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ABSTRACT
Minimal criterion coevolution (MCC) was recently introduced to

show that a very simple criterion can lead to an open-ended expan-

sion of two coevolving populations. Inspired by the simplicity of

striving to survive and reproduce in nature, in MCC there are few

of the usual mechanisms of quality diversity algorithms: no explicit

novelty, no fitness function, and no local competition. While the

idea that a simple minimal criterion could produce quality diversity

on its own is provocative, its initial demonstration on mazes and

maze solvers was limited because the size of the potential mazes

was static, effectively capping the potential for complexity to in-

crease. This paper overcomes this limitation to make two significant

contributions to the field: (1) By introducing a completely novel

maze encoding with higher-quality mazes that allow indefinite ex-

pansion in size and complexity, it offers for the first time a viable,

computationally cheap domain for benchmarking open-ended al-

gorithms, and (2) it leverages this new domain to show for the first

time a succession of mazes that increase in size indefinitely while

solutions continue to appear. With this initial result, a baseline is

now established that can help researchers to begin to mark progress

in the field systematically.
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1 INTRODUCTION
A deep philosophical question has long intrigued researchers in

artificial life (alife): what are the key ingredients of natural evolu-

tion that facilitate boundless discovery of novel and increasingly

complex forms, and how can these processes be reproduced in a

computational simulation [21]? This characteristic of evolution,

known as open-endedness [36, 37, 40], has been studied primarily in

the context of alife worlds where simulated creatures interact in an

attempt to continuously generate subjectively interesting behaviors

that are increasingly novel and complex [5, 22, 27, 31, 35, 43].

Open-endedness also has important implications to researchers

in evolutionary computation (EC), where evolutionary abstractions

are often harnessed to evolve solutions to problems of practical

relevance [7]. While most EC practitioners rely on an objective

(fitness) function to guide search, the objective may become a lia-

bility when, through deception, following its gradient leads search

farther away from its desired target [15]. In contrast, a new class

of methods have recently emerged that take a different approach

to search. Known as quality diversity (QD) algorithms, instead of

converging to an objective region of the search space, they inten-

tionally exhibit divergence by encouraging behavioral novelty while
still rewarding objectively superior discoveries [29, 30], thereby

harnessing an aspect of open-endedness in a framework that can

be applied to solving practical problems.

Yet while QD algorithms take a step towards open-endedness,

they require additional mechanisms that have no precedent in

nature. In particular, most QD algorithms require a behavior char-

acterization (BC) that describes an individual’s position in behavior

space, which is used to assess and reward novelty with respect

to current and past discoveries [16, 24, 29]. For example, in a ro-

bot locomotion task, behavior might be characterized by distance

traveled and average velocity, and individuals who exhibit novel

combinations of both would be rewarded accordingly. However, as

the space of possible distances and velocities is saturated, novelty

pressure is reduced. In that way, the finite capacity of the BC limits

scalability when the hope is open-ended discovery. QD algorithms

also depend on fitness functions to measure quality, and forms of

local competition to ensure that individuals compete within their

local niches. None of these mechanisms are explicitly imposed in

nature, yet nature still exhibits open-endedness.

Brant and Stanley [3] introduced an alternate approach to QD

called minimal criterion coevolution (MCC) that discards many of

these conventional techniques. MCC draws inspiration from natural

evolution’s ability to produce boundless diversity and complexity

in an almost entirely undirected manner. Unlike QD algorithms that

use novelty to promote divergence and local competition to ensure

https://doi.org/10.1145/3321707.3321756
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quality, MCC adopts an unconventional hypothesis: divergence can

also be induced by drift subject to a minimal criterion (MC). The

MC is a constraint on reproduction, and while it has been explored

in prior research [14, 20], harnessing the MC to produce an open-

ended search process and determining how it should calibrate over

time to avoid stagnation remains a challenge. MCC addresses this

problem by using coevolution to interlock two populations as they

each simultaneously drift through the space of possible elaborations

while still satisfying their MC with respect to each other.

MCCwas first demonstrated in amaze navigation domain, where

a population of mazes are coevolved with maze navigators con-

trolled by neural networks (NNs). Each navigator is required to

solve at least one maze to satisfy its MC, while each maze has to

be solved by at least one maze navigator. In Brant and Stanley [3],

mazes were constrained to a fixed size with a complexity ceiling

(maximum walls that fit) to maintain tractability and allow rapid

experimentation; however, the result was that MCC rapidly ex-

hausted domain complexity, thereby raising a compelling question:

what sort of maze and navigator pairings could MCC discover if this
artificial constraint were removed and maze size was unbounded?

The aim of this paper is to provide an initial analysis of what

happens when both populations in MCC are allowed to evolve and

complexifywithout bound. An interesting facet of this experiment is

that there are few simple benchmarks that enable evaluating meth-

ods like MCC aimed at open-ended discovery, and accordingly also

no baselines with which to compare any future such approach. By

introducing an enhanced maze encoding that allows realistic mazes

to increase in size and complexity indefinitely, and by quantifying

and analyzing how MCC behaves in such an unbounded domain,

this paper provides both a benchmark and a baseline that can serve

as a foundation for inspiring and measuring future progress in the

field. It also offers a window into one of the first experiments of its

type, where open-endedness is pursued in an unbounded domain

that is not an alife world. The results show MCC exploiting the

unbounded domain to produce larger and more complex mazes

throughout each run, while maintaining a breadth of maze sizes

and path configurations, each with effective solutions. Our hope is

that this contribution provokes the continued growth of research

and consequent progress into open-ended coevolutionary systems.

2 BACKGROUND
This section reviews open-endedness in alife and the history be-

hind the MC in EC, followed by a discussion of coevolution and

concluding with a description of the MCC algorithm.

2.1 Open-endedness
The concept of open-endedness has its roots in alife–a field con-

cerned with analyzing and understanding natural systems and the

process by which individuals within those systems interact and

evolve [2, 31, 39]. Natural evolution is often viewed as an unguided

process, yet one that continually produces novel and increasingly

complex artifacts, a phenomenon referred to as open-ended evolu-

tion [18, 33, 36]. A significant and lofty goal of alife research is to

formalize and reproduce (in a simulation) the dynamics that lead

to an open-ended evolutionary process.

