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Abstract. Bloat is one of the most interesting theoretical problems in genetic

programming (GP), and one of the most important pragmatic limitations in the

development of real-world GP solutions. Over the years, many theories regarding

the causes of bloat have been proposed and a variety of bloat control methods

have been developed. It seems that one of the underlying causes of bloat is the

search for fitness; as the fitness-causes-bloat theory states, selective bias towards

fitness seems to unavoidably lead the search towards programs with a large size.

Intuitively, however, abandoning fitness does not appear to be an option. This pa-

per, studies a GP system that does not require an explicit fitness function, instead

it relies on behavior-based search, where programs are described by the behav-

ior they exhibit and selective pressure is biased towards unique behaviors using

the novelty search algorithm. Initial results are encouraging, the average program

size of the evolving population does not increase with novelty search; i.e., bloat

is avoided by focusing on novelty instead of quality.
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1 Introduction

Genetic programming (GP) has shown to be an effective search method for auto-

matic program induction, with noteworthy results in many domains [10]. Nonethe-

less, most GP practitioners will most likely have to overcome several issues in

order to apply the paradigm successfully. For instance, GP has many degrees of

freedom that require a proper initialization and parametrization, an issue for all

evolutionary algorithms (EAs). However, probably the most studied GP problem,

is the way in which solutions grow in size as the search progresses, what is known

as bloat. Stated more precisely, bloat is excessive code growth within the individ-

uals of the evolving population without a proportional improvement in fitness.

Over the years, many bloat theories have been developed and many bloat control

methods have been proposed [31, 32]. One of the most promising attempts at ex-

plaining the bloat phenomenon is the crossover bias theory [5, 28], that has lead

to a powerful bloat control method called operator equalisation [32]. However,

recent experimental results have blurred what is understood regarding the causes

of bloat [29], as well as what are the best strategies that can be used to eliminate

it from GP runs [7, 29].



This work revisits the fitness-causes-bloat theory of Langdon and Poli [13, 14,

31], that basically states that the search for better fitness will bias the search

towards larger trees, simply because there are more large programs than small

ones. Silva and Costa [31] state it clearly:

... one cannot help but notice the one thing that all the [bloat] theo-

ries have in common, the one thing that if removed would cause bloat

to disappear, ironically the one thing that cannot be removed without

rendering the whole process useless: the search for fitness.

This paper presents a preliminary study that supports the fitness-causes-bloat the-

ory in GP. It is shown that, for the test problems presented here (supervised data

classification), bloat can be avoided by abandoning an explicit fitness function. In

other words, by not searching for fitness directly the bloating effect is eliminated.

Moreover, the proposed approach is not useless, in fact it is quite competitive

with standard fitness-based search. The proposal is to use a behavior-based search

with GP applying the novelty search (NS) algorithm, substituting an explicit fit-

ness function by an optimization criterion that is biased towards solutions that are

unique, or novel, with respect to the rest of the population. Indeed, experimental

results confirm that by eliminating an explicit fitness bias from the search then GP

is not bloated, and the quality of the solutions is not compromised, particularly

for hard problems.

The remainder of the paper proceeds as follows. Section 2 provides a brief overview

on bloat, discussing recent theories and bloat control methods. The concept of

behavior-based search and behavioral space is explored in Section 3, along with

the NS algorithm. Section 4 describes a NS-based GP for data classification as a

case study for bloat analysis. Afterwards, experimental results are presented and

discussed in Section 5. Finally, a summary, conclusions and future work are given

in Section 6.

2 Recent Advances in Bloat

Over the last twenty years, many theories have been put forth to explain bloat, at-

tempting to understand why it happens, and to propose strategies to eliminate it.

Many bloat control methods have been developed, focusing on modifying differ-

ent aspects of the evolutionary process, such as the genetic operators, selection

and survival strategies and fitness assignment. For a comprehensive review on

previous theories and methods, the reader is referred to the work by Silva and

Costa [31].

