Searching for Novel Clustering Programs

Enrique Naredo

%
Leonardo Truijillo
Doctorado en Ciencias de la Ingenieria
Instituto Tecnolégico de Tijuana
Tijuana, B.C., México
enriguenaredo@gmail.com
leonardo.trujillo@tectijuana.edu.mx

ABSTRACT

Novelty search (NS) is an open-ended evolutionary algo-
rithm that eliminates the need for an explicit objective func-
tion. Instead, NS focuses selective pressure on the search
for novel solutions. NS has produced intriguing results in
specialized domains, but has not been applied in most ma-
chine learning areas. The key component of NS is that each
individual is described by the behavior it exhibits, and this
description is used to determine how novel each individual is
with respect to what the search has produced thus far. How-
ever, describing individuals in behavioral space is not trivial,
and care must be taken to properly define a descriptor for a
particular domain. This paper applies NS to a mainstream
pattern analysis area: data clustering. To do so, a descriptor
of clustering performance is proposed and tested on several
problems, and compared with two control methods, Fuzzy
C-means and K-means. Results show that NS can effec-
tively be applied to data clustering in some circumstances.
NS performance is quite poor on simple or easy problems,
achieving basically random performance. Conversely, as the
problems get harder NS performs better, and outperforming
the control methods. It seems that the search space explo-
ration induced by NS is fully exploited only when generating
good solutions is more challenging.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms

Performance, Theory,Experimentation

Keywords

Novelty Search, Genetic Programming, Clustering

*Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.

Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

1. INTRODUCTION

Natural evolution, as an open-ended process, is differ-
ent from the conventional engineering approach towards
search and optimization. Nevertheless, evolutionary algo-
rithms (EAs) are abstractions of Neo-Darwinian evolution
that are guided by an objective function and mostly lack the
open-ended feature of their natural inspiration. Nonethe-
less, many EAs have distinguished themselves as innovative
search techniques that frequently solve difficult problems in
diverse domains [10]. Moreover, since the search is guided
by fitness, most of the traditional algorithms tend to con-
verge on local optima unless proper heuristic methods are
integrated into the search for diversity preservation.

On the other hand, it is illustrative to consider that some
of the earliest EAs were open-ended techniques [4]. Recently,
other EAs have been developed that share this feature, but
are mostly aimed at specialized domains, such as artificial
life environments [19] and interactive search [9]. In partic-
ular, this paper studies the algorithm proposed by Lehman
and Stanley called novelty search (NS) [11, 12, 13], an EA
that abandons an explicit fitness function. Instead, NS fo-
cuses the selective pressure on finding unique solutions; i.e.,
individuals that introduce novel information into the search
process with respect to the current search progress.

The core requirement in NS is that instead of relying on
the genotype, phenotype or fitness to describe individuals,
they are described based on their behavior. Therefore, a
domain dependent behavior descriptor must be proposed to
apply NS successfully. Most of the published works on NS
have been in evolutionary robotics (ER), where the concept
of robot behavior has a strong history in the field [3, 18, 23,
24, 16]. Conversely, the concept of behaviors is not com-
mon in other domains. In GP, for instance, resent research
has incorporated the concept of semantics [15, 25]; however,
behaviors are a broader concept, incorporating contextual
information, as discussed in the following section.

Therefore, the goal of this paper is to present an appli-
cation of NS on a common problem in machine learning
and pattern recognition. In particular, unsupervised data
clustering is solved with a NS-based GP system, using a
domain specific behavioral descriptor. This work is an ex-
tension of recent research where NS was applied to super-
vised data classification [17]. Results are encouraging, the
NS algorithm is indeed capable of solving clustering prob-
lems and in some cases outperforming standard clustering
techniques. In particular, NS seems better suited for diffi-

cult cases, where the explorative abilities of the algorithm
can be fully leveraged.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the concept of behavioral space and the NS
algorithm. In Section 3 the clustering problem is defined and
related work is discussed. Afterwards, Section 4 presents the
proposed NS-based GP algorithm for data clustering and the
proposed behavioral descriptor for evolved clustering pro-
grams. Then, Section 5 presents the experiments and an
analysis of the results. Finally, a summary of the paper and
concluding remarks are given in Section 6.