While there is a lack of consensus regarding precise method-

ologies for defining and measuring the characteristics of an open-

ended evolutionary system, it is generally agreed that such a system

produces novel, functional and increasingly complex forms in per-

petuity [1, 17]. Soros and Stanley [35] recently proposed a set of

conditions hypothesized to be necessary for the generation of an

open-ended evolutionary process and test their application in an

alife world dubbed Chromaria. Central among these conditions is

the enforcement of an MC that places a lower bound on individual

complexity and prevents the population from degenerating into

trivial behaviors. Moreover, individuals must interact to satisfy

their MC, which allows its difficulty to vary organically over time.

By constraining evolution in this way, Chromaria has been shown

to produce functional and novel forms over lengthy evolutionary

runs without stagnating. The goal of MCC is to harness a similar

abstraction of open-endedness in a general-purpose algorithmic

framework for application in practical domains.

2.2 The Minimal Criterion
The field of EC has historically been optimization-oriented, select-

ing individuals for reproduction based on an objective measure of

performance and iteratively converging toward a fixed, a priori

objective [7]. However, recent research has introduced alternative

methods of search that jettison the narrow focus of the objective,

opening up the search space by imposing a looser performance cri-

terion. The concept of imposing a lower bound on solution quality

was originally introduced by Mattiussi and Floreano [20] and later

employed by Maesani et al. in an algorithm called viability evolution
(ViE) [19]. ViE imposes a set of thresholds, or viability boundaries,
on one or more constraints that individuals must meet to be eli-

gible for reproduction. Initially, boundaries encompass the entire

population, but are incrementally tightened until each constraint is

satisfied, and those who remain are taken as solutions.

A convenient property of ViE is that it requires no explicit objec-

tive function, which is particularly advantageous for multiobjective

problems where objective weighting significantly impacts solution

characteristics. Moreover, the loose criterion of viability allows ViE

to maintain a more diverse population and sample a broader range

of the search space. However, ViE remains an algorithm that is

driven toward convergence, and thus breaks with the notion of

open-ended discovery.

Non-objective search methods, such as novelty search [13, 15]

and QD algorithms [16, 24, 29, 30], also depart from traditional

methods of objective-driven evolutionary search. Instead of con-

verging toward a narrow objective, novelty search induces search

space divergence by rewarding novelty alone. This approach is par-

ticularly effective for deceptive problems, where the gradient of

the objective may lead search astray. A side of effect of rewarding

only novelty, however, is the tendency to explore uninteresting

areas of potentially vast behavior spaces [6]–an insight that led to

the introduction of a variant called minimal criteria novelty search

(MCNS) [14]. MCNS imposes behavior space boundaries which de-

fine the MC; individuals that traverse beyond those boundaries fail

to meet the MC and are therefore ineligible for reproduction. This

constraint avoids propagating a lineage of individuals that would

explore areas of the search space orthogonal to those of interest.
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In contrast to the aforementioned algorithms, MCC has no re-

quirement for a behavior characterization, novelty archive or via-

bility boundaries, relying on the MC alone as the sole driver of a
broadly applicable, open-ended search process.

2.3 Coevolution
Most EAs adopt a static fitness function as a global, extrinsic mea-

sure of performance; however, in some domains this absolute per-

formance metric may be computationally intractable or impossible

to formalize. Coevolution in EC addresses these shortcomings by

defining fitness as a relative measure that is based on interactions

between individuals within a single population, or between two

separate populations [4, 28]. Coevolutionary learning is typically

framed in either a competitive or cooperative context. In competi-

tive coevolution, self-interested individuals are pitted against each

other and rewarded based on one individual’s ability to outcompete

the other [32]. Conversely, in cooperative coevolution, individuals

work together to achieve an overarching objective [42].

An interesting property of coevolution is its theoretical ability

to produce open-endedness by inducing an unending arms race

[26]; however, this dynamic has proven difficult to sustain. Instead

of producing creative behaviors and interactions in perpetuity, co-

evolutionary algorithms eventually converge to mediocre stable

states, wherein individuals lack a fitness-based incentive to evolve

beyond a limited set of sub-optimal strategies [9]. Recent work has

suggested that replacing fitness with a novelty metric may help

minimize coevolutionary stagnation in both a competitive and coop-

erative context by maintaining healthier levels of diversity within

both populations [10, 11]. MCC also employs coevolution outside

of a fitness-based paradigm, but frames interactions in a manner

that is neither competitive nor cooperative. Instead, individuals are

permitted to interact freely within the confines of their respective

MC, thus promoting a divergent search dynamic that is intrinsically

immune to evolutionary stasis.

2.4 Minimal Criterion Coevolution
Evolution on earth is perhaps the most dramatic example of a

divergent process; it operates over vast periods and at a massive

scale, producing a broad array of artifacts, each at varying levels

of complexity and well-adapted to their ecological niche. There

is no explicit drive toward a global performance criterion, and

while novelty may exhibit a passive force on selection [18], there is

no evidence of an explicit preference for novel behaviors. Instead,

nature enforces an MC of reproductive viability, and organisms

or species may discover a multitude of different ways in which

to satisfy their MC. For example, the developmental path toward

reproductive viability for bacteria tends to be far shorter and less

complex than for mammals. Furthermore, the interactions between

coevolving populations results in an on-going flux of each species’

path toward their respective MC.

Inspired by this perspective, Brant and Stanley [3] proposed a

dual-population, coevolutionary algorithm called minimal criterion

coevolution (MCC). MCC does not evaluate and rank individuals

by way of competition, nor does it grade solutions based on coop-

erative cohesion. Instead, individuals are evaluated and permitted

to reproduce based solely on their satisfaction of an MC chosen by

the experimenter (the MC for each population can be different).

Because this evaluation process imposes no ranking among in-

dividuals, the selection method is free of bias. The idea of such a

coarse-grained selection (either you pass or not) within a coevolu-

tionary system is to allow search to drift throughout the entire space

of viable candidates, thereby covering as many possible stepping

stones as possible without a priori bias towards which stepping

stones are the right ones. In effect it is an attempt to remove ar-

tificially explicit selection pressure (e.g. towards novelty) while

showing that QD and open-endedness are still possible.

Drawing inspiration from Chromaria’s population structure and

selection process [35], MCC stores both populations in a fixed-size

queue. The queue retains individuals who satisfy the MC in the

order of insertion, and a queue pointer identifies the next individual

in line for reproduction. If the pointer reaches the end of the queue,

it loops back to the beginning, thereby ensuring that every individ-

ual who satisfies the MC gets at least one chance to reproduce. If

the insertion of a new individual would cause the queue to exceed

its capacity, the oldest in the queue is removed to make room.