Currently, the most plausible theory for bloat is the crossover bias theory (CBT),

proposed by Dignum and Poli [5, 28]. Focusing on standard Koza style GP with

a tree representation [11], the CBT states that bloat is produced by the effect that

subtree crossover has on the distribution of tree sizes in the population. While

the average tree size is not affected by crossover, the distribution of tree sizes is

modified. Subtree crossover produces a large number of small trees, and since

small trees represent trivial individuals in most problems, their fitness values are

usually very bad. Therefore, selection will favor larger trees, causing an increase

in the average size of trees within the population, effectively bootstrapping the

bloating effect. This theory seems very promising, and experimental data supports

it [32]. Moreover, powerful bloat control methods have been developed based on

CBT, namely operator equalisation [32]. However, recent studies have made the



matter significantly less clear. For instance, Silva [29] suggests that some of the

properties of operator equalisation that allow it to provide a bloat-free GP search,

might not be consistent with the CBT. Harper [7] also has shown that operator

equalisation is not the best bloat control method on some problems, and proposes

other, more elaborate, strategies to eliminate bloat from GP runs. Finally, it is

important to point out that even though operator equalisation can limit bloat for

some problems, it is a computationally expensive algorithm, so developing other

methods remains a worthwhile endeavor.

This work revisits another bloat theory, which can be called the fitness-causes-

bloat theory (FCBT), developed by Langdon and Poli [13, 14]. The main argu-

ments of FCBT proceed as follows [13, 14, 32]. For a variable length GP rep-

resentation (such as a tree based GP) many genotypically different programs,

of different sizes, can produce the same outputs on a given set of fitness cases.

Therefore, all of these programs trees will be assigned the same fitness value.

Then, because GP crossover tends to be a predominantly destructive search oper-

ator, when improved solutions are difficult to find then selection is biased towards

offspring that have the same fitness as their parents. Since there are exponentially

more large programs than small ones, an almost unavoidable tendency towards

larger, or bloated, programs is present during a GP search.

This work attempts to shed some light on this matter. If bloat is a natural conse-

quence of the search for better fitness, as Langdon and Poli, and Silva and Costa

stated; then a natural bloat control strategy would be one where fitness is aban-

doned. However, the question then becomes: if fitness is not used to determine

selection pressure, then what could be used in its stead? This question is not as

strange as at first it may appear. Consider that EAs are inspired on biological

Darwinian evolution, a natural process where an a priori purpose, or objective, is

not present; i.e., there is not an explicit objective function in natural evolution.

Natural evolution is an open-ended search process, where the search for fitness is

not explicitly carried out, it is a natural consequence of the evolutionary dynam-

ics induced by physical laws and chemical reactions. Inspired by nature, some

researchers have also proposed open-ended EAs, dating back to the origins of the

field [4], and other more recent examples [6, 9, 27]. In particular, this work stud-

ies the effect of bloat on one of the most recently developed open-ended EAs,

the novelty search algorithm, where fitness is substituted by a measure of solu-

tion novelty. It is hypothesized that, if the FCBT is correct, then a NS-based GP

would have to produce a significant reduction in bloat, or possibly a complete

elimination of it.

3 Behavior-based Search

The main goal of any EA, is to search for the solution that achieves the best pos-

sible performance; hence, a proper measure of performance needs to be proposed

for each problem. In the GP case, performance is normally computed based on

a set of fitness cases or training set of data. Traditional fitness-based approaches

will provide a single measure that characterizes the performance of an individual;

for instance, the mean error with respect to a desired output. This is a coarse view

of a program’s performance, usually averaging out performance variations that a

program might have on different fitness cases. However, it is not the only possible

alternative, below two other approaches are discussed: semantics and behaviors.