2. BEHAVIOR-BASED SEARCH

It is well understood that an EA concurrently samples
three different spaces during a search. First, genotypic
space, which corresponds to the encoding used to repre-
sent each valid solution. Second, phenotypic space, which
represents the problem space where solutions are expressed.
Finally, objective or fitness space, that corresponds to the
space of performance criteria. In some cases these spaces are
clearly distinct, but for some representations it is not [6].

While these three spaces have been the focus of most re-
search, other spaces have recently been considered within
the field. First consider that fitness gives a coarse and global
evaluation of an individual’s performance, averaging out dif-
ferences in program quality on different fitness cases. Con-
sidering this, some researchers have proposed a finer grained
approach to analyze the performance of each individual.

One approach is known as semantics in GP literature
[15, 25], with its corresponding semantic space, which corre-
sponds to the space of possible program outputs. Semantics
is an important concept in GP because many genetically
different programs can share the same semantic representa-
tion. However, only analyzing program outputs might not
be the best approach to analyze performance in some do-
mains. For instance, consider ER problems, where evolu-
tionary algorithms are used to search for robust controllers
of autonomous robots [18]. The goal of the ER approach,
is to find high quality solutions introducing as little prior
knowledge as possible into the objective function. In this
scenario, the correspondence between program inputs, out-
puts and induced actions is much less clear. Moreover, evo-
lution in an ER system is performed within real or simu-
lated environments, where noisy sensors and the physical
coupling between actuators and the real (simulated) world
can produce a non-injective and non-surjective relation be-
tween program output and the actions performed by a robot.

Therefore, another approach towards describing perfor-
mance in ER research is to focus on the behavioral space
of a problem [23, 16]. The concept of behaviors in robotics
dates back to the seminal works of Brooks from the 1980’s
[3]. A behavior is a description S of the way an agent K
(robot in ER and program in the GP case) acts in response
to a particular stimulus within a particular context C. A
context C includes the internal description the agent has of
its environment and its own internal state . Stated in an-
other way, a behavior 8 is produced by the interactions of
an agent K, the output y and a context C. In behavior-
based robotics, for instance, behaviors are described at a

'McPhee et al. [15] describe context as the root node of a
tree. This might be appropriate for some problems, but here
context is given by external conditions of the problem.

very high level of abstraction by the system designer. In
ER, on the other hand, researchers have recently proposed
domain-specific numerical descriptors that describe each be-
havior, allowing them to explicitly consider behavioral space
during evolution[16]. The justification for this is evident,
given that the objective function is stated as a high-level
goal, then population management should take into account
the behavioral aspect of the solutions.

A behavior, defined in this way, is a higher-level descrip-
tion of the semantics of a program. An individual’s be-
havior is described in more general terms, accounting not
only for the program output but the context in which the
output was produced. If contextual information is not rel-
evant, then semantics and behaviors could be regarded as
equivalent. Therefore, in essence, fitness, program seman-
tics, and behavior provide different levels of abstraction of a
program’s performance. At one extreme of this scale of anal-
ysis, fitness provides a coarse grained look at performance,
a single value (for each criteria) that attempts to provide
a global evaluation. At the other end of the analysis scale,
semantics describe program performance in great detail. On
the other hand, behavioral descriptors lie in between fitness
and semantics, providing either a finer or coarser level of
description, depending on how behaviors are meaningfully
characterized within a particular domain.

2.1 Novelty Search

Lehman and Stanley proposed NS, an EA that eliminates
the need for an explicit objective function [11, 12, 13]. Evo-
lution is not guided by a measure of quality, but by the a
measure of uniqueness. To measure the novelty an individual
introduces into the evolutionary process, the NS algorithm
describes each individual within behavioral space.