Most EAs start evolution with a randomly-generated popula-

tion; however, it is unlikely that random individuals will possess

sufficient complexity to satisfy a non-trivial MC from the start,

rendering them inadmissible to either of the population queues.

To mitigate this initialization problem, MCC uses a bootstrap pro-

cess wherein the requisite number of genomes are pre-evolved to

meet the MC and used to seed each population queue. In principle,

any EA (objective or non-objective) could be used to evolve the

seed genomes; however, novelty search was used for the bootstrap

phase in the initial formulation of MCC based on its propensity for

discovering a diverse set of solutions.

In nature, organisms are grouped into species, each of which oc-

cupy a distinct ecological niche [34]. Niches have a limited carrying

capacity, which imposes a form of local regulation on the occupying

species and encourages divergence by way of founding new niches.

While optional, speciation was shown to aid in maintaining the re-

productive viability of several lineages simultaneously. Individuals

remain physically stored in population queues, but are logically

clustered into species based on genetic similarity (a well-established

method of diversity preservation in EAs [8]). Importantly, genetic

similarity is not the same as novelty because it is entirely genetically-

based and not aware of phenotypic behavior. At the beginning of

evolution, seed genomes serve as species cluster centroids, and

new additions are assigned to the closest species in genome space.

Queue capacity is evenly distributed among species such that each

species i has a maximum size equivalent to capacity(i) = n
s , where

n is the number of individuals in the population, and s is the number

of species. Similarly, selection draws proportionately from each

species while respecting queue insertion order. If any species ex-

ceed its respective carrying capacity, the oldest from that species

(rather than the global oldest) is removed to make room. Algorithm

1 formalizes the MCC selection, evaluation and removal process

with speciation.

The selection process employed by MCC resembles that of a

steady-state evolutionary algorithm; however, while steady state

algorithms typically evolve the population serially, MCC’s indepen-

dent performance measure (the MC) permits much of the popula-

tion to be evaluated in parallel. This decoupling in the evaluation
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Algorithm 1MCC Evaluation Process with Speciation

Require:
batchSize - # of individuals to evaluate simultaneously

numSpecies - # of species

▷ Evolve seed genomes that satisfy MC

randPop ← GenerateRandomPopulation()
viablePop ← EvolveSeedGenomes(randPop,numSpecies)
▷ Seed species with each viable individual as centroid

Species ← SeedSpecies(viablePop)

loop
▷ Produce offspring from each species & reinsert parents

for all species ∈ Species do
▷ Produce offspring from current species

parents ← species .Dequeue(batchSize)
children ← Reproduce(parents)
▷ Reinsert parents into queue

species .Enqueue(parents)

for all child ∈ children do
mcSatis f ied ← EvaluateMC(child)
if mcSatis f ied then

viablePop.Enqueue(child)
end if

end for
end for

▷ Respeciate based on addition of viable children

viablePop.Respeciate()

for all species ∈ Species do
▷ Remove oldest from species if species capacity exceeded

if species .Size > species .Capacity then
numRemovals ← species .Size − species .Capacity
RemoveOldest(species,numRemovals)

end if
end for

end loop

stage facilitates a distributed execution paradigm wherein multiple

evaluations can be executed simultaneously on separate nodes.

While the aim of introducing MCC was to demonstrate that

even the most simple ingredients, namely genetic drift within a

coevolving system, can support a divergent, open-ended process, a

limitation of the initial experiments, which centered on mazes and

maze-solvers, was that the mazes were static in size, and therefore

bounded from increasing in complexity indefinitely. The work in

this paper removes that bound through an entirely new maze en-

coding that is also offered as a lightweight benchmark for testing

and comparing open-ended coevolutionary methods in the future.

3 APPROACH: UNBOUNDED MAZES
The first experiments with MCC introduced an evolving maze do-

main to demonstrate the algorithm’s ability to coevolve principled

navigation strategies in maze navigating agents along with maze en-

vironments. Maze generation is a particular instance of the broader

challenge of procedural content and level generation, which is

reviewed in Togelius et al. [41]. Mazes are a commonly-used bench-

mark domain in the non-objective search literature because they

yield an interpretable sense of complexity through an arrangement

of walls that complicate navigation, while also providing an explicit

indication of domain deception through the presence of dead-ends

and wandering paths [14, 15, 23, 25, 29]. These visual cues facilitate

qualitative assessment of learned policies. While a QD algorithm

can discover a diversity of solutions for a single maze, MCC dis-

covers varying solutions to many different mazes within a single

run and without the need for a BC or an archive. Maze navigating

agents are simulated, wheeled robots that are controlled by evolved

NNs. In Brant and Stanley [3] and in this paper, the Neuroevolution

of Augmenting Topologies (NEAT) [38] algorithm is used to evolve

the NN weights and topologies, though other neuroevolution algo-

rithms are also feasible. NEAT incrementally adds structure to NNs,

increasing the number of free parameters and facilitating represen-

tation of more complex strategies, thus making it ideal for a domain

that is intended to demonstrate an open-ended process. The NN

controller architecture in the ensuing experiments is identical to

Brant and Stanley [3], with six rangefinder sensors (positioned at

heading offsets of −90°, −45°, 0°, 45°, 90° and 180°) that measure dis-

tance to line-of-sight obstructions, and four pie-slice radar sensors

that cover the full circumference of the agent and activate when

the target is within the sensors’ arc. Two actuators apply forces

that turn and propel the agent.

Evolved mazes are square grids with a start location in the upper-

left corner and target location in the lower-right. Both points remain

fixed throughout evolution. Agents begin a trial at the start location

and are evaluated on their ability to reach the target location within

a given simulation time; however, because mazes will be allowed

to expand, the simulation time is dependent on the length and

complexity of the solution path. The maze consists of internal walls

that impede trivial, straight-line trajectories, as well as winding and

deceptive traps through which an agent can wander and expend

the allotted time. Both of these features are intended to encourage

the development of complex and principled behaviors.

The original MCC experiments exploit both mazes and naviga-

tors to demonstrate how the MC-mediated interaction between

the two populations leads to a potentially open-ended dynamic.