Semantics in GP describes the performance of a program with the raw output

vector computed over all fitness cases [21, 1, 2, 12, 20, 36]. Given a set of n fit-

ness cases, the semantics of a program K is the corresponding output vector it

produces y ∈ R
n. In GP, many genetically (phenotypically) different programs

can share the same semantic output. Therefore, semantics adds another space of

analysis in which the search is being conducted, along with genotypic, pheno-

typic and objective (fitness) space, we can also consider semantic space; where

a many-to-one relation will usually exists between genotypic (phenotypic) space

and semantic space.

Researchers have used semantics to improve GP in different ways, such as modi-

fying traditional genetic operators to improve the semantic diversity of the evolv-

ing population [1, 2, 36], or by explicitly performing evolution within semantic

space [12, 21]. In general, all of these works have shown improved results using

a canonical GP as a control method, mostly on symbolic regression problems.

However, strictly focusing on program outputs might not be the best approach

in some domains. For example, consider the GP classifier based on static range

selection (SRS) [38] (it will be further discussed in Section 4 and used in the

experimental work), that functions as follows. For a two class problem and real-

valued GP outputs, the SRS classifier is straightforward; if the program output

for input pattern x is greater than zero then the pattern is labeled as belonging

to class A, otherwise it is labeled as a class B pattern. In this case, while the

semantic space description (as defined above) of two programs might be different

(maybe substantially), they can still produce the same classification for the input

pattern.

Now, consider the case of evolutionary robotics (ER). In ER, evolution is nor-

mally used to search for neuro-controllers for autonomous robots [26]. The goal

is to find robust solutions with good performance, while introducing as little

prior knowledge as possible into the fitness function, such that the search is per-

formed based on a very high-level definition of the task which needs to be solved

[25]. Therefore, in ER the correspondence between program inputs, outputs and

induced actions is not straightforward. Moreover, in ER fitness evaluation can

be performed within real or simulated environments, where noisy sensors and

the physical coupling between actuators and the real world, can produce a non-

injective or non-surjective relation between program output and robot actions.

Therefore, some researchers have turned towards explicitly considering behav-

ioral space [22, 34]. In robotics, the concept of behaviors dates back to the semi-

nal works of R. Brooks in behavior-based robotics [3]. A behavior is a description

β of the way an agent K (program in the GP case) acts in response to a series of

stimuli within a particular context C . A context C includes the description that

an agent has about its own internal state and the characteristics of the surrounding

environment at a given moment in time. Stated another way, a behavior β is pro-

duced by the interactions of agent K, output y and context C . In behavior-based

robotics, behaviors are described at a very high level of abstraction by the sys-

tem designer. Conversely, in ER some researchers have proposed domain-specific

numerical descriptors that describe each behavior β , to explicitly consider behav-

ioral space during evolution as another criterion that helps guide the search. The

justification for this is evident, given that the objective function is stated at a

high-level of abstraction, then population management should also consider the

behavioral features of the evolved solutions, that characterize them based on a

high-level description of their performance. Therefore, researchers have proposed



diversity preservation techniques [34, 35] and open-ended search algorithms [15,

17]; Mouret and Doncieux [22] provide a comprehensive overview of previous

works on behavioral evolution in ER.

In summary, a behavior should be understood as a higher-level description of pro-

gram performance, compared to the semantics approach that employs a low-level

description of performance. An individual’s behavior is described in more general

terms, accounting not only for program output, but also for the context in which

the output was produced. For instance, for the SRS GP classifier described above,

context is given by the SRS heuristic rule used to assign class label. Therefore,

fitness, program semantics, and behavior can be understood as different levels of

abstraction of the performance of a program. At one extreme, fitness provides a

coarse look of performance; a single value (for each criteria) that attempts to cap-

ture a global evaluation. At the other end, semantics describe the performance of a

program in great detail. On the other hand, behavioral descriptors move between

fitness and semantics, providing a finer or coarser level of description, depending

on how behaviors are meaningfully characterized within a particular domain.