A limitation of most EAs is their tendency to converge on
local optima, a common result in many real-world problems
with multimodal and irregular fitness landscapes. Within
EC, diversity preservation is usually incorporated into an
EA to overcome this shortcoming. However, most proposals
can be regarded as ad-hoc solutions that must continuously
attempt to balance exploration and exploitation during the
search. Conversely, through the search for novelty alone,
diversity preservation introduces the sole selective pressure
during evolution. The core assumption behind NS, that sug-
gests why it can find high-fitness solutions, is that at the
beginning of a search, most random solutions will exhibit
behaviors with bad fitness values. Therefore, as NS pro-
gresses and it leads the search towards novel regions in the
search space, this should also lead towards better behaviors
and thus better fitness values; i.e., when initial random solu-
tions have low performance then the search for novelty could
lead towards quality during evolution.

In summary, instead of using fitness to guide the search,
NS uses a measure of novelty to characterize each individ-
ual. More precisely, a sparseness measure establishes how
novel an individual is within behavioral space, with respect
to the current population and novel solutions generated in
previous generations. Such a measure of novelty is dynamic;
i.e., it can produce different results for the same individual
depending on the population state and search progress. In
NS, the sparseness p around each individual K, described
by its behavioral descriptor 3, using the average distance
to the k-nearest neighbors in behavioral space, with k& an
algorithm parameter, is given by

p(B) = 2 3" dist(8,ex) (1)
=0

where «; is the behavioral descriptor of the ith-nearest
neighbor of K in behavioral space with respect to distance
measure dist, a domain-dependent measure that depends
on how descriptors are expressed. If the average distance is
large then the individual lies within a sparse region of be-
havioral space and it lies in a dense region when the measure
is small. Fitness is only considered at the end of the search,
when the individual with the best fitness score is selected as
the final solution produced by the NS algorithm.

An important aspect is to determine which individuals
should be considered when sparseness in computed, since the
population changes with every generation, and the sparse-
ness value for the same individual can vary over time. In
NS, the proposal is to consider individuals in the current
population as well as individuals that were considered to be
novel in previous generations; hence, an individual has an
intra and inter-generational neighborhood. Therefore, indi-
viduals with a sparseness value above a minimal threshold
Pmin, the second parameter of NS, are added to a popula-
tion archive. The archive stores novel individuals, and the
individuals in the archive are used along with the popula-
tion to compute the sparseness value. An advantage of using
the archive is that it can mitigate backtracking during the
search, serving as a memory of the search progress.

Since its original proposal [11], and in later works [12, 13],
most applications of NS have focused on ER, such as navi-
gation [11, 12, 13], morphology design [14] and gait control
[13]. As stated before, search algorithms that explicitly con-
template behaviors seem well suited for robotics, since most
high-level robotic tasks can usually be solved in structurally
different ways, thus guaranteeing a multimodal search.

In spite of these good results, NS has still not been used in
most other domains. One exception is found in [26], where
NS is integrated with an interactive evolutionary system,
combining the strengths of both strategies. Another recent
example is found in [17], where NS is used for supervised
classification. However, in general applying NS to main-
stream problems, to the authors’ knowledge, is not yet com-
monly done. Thus, the present work proposes the use of NS
for a common machine learning problem: data clustering,
extending the proposal in [17] to a more difficult domain.

3. CLUSTERING WITH GP

Data classification is one of the most common tasks in
machine learning. Posed as a learning problem, classifica-
tion can be either supervised or unsupervised. Unsupervised
classification is also referred to as data clustering, where the
goal is to organize a set of unlabeled elements into distinct
groups using little or no prior knowledge [27].

Clustering has been studied in various domains, such as
computer vision and web development [8]. Given the variety
of areas where clustering is applied, a multitude of cluster-
ing methods have been developed. Most of the clustering
techniques are objective driven, such as the well known K-
means (KM) that uses a hard partitioning of feature space
[27] or the the Fuzzy C-means (FC) algorithm that instead
uses a soft partitioning [1].

It is commonly expected that a cluster must present in-
ternal homogeneity and external separation from other clus-

ters; i.e., patterns in the same cluster should be similar to
each other, while patterns from different clusters should
be different (in some sense). Generally in a clustering
problem is given a set of patterns 7 = {X1,...,Xj, .., Xm },
where each pattern is described by a vector of features
x; = (xj1,%42,...,T5n) € R". Then, a clustering algo-
rithm must assign each pattern to a unique cluster; where
the number of clusters is normally set a priori.