However, the fixed-sized maze canvas size imposes a complexity

ceiling by limiting the number of walls that can be added to the

maze, which in turn reduces pressure on the agent population to

evolve strategies more complex than those that can solve the maxi-

mum complexity mazes, thereby blunting the benefit of NEAT-style

complexification in the NN population.

The major contribution of this paper is to introduce a fundamen-

tally more powerful maze encoding to allow the full potential of

algorithms like MCC to be tested. Furthermore, not only is the new

encoding able to support unbounded increases in complexity, but

it also produces aesthetically superior mazes, which are closer in

appearance to conventional mazes, with the hope that these im-

provements will encourage more widespread adoption of the maze

domain as a benchmark for open-ended coevolution. This advance

is important not just for MCC, but for the field in general, because
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to date there is no simple, easily-adopted benchmark within which

to test and compare such algorithms.

With the new encoding, theMCCbootstrap process is unchanged:

seed agent genomes are evolved to solve a set of randomly-generated

mazes with fixed boundaries and uniform size. Upon completion of

the bootstrap, the MCC reproduction process includes an expand
maze mutation probability that controls the proportion of muta-

tions that result in a maze expansion.When this mutation is applied,

the outer boundaries of the affected maze are each lengthened by

one unit, maintaining a square geometry. Expansion occurs down

and to the right, thereby moving the target location further from

the starting location and walls are lengthened proportionally to fill

additional space.

After several iterations, the MCC maze population includes

mazes that not only vary in structure, but also in size, with larger

mazes permitting the addition of more interior walls and the forma-

tion of more complex solution paths. The hope is that this unending

cycle of maze expansion and elaboration will encourage the devel-

opment of increasingly complex navigation strategies in the agent

population, promoting an unending discovery of increasingly com-

plex and novel problems and solutions.

In the initial MCC experiments, walls were placed so as to permit

only one path from start to finish. Yet crafting the solution path

after wall placement has two shortcomings: (1) small changes in

wall placement could result in substantial modifications to the path

(potentially leading to a highly rugged search landscape), and (2)

as mazes expand and more walls are added, the path is further

subdivided into short directional segments, yielding a degenerate

and unconvincing aesthetic to the mazes (figure 1, left column).

The main idea behind the new encoding is, rather than rely

upon wall placement to mold the path, the path itself is evolved as

a series of “waypoints,” joined by a simple set of rules that derive

the solution trajectory. The resulting path carves out sub-spaces

in the maze, which open onto the trajectory and are themselves

complexified by the positioning of wall genes, thereby introducing

multiple opportunities for the agent to wander off the path and get

stuck in long, winding corridors, which also gives an appearance

more like conventional mazes (figure 1, middle and right columns).

Waypoint coordinates (called path genes) are directly encoded in

the maze genome and augmented with an “intersection orientation,”

which specifies the direction of the path segment (i.e. vertical or hor-

izontal) as it intersects the waypoint. Amutate waypoint probability
shifts an existing waypoint by one unit in one of four directions

(up, down, left or right) while an add waypoint probability controls

the addition of new waypoints to the maze. The intersection orien-

tation is randomly assigned and fixed. Waypoints are connected in

the order that they are added to the maze genome, with respect to

their intersection orientation. The leftmost maze in figure 2 (which

shows how the encoding works) depicts a maze with one waypoint

and a vertical intersection orientation at coordinate (6, 4). The con-

necting path is laid down vertically from the start location, then

forms a horizontal connection to the waypoint. Waypoint additions

are constrained such that they are added either below (as in step

3 of figure 2) or to the right of all existing waypoints (recall that

the maze expands down and to the right). Similarly, mutation can-

not shift a waypoint both above and to the left of prior waypoints.

These constraints prevent trajectory overlap while still permitting

a solution path that forces movement in all cardinal directions.

When decoding a maze genome into its phenotype represen-

tation, the solution path is first determined, and then walls are

positioned in sub-spaces of the maze induced by the path. Wall

genes are encoded as in the original MCC experiments, with wall

and passage positions represented as real numbers in the inter-

val [0, 1]. Rather than dividing the entire maze, walls iteratively

bisect their respective sub-space. For example, the first gene bi-

sects the entire sub-space, creating two smaller sub-spaces with

a passage through which the agent can traverse. If the bisection

is vertical, the next gene bisects the left-most subspace, creating

two additional sub-spaces. Similarly, if the bisection is horizontal,

the next gene bisects the uppermost sub-space. This process re-

peats until each sub-space formed by the trajectory is filled with

the maximum number of supported walls. If there are not enough

wall genes to uniquely specify each possible bisection, genes are

repeated from the beginning of the gene list and scaled to the di-

mensions of the applicable sub-space. Figure 2 depicts the trajectory

complexification process and the genotype-phenotype mapping,

while Supplemental Information (appendix A) contains detailed

pseudocode for each stage of the maze generation process. As fig-

ure 1 shows, the new maze encoding produces non-trivial, winding

paths while also allowing the maze environment to expand over

time. Because the maze is built around the solution path, it looks

more neatly filled. With this encoding, we can begin to observe the

behavior of algorithms in which mazes can expand indefinitely.

4 EXPERIMENTAL SETUP
The bootstrap process is executed using the novelty search algo-

rithmwith parameters identical to those in Lehman and Stanley [15].

Agents are evaluated on ten simple, randomly-generated mazes,

each with two waypoints and two wall genes. Execution halts when

20 distinct agents are evolved that can solve one or more mazes.

Those 20 agents and 10 mazes seed their respective population

queues and constitute the initial centroids of each species clus-

ter. Each agent must solve at least one maze to satisfy their MC

while each maze must be solved by at least one agent. Agents are

evaluated on random mazes from the current population and vice

versa, and evaluation halts when an individual satisfies their MC

or when they have been evaluated on all members of the opposite

population.

As with Brant and Stanley [3], experiments are executed for

20 runs and 2,000 batches per run, each batch evaluating 40 agent

genomes and 10maze genomes. The agent queue has amaximum ca-

pacity of 250 with a 0.6 probability of mutating connection weights,

0.1 probability of adding a connection, 0.01 probability of adding a

neuron and a 0.005 probability of deleting a connection. The maze

queue has a maximum capacity of 50 with a 0.05 probability of

mutating a wall, passage or waypoint location, 0.1 probability of

adding a wall, 0.005 probability of deleting a wall, 0.1 probability of

adding a waypoint and a 0.1 probability of maze expansion. These

values produced complex mazes of variable size and complexity

during a parameter sweep.