3.1 Novelty Search

Following the behavior-based approach, Lehman and Stanley proposed the NS

algorithm that eliminates an explicit objective function [15–17]. The search is

not guided by a measure of quality, instead the selective pressure is provided by

a measure of uniqueness. The strategy is to measure the amount of novelty each

individual introduces into the search with respect to the progress the search has

made at the moment at which the individual is created. Each solution is described

by a domain dependent behavioral descriptor, where each individual is mapped

to a single point in behavioral space, as described in the previous section.

A known limitation of fitness-based search is the tendency to converge and get

trapped on local optima. A common solution to this problem is to incorporate

niching or speciation techniques into an EA [19]. However, through the search

for novelty diversity preservation introduces the sole selective pressure and can,

in principle, avoid search stagnation.

In practice, NS uses a measure of local sparseness around each individual within

behavioral space to estimate its novelty, considering the current population and

novel solutions from previous generations. Therefore, the novelty measure is dy-

namic, since it can produce different results for the same individual depending on

the population state and search progress. The proposed measure of sparseness ρ
around each individual K described by its behavioral descriptor β , is given by

ρ(β ) =
1

m

m

∑
i=0

dist(β ,αi) , (1)

where αi is the ith-nearest neighbor in behavioral space of β with respect to the

average distance dist(), which is a domain-dependent measure of behavioral dif-

ference between two descriptors. The number of neighbors m considered for the

sparseness measure is an algorithm parameter. Given this definition, when the av-

erage distance is large, then the individual is within a sparse region of behavioral

space, and it is in a dense region if the measure is small.

To compute sparseness, the original NS proposal is to consider the current popu-

lation and an archive of novel individuals. An individual is added to the archive if



its sparseness is above a minimal threshold ρmin, the second parameter of the NS

algorithm. The archive can help the algorithm avoid backtracking, however it can

grow large in size, and make calculating sparseness a computational bottleneck.

Finally, at the conclusion of the run after a fixed number of generations, the best

solution based on fitness (it is the only moment in which NS uses an explicit fit-

ness function) from both the final population and the novelty archive is returned

as the best solution found by the search.

Since its proposal in [15], and later works [16, 17], most applications of NS have

focused on robotics, such as mobile robot navigation [15–17], morphology de-

sign [18] and gait control [17]. Only until recently has NS been used in general

pattern recognition problems, particularly supervised classification [24] and un-

supervised clustering [23]. This paper will use the work in [24] as the case study

to analyze bloat in a NS-based GP search.

4 Novelty Search for Supervised Classification

This section describes the GP system used in this work to evolve supervised clas-

sifiers, and how NS is incorporated into the evolutionary process.

4.1 Static Range Selection GP Classifier

This work uses the Static Range Selection GP Classifier (SRS) described by

Zhang and Smart [38]. In a classification problem, a pattern x ∈ R
p has to be

classified as belonging to a single class from Ω = {ω1, ...,ωM}, where each ωi

represents a distinct class label. Then, in a supervised learning approach the goal

is to build a mapping g(x) : Rp → Ω , that assigns each pattern x to a corre-

sponding class ωi, where g is derived based on evidence provided by a training

set T of N p-dimensional patterns with a known classification. In this work,

only two-class classification problems are considered. In SRS, R is divided into

M non-overlapping regions, one for each class. Then, GP evolves a mapping

g(x) : Rp → R, such that the region in R where pattern x is mapped to, deter-

mines the class to which it belongs. For a two-class problem, if g(x) > 0 then x

belongs to class ω1, and belongs to ω2 otherwise. The fitness function is simple,

it consists on minimizing the classification error of g.

4.2 Novelty Search extension of SRS

As stated above, to apply NS with SRS the fitness function is substituted by the

sparseness measure of Equation 1. Therefore, a proper domain specific behavioral

descriptor must be proposed [8].

Accuracy Descriptor β A: The training set T used by SRS-GPC contains sample

patterns from each class. For a two-class problem with Ω = {ω1,ω2}, If T =
{y1,y2, ...,yL}, then the behavioral descriptor for each GP classifier Ki is a binary

vector β Ai = (β1,β2, ...,βL) of size L, where each vector element β j is set to 1

if classifier Ki correctly classifies sample y j , and is set to 0 otherwise. In [24]

an analysis on the β A descriptor is given, considering the fitness landscape it

produces.