GP has been used extensively for data classification, see
for instance [28]. In particular, several GP-based clustering
systems have been proposed, using grammar based evolu-
tion [5], theoretic probabilistic interpretations [2] and hy-
brid multiobjective algorithms [21]. However, one underly-
ing characteristic that previous methods share, is that they
all rely on an explicit fitness function, just like any evolution-
ary search. Instead, in this paper fitness is substituted by
a behavior-based search based on the novelty criteria. Nev-
ertheless, a measure of clustering performance is presented
next, since it is required to compare different results and to
select the final solution returned by the NS algorithm.

3.1 Cluster Distance Ratio

The cluster distance ration (CDR) compares the within
cluster dispersion with the gap between clusters [7]. Here,
only problems with two clusters will be considered. The
intra-cluster dispersion is computed using the Euclidean dis-
tance of each pattern x € R" to its nearest neighbor within
the cluster. The average of this distance, for elements in the
data set, measures the intra-cluster dispersion, given by

K
1
IntraCluster = ~ Z Z [Ix — ul| , (2)

i=1zeC;

where N is the number of data elements, K is the number
of clusters, and u; is the nearest neighbor within the same
cluster of x. Then, the inter-cluster separation is computed
similarly, but now considering the closest neighbor from the
other cluster, given by

K
1
InterCluster = N Z Z [|x — vil| , (3)

i=1xzeC;

where v; is the closest neighbor of x from the other cluster.
Finally, the CDR is defined as

_ IntraCluster

CDR (4)

The CDR value provides a good measure of clustering
quality, where the goal is to achieve the highest value.

~ InterCluster

4. CLUSTERING WITH NS-GP

The proposal of this paper is to develop a NS-based GP
system for unsupervised data clustering, hereafter referred
to as NS-GP. The algorithm is a modification of the GP
classifier that uses a static range selection [28] that functions
as follows. Let us consider two clusters w; and w2, a set of
patterns x € R", and a GP functions (programs) K : R" —
R. Then, data pattern x is assigned to cluster wy if K(x) > 0
and it is assigned to cluster w2 otherwise. To apply NS to
clustering, a behavioral descriptor for each program K is
required; the proposed descriptor is presented below.

Figure 1: Fitness landscape in behavioral space for
the proposed clustering descriptor.

4.1 Clustering Descriptor

For a clustering problem a training set is not given since it
is unsupervised, so the entire dataset 7 is treated as testing
data, which contains sample patterns from each cluster. For
a two-cluster problem with data set 7 = {y1,y2,...,yr},
and clusters wy and ws, the cluster descriptor 8¢ is pro-
posed, where for each GP clustering program K, the de-
scriptor is a binary vector 8% = (81, B2, ..., Bz) of size L,
where each vector element f; is set to 1 if clustering function
K; assigns label w; to pattern y; and is set to 0 otherwise.

4.2 Behavioral Landscape

For a better explanation lets consider a synthetic prob-
lem where a ground truth clustering is provided. Then,
suppose that the number of samples from each cluster is
%7 and that they are ordered in such a way that the first
% elements in 7 have a ground truth label of wi. Let x
represents a binary vector, and function u(x) returns the
number of 1s in x. Moreover, let Ko be the optimal clus-
tering program that achieves a perfect accuracy on the data
set based on the ground truth labeling. Then, the descrip-
tor of Ko is given by 8°° = (11, 1s,..., 1%70%“7...70@.
Moreover, for a two-cluster problem, an equally useful so-
lution is to take the opposite (complement) behavior and
invert the clustering, such that a 1 is converted to a 0 and
vice-versa. This mirror behavior is defined by the descrip-
tor B8+ = (04, 02, ...0%71%+17 ...ey 12). The complete fitness
landscape in behavioral space, with fitness given by cluster-
ing accuracy, is depicted in Figure 1.