Agents have a maximum velocity of 3 units per second and are

allotted a simulation time equivalent to two times the length of the

solution path. This limit allots agents simulation time proportional
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Figure 1: Comparing the original [3] and new maze encodings. Mazes generated in the original MCC experiments (left) are shown

next to mazes generated by the new encoding, at different sizes (middle and right). While the original maze encoding prevents trivial

strategies by obstructing straight line navigation, the solution path lacks a distinct shape, and wall placement is often unbalanced and overly

segmented. In contrast, the new maze encoding produces non-trivial solution paths with balanced wall placement, and maintains these

properties as the maze expands.

to the original MCC experiments with fixed-size mazes, while scal-

ing with the size of the maze and the complexity of the solution path.

SharpNEAT version 3.0 [12] is the neuroevolution platform, and

was extended to implement theMCC and novelty search algorithms,

as well as to support encoding and evolving maze genomes. Source

code for the experiments is available at https://bit.ly/2uXGBpm.

Note that a direct quantitative comparison of the present results

with those presented in Brant and Stanley [3] would not be feasible

because these experiments enable unbounded domain expansion –

a characteristic that the original experiments lacked.

5 RESULTS
A primary goal of MCC is to induce an open-ended search pro-

cess through coevolutionary interactions that result in increasingly

complex and diverse discoveries. The results here probe MCC’s

ability to exploit the unbounded maze domain, evolving agents that

are capable of solving larger, more complex mazes. The qualitative

results showcase a diverse array of mazes that were evolved in a

single run, each with varying size and complexity, and solved by an

agent controller. Additionally, a quantitative analysis demonstrates

a systematic increase in both maze and navigator complexity.

5.1 Qualitative Results
As mazes expand, additional waypoints can be added, which some-

times in turn further complicate the solution path and introduce

more opportunities for deception through adjoining cul-de-sacs.

Figure 3 depicts a sample of agent trajectories (from evolved NN

controllers) through mazes evolved by a single run of MCC, each

varying in both size and structure. These results show visually how

mazes are expanding in size while continuing to be solved.

5.2 Quantitative Results
A quantitative analysis of domain size and complexity growth over

evolution ascertains the open-ended characteristics of MCC, and

contrasts these results with the original MCC experiments. All

graphs in this section are shown with 95% confidence bounds on

the means.

A key feature of the reconceived maze domain is the ability to

dynamically expand, allowing additional space for longer, more

convoluted trajectories, which can force agents to evolve increas-

ingly complex navigation strategies to remain viable (i.e. to satisfy

their MC). Figure 4 demonstrates that mazes indeed increase in size,

linearly on average, without leveling off. The number of junctures

(where turns are necessary in the main solution path) continues to

increase at a similar rate (figure 5). As both results also show, MCC,

on average, maintains a healthy diversity of maze sizes and con-

figurations throughout each run. Regarding the agent NNs, figure

6 depicts a linear increase in maximum and mean number of con-

nections throughout evolution, demonstrating, in part, the agents’

evolutionary response to increasingly difficult mazes. However, the

minimum complexity remains flat as less complex agents remain

viable in smaller, less complex mazes. Moreover, the widening gap

between minimum and maximum sizes suggests a continued search

space divergence that shows no sign of leveling off.

A notable, yet intuitive distinction between the fixed maze do-

main used in the original MCC experiments [3] and the reconceived,

expanding maze domain is the trend in population viability over the

course of evolution. In particular, after batch 511, the percentage of

maze offspring that are viable in a run of fixed mazes (averaged over

20 runs) is significantly higher than for expanding mazes (p < 0.05;

Welch’s t-test) because the fixed mazes have reached their complex-

ity limit and therefore stop consistently posing new challenges to

the agent population. On average, only between 10% and 15% of the

agent offspring satisfy their MC on expanding mazes at any point in

evolution. By allowing mazes to expand unboundedly, MCC is able

to consistently generate new challenges for the agent population.

https://bit.ly/2uXGBpm
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Figure 2: The maze evolution process.Maze genotypes (top), respective trajectories (middle), and respective phenotypes (bottom) are

shown. The table above each maze enumerates the path (waypoint) and wall genes, while the visualization directly below depicts the

resulting trajectory. In the maze phenotypes at bottom, dots are shown to depict the solution path. Each path gene specifies the coordinates

of a waypoint, and each wall gene contains a wall position and passage position, both real numbers in the interval [0, 1]. The wall position

(W) describes the relatives position of a wall within a sub-space induced by the solution path, while the passage position (P) describes the

relative position of a passage (opening) within that wall. The initial genome (first column) consists of one path gene and one wall gene; the

single wall gene is repeated to fill out all sub-spaces. The second column depicts an add wall mutation, while the third column demonstrates

an add waypoint mutation. In the fourth column, a mutate waypoint operation is carried out, shifting the first waypoint one unit to the

right. Finally, the fifth column depicts an expand maze mutation, extending the outer boundaries down and to the right, and resulting in a

corresponding extension of the solution path.

6 DISCUSSION
The expandable maze encoding makes it possible to observe the

MCC algorithm’s ability to exploit a novel maze domain, relieved of

complexity constraints and designed to grow unboundedly subject

to the MC. Reciprocating increases in size are evident in both popu-

lations with no apparent stagnation. In all runs, agents evolved solu-

tions to a breadth of non-trivial mazes, inducing a population-wide

drift toward increasingly intricate mazes with multiple opportuni-

ties for deception. Both populations achieved an MC-constrained

equilibrium with each other, maintaining a sustainable rate of com-

plexification and producing a diverse array of mazes and associated

solutions, relying on neither the guidance of fitness nor the diver-

gent pressure of novelty.

Although these results are among the first to explore open-ended

coevolutionary growth and complexification, there remain several

opportunities for improvement. A close examination of learned

navigation strategies hints that, in some cases, agents may be re-

lying on simpler heuristics than their trajectories would suggest.

For example, in figure 3 maze A, the agent is forced to make five

decisions regarding the direction to turn. However, for all but one

of those decisions, the agent only has one option that does not lead

into a wall or backtrack on the solution path. This fact is a potential

hint of some degree of collusion in the maze and agent populations:

mazes discover the “path of least resistance” for adding complexity

that is easily exploitable by agents. While not a desirable system

characteristic, the extent to which such behavior can be observed

at all is vastly improved in the reconceived maze encoding, offering

hope that they can be addressed and overcome as MCC is extended

and new coevolutionary open-ended systems are introduced and

similarly benchmarked.