Finally, given the proposed binary descriptors, a natural dist() function for Equa-

tion 1 is the Hamming distance, that counts the number of bits that differ between

two binary vectors. This similarity measure has been used to measure behavioral

diversity in ER [22]. It is noteworthy to point out that [24] reports good perfor-

mance on several synthetic classification problems. In particular, the authors re-

port a clear trend, the performance of NS-based GP improves, relative to a control

method, as problem difficulty increases; i.e., NS performs comparatively better

on hard problems than on easy ones. The explanation for this observation is that,

for easy problems random solutions can perform quite well. Therefore, the selec-

tive pressure provided by NS will not necessarily lead the search towards better

solution in behavioral space, in fact the opposite might happen. Conversely, for

difficult problems random solutions for a two-class problem will roughly produce

50% accuracy. Therefore, the diversity exploration of NS will have to lead the

search towards better regions in the search space. In other words, when problem

difficulty increases the search for novelty can lead towards quality.

5 Experiments and Results

The goal of the experimental work is to test the NS-GP classifier on two-class

classification problems, evaluating its performance based on classification error

and the mean size of the evolved population, a good indicator of the effect bloat-

ing is having on a GP run [37]. The proposed algorithm will hereafter be denoted

by NS-SRS. For comparative proposes, the basic SRS classifier is used as a con-

trol method.

Gaussian Mixture Models are used to generate five random synthetic problems,

each with different amounts of class overlap and geometry. All problems are set

in the R
2 plane with x,y ∈ [−10,10], and 200 sample points were randomly gen-

erated for each class. The parameters for the GMM of each class were also ran-

domly chosen, following the same strategy reported in [33]. The five problems are

of increasing difficulty, denoted as: Trivial; Easy; Moderate; Hard; and Hardest;

these problems are graphically depicted in Figure 1.

The parameters of both GP systems are given in Table 1. Moreover, for NS-SRS

the NS parameters are set as follows: (1) the number of neighbors considered

for sparseness computation is set to m = 15; and (2) the sparseness threshold is

set to ρmin = 40. Finally, all algorithms were coded using Matlab 2009a and the

GPLAB toolbox [30].

Both algorithms are executed 30 times and performance is analyzed based on av-

erages over all runs. For each problem, 200 sample points are created for each

class, and 70% of the data is used for training and the rest for testing. In each run

data partition is done independently at random. First, Table 2 presents the average

classification error on the test data. The results are consistent with those reported

in [24], NS-SRS performs well, with small performance differences compared to

SRS. However, there is a trend, NS performs well on the more difficult problems,

and worse on the easier ones. These results are similar to those reported in [24,

23], with similar conclusions. Basically, the explorative search performed by NS

is fully exploited when random initial solution perform badly, under these condi-

tions the search for novelty can lead towards better solutions. Conversely, for easy

problems, random solution can perform quite well, thus the search for novelty can

lead the search towards solutions with undesirable performance. However, this is
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Fig. 1. Five synthetic 2-class problems used to evaluate each algorithm in ascending order of

difficulty from left to right.

Table 1. Parameters for the GP systems.

Parameter Description

Population size 100 individuals.

Generations 100 generations.

Initialization Ramped Half-and-Half,

with 6 levels of maximum depth.

Operator probabilities Crossover pc = 0.8, Mutation pµ = 0.2.

Function set
{

+ , − , × ,÷ , | · | , x2 ,
√

x , log , sin , cos , i f
}

.

Terminal set {x1, ...,xi , ...,xp}, where xi is a dimension of the data patterns

x ∈ R
n.

Hard maximum depth 20 levels.

Selection Tournament of size 4.

not necessarily a limitation for NS-based systems, since for most real-world sce-

narios difficult problems should be expected.