For a two-cluster problem with a reasonable degree of dif-
ficulty, the initial generations of a GP search should be ex-
pected to contain random clustering programs. For the clus-
ter descriptor, behavioral space is organized on a two dimen-
sional surface, such that one axis uz considers the number
of ones on the left hand side, first % bits, of a behavior de-

scriptor B¢, and the other axis ugr considers the remaining
é bits; see Figure 1. Notice that the middle valley of the
fitness landscape corresponds to basically random clustering
functions, with worst case scenario performance. Hence, NS
will push the search towards either of the two global optima,
B and B~ Finally, given the above binary descriptor, a
natural dist() function for Equation 1 is the Hamming dis-

(a) Problem-1 (b) Problem-2 (c) Problem-3

(e) Problem-5

(d) Problem-4

Figure 2: Five synthetic clustering problems; the
observed clusters represent the ground truth data.

Table 1: Parameters for the NS-GP.
Parameter Description

200 individuals.

100 generations.

Ramped Half-and-Half,

with 6 levels of max. depth.

Crossover p. = 0.8,

Mutation p,, = 0.2.

Function set (+,—, %, =, -], 2%, V&,
log, sin, cos,if)

{z1, ..., i, ..., T} ,where z; is

a dimension of the data pat-

terns x € R"™.

Dynamic depth control.

Population size
Generations
Initialization

Operator probabilities

Terminal set

Bloat control

Initial dynamic depth 6 levels.

Hard maximum depth 20 levels.

Selection Tournament.

Archive No Limit on archive size.

tance, which counts the number of bits that differ between
two binary sequences.

5. EXPERIMENTS

The performance of the NS-GP clustering algorithm is
compared against two well known clustering methods; K-
means (KM) and Fuzzy C-means (FC). The NS-GP is tested
in two different versions, each with a different behavioral
threshold pmin: NS-GP-20 with pmin = 20 and NS-GP-40
with pmin = 40; in both cases parameter the number of
neighbors k is set to 15 to compute sparseness.

5.1 Problems and GP Parameters

Synthetic clustering problems were generated using two
randomly generated Gaussian functions in R® for each prob-
lem, following a similar strategy to [22]. From each function,
160 data points were randomly generated. Then, an addi-
tional 40 data points were generated by triplicating the stan-
dard deviation of each, to get disperse clusters with some
outliers. Table 2 shows the five selected test problems of
increased difficulty, where each figure represents the ground
truth data.

The NS-GP algorithms use a Koza style GP with subtree
crossover and subtree mutation. Table 1 summarizes the

Table 2: A comparison of all of the clustering methods on each problem. The data shows the CDR values

and the clustering error score; for NS these values are averages over all runs.

Problem Clustering Distance Ratio Clustering Error

GT KM FC NS-GP-20 NS-GP-40 | KM FC NS-GP-20 NS-GP-40
Problem-1 9.17 10.22 10.25 9.20 9.21 0.10 0.10 0.45 0.46
Problem-2 4.46 5.51 5.46 5.38 4.47 0.07 0.07 0.24 0.25
Problem-3 5.55 537 5.29 4.51 4.53 0.30 0.26 0.20 0.22
Problem-4 410 6.21 6.11 5.51 5.45 0.36 0.35 0.10 0.19
Problem-5 1.59 454 452 3.64 3.22 0.45 045 0.19 0.27

s

4

(e) NS-GP-40

-4

(d) NS-GP-20

Figure 3: Comparison of clustering performance on
Problem No.1.

parameters of the algorithm, which was coded using Matlab
2012b and the GPLAB toolbox [20].

5.2 Results

This section presents an experimental evaluation of NS-
GP clustering. All of the clustering algorithms were exe-
cuted 30 times to find statistically significant results. Ta-
ble 2 compare the performance of NS-GP with two baseline
methods, KM and FC. The table presents two comparative
views of average performance over all runs. First, the al-
gorithms are compared based on their CDR score, and the
CDR of the ground truth of each problem is also presented.
Additionally, using the ground truth, a classification error
was computed, based on the ordering suggested by each clus-
tering method. In general, the results indicate two notewor-

(d) NS-GP-20 (¢) NS-GP-40

Figure 4: Comparison of clustering performance on
Problem No.2.

thy trends. First, NS performs much worse on the simpler
problems, it seems like it is basically doing a random search.
On the other hand, NS noticeably outperforms the control
methods on the harder problems, this is especially true for
the hardest, Problem 5. Second, it seems that a lower pmin
encourages better performance in most cases. A detailed
view of how the data is being clustered can provide a dif-
ferent analysis of the results. Figures 3 - 7 present a graph-
ical illustration of the clustering output achieved by each
method. All figures show the ground truth clusters for vi-
sual comparison, along with a typical clustering output from
each method. These figures confirm the data presented in
Table 2, NS-GP performs worse on the easy problems and
performs better on the difficult ones.

