able to exploit underutilized resources, founding new
niches and producing offspring who exhibit a similar degree of
adaptability. This exploration across niche space creates a diverse
curriculum of challenges that facilitate novel and complex agent
adaptations, even without directly enforcing diversity through con-
ventional methods such as speciation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Mazes and agent trajectories discovered within a single run of MCCwith resource limitation. A sample of eight solution
trajectories through different mazes evolved within a single run of MCC are shown. Maze (a) is 11×11 (slightly larger than the 10×10
bootstrap mazes) with 2 waypoints and 2 walls (i.e. wall genes), maze (b) is 15×15 with 4 waypoints and 6 walls, and maze (c) is 22×22 with 6
waypoints and 8 walls. Maze (d) is the same size as the largest maze shown in Brant and Stanley [5], at 25×25 with 7 waypoints and 8 walls.
Mazes (e) through (h) are larger and have more complex solution paths than any previously-demonstrated results in the MCC maze domain.
Maze (e) is 28×28 with 7 waypoints and 10 walls, maze (f) is 33×33 with 10 waypoints and 13 walls, and maze (g) is 36×36 with 11 waypoints
and 13 walls. The largest maze (h) is 40×40 with 10 waypoints and 22 walls.

Resource limitation discovers complex mazes with more diverse
solution paths than speciation, while also evolving agents capable
of rapidly adapting their policies to new challenges. A notable side-
effect of resource limitation is an acceleration of the evolutionary
process: larger mazes are discovered while NN controller size re-
mains modest, yielding compact encodings that reduce NN bloat
while encoding more advanced control policies. The results suggest
that resource limitation is a suitable, even superior, replacement for
speciation. In addition to offering a more natural form of diversity
preservation, resource limitation also alleviates the need for ad-hoc
decisions about how to meaningfully measure distance between
encodings, and the computational overhead of exhaustively com-
paring similarity, facilitating the application of MCC to domains
for which such a measurement would be uninformative, non-trivial
or computationally expensive to execute. As MCC is applied to
complex tasks in practical, real-world domains, it stands to benefit
from the simplicity and efficiency afforded by resource limitation
as the primary method of diversity preservation.

It is also notable that the resultant algorithm is among the sim-
plest in EC. There is no measure of fitness apart from the MC, no
ranking, no proportional selection, and no measure of diversity or
explicit speciation. And yet it is still producing an open-ended phe-
nomenon of increasing complexity and diversity rarely observed
in any other algorithm, hinting that the fundamental ingredients
necessary for open-ended evolution to flourish may be surprisingly
minimal.

7 CONCLUSIONS
Prior implementations of MCC utilized speciation, a common form
of diversity preservation in EC, to encourage diversity in both pop-
ulations. Such artificial speciation requires an explicit comparison
of distance between individuals in a population – a process that
lacks natural precedent, and one that is ad hoc for the purposes of
an algorithm inspired by the simplicity of open-ended evolution
in nature. This paper proposed a more organic method of diver-
sity preservation through resource limitation. Rather than binning
individuals into species, a limit is placed on the number of times
an individual from one population can be used for satisfying the
MC of individuals from the other population. This method was
evaluated in a maze navigation domain where only a limited num-
ber of successful trials counted toward satisfying an agent MC.
Imposing a resource limit on mazes drove evolution to discover a
wider range of maze sizes with more complex and diverse solution
paths, each with effective solutions in the agent population. These
results suggest that resource limitation is a viable replacement for
speciation, thereby eliminating one of the few remaining ad-hoc
implementation decisions in MCC and opening up the space of its
future applications.
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