Therefore, regarding fitness we can say that NS achieves basically equivalent per-

formance compared with fitness-based search on the more interesting problems.

Figures 2 and 3, on the other hand, show how the average size of the population

evolves across generations. Consider SRS, Figure 2 shows typical GP behavior,

with a clear tendency of code growth across generations; i.e., SRS bloats like any

fitness-based GP search. Second, in the case of NS-SRS, code growth is analyzed

from three different perspectives. First, considering how the average size of the

population grows across generations, shown in Figure 3(a). Second, considering

how the average size of the individuals in the archive grows, shown in Figure

3(b). Finally, when both the archive and the population are considered concur-



Table 2. Average classification error and standard error of the best solution found by each algo-

rithm.

Problem SRS Ave. SRS Std. NS-SRS Ave. NS-SRS Std.

Trivial 0.004 0.007 0.007 0.008

Easy 0.105 0.040 0.144 0.044

Moderate 0.136 0.033 0.159 0.041

Hard 0.260 0.052 0.266 0.053

Hardest 0.365 0.033 0.370 0.043

20 40 60 80 100
0

50

100

150

200

250

S
iz

e

Generations

 

 

Trivial
Easy
Moderate
Hard
Hardest

Fig. 2. Evolution of tree size for SRS on each problem; curves represent the average size over

thirty runs.

rently in each generation, this is shown in Figure 3(c). In all cases, it is clear that

NS controls code growth quite effectively. A numerical comparison is given in

Table 3, with the average population size in the final generation. It is clear that

program size is considerably larger with fitness-based search, without the quality

of the results being compromised. There are some additional observations that

are of interest in the results of Table 3. It seems that standard GP bloats more

as problem difficulty increases, which is coherent with the FCBT. On the other

hand, NS shows the same average program size for all problems. Moreover, av-

erage program size in the archive is slightly smaller than the average program

size in the population; i.e., archived individuals are smaller than the population

average. This is noteworthy, because it suggests that novel individuals tend to be

smaller, an unexpected result.

6 Summary and Conclusions

Bloat is one of the main research topics in modern GP literature, and several theo-

ries have been developed that attempt to explain its underlying causes. Moreover,

given the detrimental effect that bloat has on GP runs, a variety of bloat control
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Fig. 3. Evolution of tree size for NS-SRS on each problem; curves represent the average size over

thirty runs. (a) Considers individuals in the population; (b) considers individuals in the archive;

and (c) considers all of the individuals at each generation.

Table 3. Average program size in the final generation for each algorithm. For the NS algorithm,

the population (Pop), archive (Arc) and both (Pop+Arc) are considered.

Problem SRS NS-SRS Pop NS-SRS Arc NS-SRS Pop+Arc

Trivial 151.3 46.17 38.57 42.37

Easy 188.5 49.25 49.89 49.57

Moderate 184 47.04 42.54 44.79

Hard 197 42.93 40.17 41.55

Hardest 220.1 49.05 45.52 47.29

methods have been proposed. Nonetheless, a complete explanation and a general

effective strategy have not been devised. A general agreement, however, is that

the search for fitness is the one core element that leads towards bloated popula-

tions in GP; which is explicitly stated by the fitness-causes-bloat theory. If this is

so, then bloat would seem to be unavoidable, since fitness based is a requirement

of most evolutionary algorithms.

This work, on the other hand, studies bloat in a GP system where fitness is

not considered explicitly. The proposal is to evolve GP programs using novelty



search, where fitness is substituted my a measure of program uniqueness. Initial

results are indeed encouraging, it seems that bloat is eliminated, or at least con-

trolled, by the evolutionary dynamics induced by NS. Experimental tests seem to

confirm the FCBT, by showing that when an explicit fitness is abandoned then

the evolving population will not bloat. However, these results are preliminary

and much work still needs to be done. A complete and comprehensive study on

bloat and behavior-based search is still necessary, but this work provides a first

approximation at a plausible approach for bloat-free GP.
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