Figures 8 and 9 examine how sparseness evolves during
the NS-GP search, for NS-GP-20 and NS-GP-40 respec-

5

(d) NS-GP-20

5 -10

(e). NS-GP-40

Figure 5: Comparison of clustering performance on
Problem No.3.

tively. Each figure presents a similar plot that shows how the
sparseness of the best individual (based on fitness) evolves
over each generation. The plots are averages of the 30 runs
of each experiment and present a curve for each problem.
A horizontal line shows the corresponding threshold value
for each configuration, set to 20 in Figure 8 and set to 40 in
Figure 9. In both cases it is possible to observe a similar pat-
tern. For the easy problems (1, 2 and 3) the sparseness value
of the best individual at each generation does not reach the
threshold, and is therefore not included in the population
archive. This means that the individual is lost, and maybe
it is never found again. This explains the reason why NS fails
to produce good results on the easy problems. It appears
that since the problems are not difficult, then novelty does
not necessarily lead to quality, and NS is not influencing the
search as desired. On the other hand, for the more difficult
problems (4 and 5) it is clear that good solutions almost al-
ways correspond with novel solutions; i.e., the solutions that
are being introduced into the archive of novel solutions also
exhibit good fitness values. In these cases, the search for
novelty is indeed guiding evolution towards solutions that
perform better. This is reasonable, since for difficult prob-
lems the initial (random) programs will mostly exhibit bad
performance, and novelty can lead towards quality.

Finally, to illustrate how evolution progresses with the N'S-
GP clustering algorithm, Figure 10 presents four snapshots
of NS-GP-40 applied to Problem 5. Each plot shown in
the figure represents the best NS solution (taken from the

S AN o N s oo

(d) NS-GP-20 (e) NS-GP-40

Figure 6: Comparison of clustering performance on
Problem No.4.

current population and population archive) based on the
CDR value at four different generations. For this difficult
problem, it is clear that NS is progressively exploring the
search space, and finding better solutions.

6. CONCLUSIONS

This work presents a NS-based GP algorithm for auto-
matic data clustering. To the authors knowledge, the work
represents the first attempt to leverage NS to solve this com-
mon problem in pattern recognition and machine learning,
since previous applications of NS were primarily focused on
robotics. This paper develops the idea of program behaviors
and how they relate to semantics, and suggests that behav-
ior based search, such as the NS algorithm, can be applica-
ble to many problem domains. For the clustering problem
addressed here, a domain-specific behavioral descriptor was
proposed and its fitness landscape was analyzed. The NS-
GP algorithm was also compared with two standard cluster-
ing methods, K-means and Fuzzy C-means. Initial results
are informative and encouraging. The experiments suggest
that NS is not well suited to solve easy problems, failing
drastically on the examples given here. However, this is
not discouraging for researchers from real-world domains,
easy problems such as these rarely come up. Conversely,
the NS-based GP exhibits very good results on the difficult
test cases, outperforming the control methods. It seems that
for easy problems, the exploration capacity of NS is mostly

5 5

(d) NS-GP-20 (¢) NS-GP-40

Figure 7: Comparison of clustering performance on
Problem No.5.

unexploited or maybe even limits the search; i.e., if ran-
dom solutions have a high fitness then novelty could easily
lead the search towards worse results. On the other hand,
since randomly generating a high-performance solution is
less probable for difficult problems, then the incentive for
behavioral exploration is incremented and the search for
novelty can indeed lead towards quality during evolution.
Future work will center on exploring further experiments in
this domain, comprehensively testing different parametriza-
tions of the NS-GP search, evaluating performance on real
problems, and comparing the algorithm with other GP sys-
tems for data clustering.

Acknowledgments.

This research is funded by CONACYT (Mexico) Basic Sci-
ence Research Grant No. 178323; and the first author sup-
ported by doctoral scholarship No. 232288 from CONA-
CYT.