For example, one interesting future direction is to alter the MC in

MCC and observe the consequent effects on unbounded mazes. We

might, for example, require that ancestors cannot solve the same

mazes as their progeny, thereby preventing trivial expansion from

the perspective of the NNs. Additional diversity pressure could

also be added, for example by limiting the number of agents that

can use the same maze to satisfy their MC. The investigation of all

such opportunities benefits now from the availability of the new

unbounded maze benchmark, which can more clearly reveal their

implications. Additionally, the maze domain provides a baseline
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Figure 3: Agent Trajectories discovered within a single run of MCC. A sample of four solution trajectories through different mazes

evolved within a single run of MCC are shown. Maze A is similar to the bootstrap mazes in size and complexity, with outer walls that are 10

units in length, 2 waypoints and 2 interior walls. Maze B is 15x15 with 4 waypoints and 3 walls, while maze C is 22x22 with 7 waypoints and

12 walls. The largest maze (D) is 25x25 with 8 waypoints and 6 walls.

Figure 4: Maze Expansion Trend. The average minimum, mean

and maximum maze dimensions over evolution are depicted. Mazes

expand linearly throughout the course of a run with no evidence

of tapering off, suggesting MCC’s ability to induce a process of

unbounded maze elaboration.

validation for MCC and its variants as they are extended to support

applications in other domains, such as evolutionary robotics, gen-

erative design, open-world games and others that have yet to be

conceived.

7 CONCLUSIONS
This paper introduced a novel unbounded maze domain designed to

further evaluate MCC’s capacity for producing open-ended diver-

gence in both the maze and agent populations. The results both help

to establish a set of promising dynamics as mazes and solution paths

expand, and also potential avenues for further investigation, such

as into the extent of collusion to minimize the necessary complex-

ity of solution strategies. At the same time, the reconceived maze

domain provides a lightweight benchmark for directly assessing

and comparing future MCC-inspired open-ended algorithms.

Figure 5: Solution Path Complexification Trend. The aver-

age minimum, mean and maximum junctures over evolution are

shown. As waypoints are added, the solution path is convoluted by

junctures–perpendicular intersections from waypoint connections.

Figure 6: Agent NN Size Trend. The average minimum, mean

and maximum agent NN connections over evolution are shown.

Maximum and mean NN size increases as agents evolve to solve

more difficult mazes, while some agents stay small.
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A SUPPLEMENTAL INFORMATION

Algorithm 2Maze Generation

1: function GenerateMaze(mazeGenome)

2: pathGenes ←mazeGenome .PathGenes ▷ Genes in maze genome that code for waypoints and define path

3: wallGenes ←mazeGenome .WallGenes ▷ Genes in maze genome that code for internal walls

4: heiдht ←mazeGenome .Heiдht
5: width ←mazeGenome .Width
6: startLocation ← (0, 0) ▷ Initialize start location to top left

7: endLocation ← (heiдht − 1,width − 1) ▷ Initialize target location to bottom right

8: дrid ← InitializeGrid(heiдht ,width) ▷ Creates an empty 2D grid to host waypoints and walls

9: GeneratePath(дrid,pathGenes, startLocation, endLocation) ▷ Generates the solution path

10: GenerateWalls(дrid,wallGenes) ▷ Generates the internal walls

11: returnMaze(grid)

12: end function

Algorithm 3Maze Grid Initialization

1: function InitializeGrid(heiдht ,width)
2: дrid ← Array[width,heiдth] ▷ Each cell in 2D grid stores path and wall orientation (if any)

3: for y = 1 : heiдht do
4: for x = 1 : width do
5: дrid[x ,y] ← None ▷ Denotes an empty cell

6: end for
7: end for
8: return дrid
9: end function
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Algorithm 4Maze Path Generation

1: function GeneratePath(дrid,pathGenes, startPoint , endPoint )
2: pathIdx ← 0

3: while pathIdx ≤ pathGenes .Count do ▷ Iterates through waypoints and builds the solution path

4: if pathIdx = 0 then
5: curPoint ← startPoint ▷ First waypoint is accessed from maze start point

6: else
7: curPoint ← pathGenes[pathIdx − 1] ▷ Previous waypoint is starting location

8: end if
9: if pathIdx = pathGenes .Count then
10: tдtPoint ← endPoint ▷ Last waypoint connects to maze end point

11: else
12: tдtPoint ← pathGenes[pathIdx] ▷ Current waypoint is the target destination

13: end if
14: orientation ← tдtPoint .Orientation ▷ Horizontal or vertical orientation of incoming path

15: дrid[tдtPoint .X , tдtPoint .Y ].IsWaypoint ← true ▷ Marks current grid cell as waypoint

16: if orientation = Horizontal then ▷ Connect path by vertical followed by horizontal segment

17: HorizontalPathReroute(дrid, curPoint , tдtPoint)
18: GenerateVerticalPathSeдment(дrid, curPoint , tдtPoint)
19: GenerateHorizontalPathSeдment(дrid, curPoint , tдtPoint)
20: if curPoint .X , tдtPoint .X & curPoint .Y , tдtPoint .Y then
21: дrid[curPoint .X , tдtPoint .Y ].Is Juncture ← true ▷ Set intermediate juncture for vertical-horizontal transition

22: end if
23: else ▷ Connect path by horizontal followed by vertical segment

24: HandleVerticalOverlapCases(дrid, curPoint , tдtPoint)
25: GenerateHorizontalPathSeдment(дrid, curPoint , tдtPoint)
26: GenerateVerticalPathSeдment(дrid, curPoint , tдtPoint)
27: if curPoint .X , tдtPoint .X & curPoint .Y , tдtPoint .Y then
28: дrid[tдtPoint .X , curPoint .Y ].Is Juncture ← true ▷ Set intermediate juncture for horizontal-vertical transition

29: end if
30: end if
31: end while
32: end function

Algorithm 5 Vertical Path Segment Generation

1: function GenerateVerticalPathSegment(дrid, curPoint , endPoint )
2: if curPoint .Y ≤ endPoint .Y then
3: while curPoint .Y ≤ endPoint .Y do
4: дrid[curPoint .X , curPoint .Y ].PathDirection ← South
5: curPoint .Y ← curPoint .Y + 1
6: end while
7: else
8: while curPoint .Y ≥ endPoint .Y do
9: дrid[curPoint .X , curPoint .Y ].PathDirection ← North
10: curPoint .Y ← curPoint .Y − 1
11: end while
12: end if
13: end function
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Algorithm 6 Horizontal Path Segment Generation

1: function GenerateHorizontalPathSegment(дrid, curPoint , endPoint )
2: if curPoint .X ≤ endPoint .X then
3: while curPoint .X ≤ endPoint .X do
4: дrid[curPoint .X , curPoint .Y ].PathDirection ← East
5: curPoint .X ← curPoint .X + 1
6: end while
7: else
8: while curPoint .X ≥ endPoint .X do
9: дrid[curPoint .X , curPoint .Y ].PathDirection ←West
10: curPoint .X ← curPoint .X − 1
11: end while
12: end if
13: end function

Algorithm 7 Horizontal Path Reroute

1: function HorizontalPathReroute(дrid, curPoint , endPoint )
2: if endPoint .Y < curPoint .Y & endPoint .X > curPoint .X then ▷ Tracing up and to the right will overlap existing path

3: if дrid[curPoint .X + 1, curPoint .Y ].PathDirection , None then ▷ Descend one unit if waypoint immediately to the right

4: дrid[curPoint .X , curPoint .Y ].PathDirection ← South
5: дrid[curPoint .X , curPoint .Y + 1].Is Juncture ← true
6: curPoint .Y ← curPoint .Y + 1
7: end if
8: for curPoint .X : riдhtmostWaypoint .X do ▷ Move past rightmost waypoint to avoid overlapping path on ascent

9: дrid[curPoint .X , curPoint .Y ].PathDirection ← East
10: end for
11: дrid[curPoint .X , curPoint .Y ].Is Juncture ← true ▷ Repositioned start point will be a juncture

12: end if
13: end function

Algorithm 8 Vertical Path Reroute

1: function VerticalPathReroute(дrid, curPoint , endPoint )
2: if endPoint .X < curPoint .X & endPoint .Y > curPoint .Y then ▷ Tracing left and down will overlap existing path

3: if дrid[curPoint .X , curPoint .Y + 1].PathDirection , None then ▷ Descend one unit if waypoint immediately to the right

4: дrid[curPoint .X , curPoint .Y ].PathDirection ← East
5: дrid[curPoint .X + 1, curPoint .Y ].Is Juncture ← true
6: curPoint .X ← curPoint .X + 1
7: end if
8: for curPoint .Y : lowestWaypoint .X do ▷ Move past rightmost waypoint to avoid overlapping path on ascent

9: дrid[curPoint .X , curPoint .Y ].PathDirection ← South
10: end for
11: дrid[curPoint .X , curPoint .Y ].Is Juncture ← true ▷ Repositioned start point will be a juncture

12: end if
13: end function



Benchmarking Open-Endedness in Minimal Criterion Coevolution GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Algorithm 9Maze Wall Generation

1: function GenerateWalls(дrid,wallGenes)
2: wallGeneIdx ← 0

3: loopIteration ← 0

4: EncloseAdjacentPathSeдments(дrid,mazeHeiдht ,mazeWidth) ▷ Generate walls that encapsulate path

5: partitions ← SubdivideMaze(дrid,mazeHeiдht ,mazeWidth) ▷ Create subdivisions adjacent to path

6: for all partition ∈ partitions do ▷ Iteratively bisect each subdivision with wall genes

7: partitionQueue ← Queue() ▷ Initialize queue for further subdividing with internal walls

8: if partition.SupportsWalls() = true then ▷Walls supported if each dimension greater than 1 unit

9: loopIteration ← loopIteration + 1
10: wallGeneIdx ← loopIteration%wallGenes .Count ▷ Cycles wall genes, looping back to beginning of gene list

11: MarkPartitionBoundaries(дrid,partition) ▷ Encloses partition so that it is initially inaccessible

12: InsertPartitionOpeninд(дrid,partition,wallGenes[wallGeneIdx]) ▷ Creates opening into partition from path

13: partitionQueue .Enqueue(partition)
14: while partitionQueue .Count > 0 do
15: curPartition ← partitionQueue .Dequeue()
16: loopIteration ← loopIteration + 1
17: wallGeneIdx ← loopIteration%wallGenes .Count
18: partitions ← SubdividePartition(дrid,partition,wallGenes[wallGeneIdx])
19: if partitions[0] , None then ▷ Enqueue partition on top/left

20: partitionQueue .Enqueue(partitions[0])
21: end if
22: if partitions[1] , None then ▷ Enqueue partition on bottom/right

23: partitionQueue .Enqueue(partitions[1])
24: end if
25: end while
26: else
27: MarkBoundaries(дrid,partition) ▷ Enclose partition and open onto path

28: end if
29: end for
30: end function
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Algorithm 10 Path Encapsulation

1: function EncloseAdjacentPathSegments(дrid,heiдht ,width)
2: curCell ← дrid[0, 0] ▷ Begin path traversal at start point

3: while curCell .X < width & curCell .Y < heiдht do
4: if curCell .PathDirection , North & дrid[curCell .X , curCell .Y − 1].PathDirection , None then
5: дrid[curCell .X , curCell .Y − 1].SouthWall ← true ▷ Block adjacent path above

6: end if
7: if curCell .PathDirection , South & дrid[curCell .X , curCell .Y + 1].PathDirection , None then
8: дrid[curCell .X , curCell .Y ].SouthWall ← true ▷ Block adjacent path below

9: end if
10: if curCell .PathDirection ,West & дrid[curCell .X − 1, curCell .Y ].PathDirection , None then
11: дrid[curCell .X − 1, curCell .Y ].EastWall ← true ▷ Block adjacent path to the left

12: end if
13: if curCell .PathDirection , East & дrid[curCell .X + 1, curCell .Y ].PathDirection , None then
14: дrid[curCell .X , curCell .Y ].EastWall ← true ▷ Block adjacent path to the right

15: end if
16: if curCell .PathOrientation = Horizontal then
17: if curCell .PathDirection =West then
18: curCell ← дrid[curCell .X − 1, curCell .Y ] ▷ Next path cell is to the left

19: else
20: curCell ← дrid[curCell .X + 1, curCell .Y ] ▷ Next path cell is to the right

21: end if
22: end if
23: if curCell .PathOrientation = Vertical then
24: if curCell .PathDirection = North then
25: curCell ← дrid[curCell .X , curCell .Y − 1] ▷ Next path cell is above

26: else
27: curCell ← дrid[curCell .X , curCell .Y + 1] ▷ Next path cell is below

28: end if
29: end if
30: end while
31: end function
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Algorithm 11Maze Subdivision

1: function SubdivideMaze(дrid,heiдht ,width)
2: subdivisions ← List() ▷ List of maze subdivisions

3: for y=0:height do
4: for x=0:width do
5: if дrid[x ,y].PathDirection = None & IsCellInSubdivision(дrid[x ,y]) = f alse then
6: startPoint ← (x ,y)
7: endPoint ← startPoint
8: wallFound = f alse ▷ Stops and closes off subdivision when obstruction found

9: while endPoint .X < width & дrid[endPoint .X , endPoint .Y ].PathDirection = None do
10: endPoint .X ← endPoint .X + 1 ▷ Locate right edge of subdivision

11: end while
12: whilewallFound = f alse & endPoint .Y < heiдht do ▷ Scan down and to the right until subdivision edge is located

13: endPoint .Y ← endPoint .Y + 1
14: curX ← startPoint .X
15: whilewallFound = f alse & curX < width do
16: if дrid[curX , endPoint .Y ].PathDirection , None then
17: wallFound ← true
18: endPoint .Y ← endPoint .Y − 1 ▷ Back up one unit to maintain rectangular shape

19: end if
20: curX ← curX + 1
21: end while
22: end while
23: subdivisions .Add(startPoint , endPoint)
24: end if
25: end for
26: end for
27: return subdivisions
28: end function

Algorithm 12 Partition Encapsulation

1: functionMarkPartitionBoundaries(дrid,partition)
2: for x = partition.X : partition.Width do
3: if partition.Y > 0 then
4: дrid[x ,partition.Y − 1].SouthWall ← true ▷ Mark northern boundary

5: end if
6: дrid[x ,partition.Y + partition.Heiдht − 1].SouthWall ← true ▷ Mark southern boundary

7: end for
8: for y = partition.Y : partition.Heiдht do
9: if partition.X > 0 then
10: дrid[partition.X − 1,y].EastWall ← true ▷ Mark western boundary

11: end if
12: дrid[partition.x + partition.Width − 1,y].EastWall ← true ▷ Mark eastern boundary

13: end for
14: if partition.Heiдht = 1|partition.Width = 1 then ▷ Single unit partition cannot support walls, so create opening

15: if partition.X = 0 then
16: дrid[partition.X + partition.Width − 1,partition.Y ].EastWall ← f alse
17: else
18: дrid[partition.X − 1,partition.Y ].EastWall ← f alse
19: end if
20: end if
21: end function
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Algorithm 13 Partition Opening Placement

1: function InsertPartitionOpening(дrid,partition,wallGene)
2: if wallGene .Orientation = Horizontal then
3: wallLoc ← (partition.X ,partition.Y + partition.Heiдht ∗wallGene .wallLoc) ▷ Scale wall to height of partition

4: if partition.X > 0 then
5: дrid[partition.X − 1,wallLoc .Y ].EastWall ← f alse ▷ Create opening on left side of partition

6: else
7: дrid[partition.Width − 1,wallLoc .Y ].EastWall ← f alse ▷ Create opening on right side of partition

8: end if
9: else
10: wallLoc ← (partition.X + partition.Width ∗wallGene .wallLoc,partition.Y ) ▷Wall start location

11: passaдeLoc ← (0,wallLoc .Y + partition.Heiдht ∗wallGene .passaдeLoc) ▷ Passage start location

12: if partition.X > 0 then
13: дrid[partition.X − 1,passaдeLoc .Y ].EastWall ← f alse ▷ Create opening on left side level with wall passage

14: else
15: дrid[partition.Width − 1,passaдeLoc .Y ].EastWall ← f alse ▷ Create opening on right side level with wall passage

16: end if
17: end if
18: end function

Algorithm 14 Partition Subdivision

1: function SubdividePartition(дrid,partition,wallGene)
2: if wallGene .Orientation = Horizontal then
3: wallLoc ← (partition.X ,partition.Y + partition.Heiдht ∗wallGene .wallLoc) ▷Wall start location

4: passaдeLoc ← (wallLoc .X + partition.Width ∗wallGene .passaдeLoc,wallLoc .Y ) ▷ Passage start location

5: wallLenдth ← partition.Width ▷Wall spans full length of partition

6: for position = 0 : wallLenдth do ▷ Mark horizontal wall and passage in maze grid

7: if position , passaдeLoc .X then
8: дrid[wallLoc .X + position,wallLoc .Y ].SouthWall
9: end if
10: end for
11: childPartition1.StartPoint ← (partition.X ,partition.Y ) ▷ Top partition

12: childPartition1.Width ← partition.Width
13: childPartition1.Heiдht ← wallLoc .Y − partition.Y
14: childPartition2.StartPoint ← (partition.X ,wallLoc .Y + 1) ▷ Bottom partition

15: childPartition2.Width ← partition.Width
16: childPartition2.Heiдht ← partition.Y + partition.Heiдht −wallLoc .Y
17: else
18: wallLoc ← (partition.X + partition.Width ∗wallGene .wallLoc,partition.Y ) ▷Wall start location

19: passaдeLoc ← (wallLoc .X ,wallLoc .Y + partition.Heiдht ∗wallGene .passaдeLoc) ▷ Passage start location

20: wallLenдth ← partition.Heiдht ▷Wall spans full height of partition

21: for position = 0 : wallLenдth do ▷ Mark vertical wall and passage in maze grid

22: if position , passaдeLoc .Y then
23: дrid[wallLoc .X ,wallLoc .Y + position].EastWall
24: end if
25: end for
26: childPartition1.StartPoint ← (partition.X ,partition.Y ) ▷ Left partition

27: childPartition1.Width ← wallLoc .X − partition.X
28: childPartition1.Heiдht ← partition.Y
29: childPartition2.StartPoint ← (wallLoc .X ,partition.Y ) ▷ Right partition

30: childPartition2.Width ← partition.X + partition.Width −wallLoc .X
31: childPartition2.Heiдht ← partition.Heiдht
32: end if
33: return < childPartition1, childPartition2 > ▷ Returns a tuple of two partitions induced by bisecting wall

34: end function
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