7. REFERENCES

[1] J. Bezdek, R. Ehrlich, and W. Full. Using direct
competition to select for competent controllers in
evolutionary robotics. Fem: The fuzzy c-means
clustering algorithm, 10(2-3):191-203, 1984.

[2] N. Boric and P. Estevez. Genetic programming-based
clustering using an information theoretic fitness
measure. In Proceedings of the 2007 IEEE Congress

—o—Prob.1
1 |=%*=-Prob.2
S Prob.3
| |-e-Prob.4
—a—Prob.5
- = =Treshold

Sparseness

) ¥
0?9«*9“0 e eo\ "ea eeA.eAa aaae o

20 40 60 80 100
Generations

Figure 8: Evolution of sparseness for NS-GP-20,
showing the average sparseness of he best individual
at each generation.

on Evolutionary Computation, pages 31-38. IEEE
Press, 2007.

[3] R. A. Brooks. Cambrian intelligence: the early history
of the new AL MIT Press, Cambridge, MA, USA,
1999.

[4] R. Dawkins. Climbing Mount Improbable. W.W.
Norton & Company, 1996.

[5] I. De Falco, E. Tarantino, A. D. Cioppa, and
F. Fontanella. A novel grammar-based genetic
programming approach to clustering. In Proceedings of
the 2005 ACM symposium on Applied computing, SAC
’05, pages 928-932, New York, NY, USA, 2005. ACM.

[6] E. Galvdn-Lépez, J. Mcdermott, M. O’Neill, and
A. Brabazon. Defining locality as a problem difficulty
measure in genetic programming. Genetic
Programming and Evolvable Machines, 12(4):365-401,
2011.

[7] T. K. Ho and M. Basu. Complexity measures of
supervised classification problems. IEEE Trans.
Pattern Anal. Mach. Intell., 24(3):289-300, 2002.

[8] A. Jain, M. Murty, and P. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):2647323, 1999.

[9] T. Kowaliw, A. Dorin, and J. McCormack. Promoting
creative design in interactive evolutionary
computation. Evolutionary Computation, IEEE
Transactions on, 16(4):523 —536, 2012.

[10] J. Koza. Human-competitive results produced by
genetic programming. Genetic Programming and
Evolvable Machines, 11(3):251-284, 2010.

[11] J. Lehman and K. O. Stanley. Exploiting
open-endedness to solve problems through the search
for novelty. In Proceedings of the Eleventh
International Conference on Artificial Life,
Cambridge, MA, ALIFE XI. MIT Press, 2008.

[12] J. Lehman and K. O. Stanley. Efficiently evolving
programs through the search for novelty. In
Proceedings of the 12th annual conference on Genetic

Sparseness

Figure 9: Evolution of sparseness for NS-GP-40,
showing the average sparseness of he best individual

at e

—o—Prob.1
1 |=%*=Prob.2
Prob.3
| |-e-Prob.4
—=—Prob.5
- = =Treshold
30F
\}
1
1
207!
X % L
V! * *
10 ¥ *** P *,,'* X N}\:" “*,* ¥ ;ﬁ*
U \ \
Lok X h % "' ¥
** ¥
20 40 60 80 100
Generations

ach generation.

and evolutionary computation, GECCO ’10, pages
837-844. ACM, 2010.

J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evol.
Comput., 19(2):189-223, 2011.

J. Lehman and K. O. Stanley. Evolving a diversity of
virtual creatures through novelty search and local
competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
GECCO 11, pages 211-218. ACM, 2011.

N. F. McPhee, B. Ohs, and T. Hutchison. Semantic
building blocks in genetic programming. In
Proceedings of the 11th European conference on
Genetic programming, EuroGP’08, pages 134-145,
Berlin, Heidelberg, 2008. Springer-Verlag.

J. B. Mouret and S. Doncieux. Encouraging
behavioral diversity in evolutionary robotics: An
empirical study. Fvol. Comput., 20(1):91-133, 2012.
E. Naredo, L. Trujillo, and Y. Martinez. Searching for
novel classifiers. In Proceedings from the 16th
European Conference on Genetic Programming,
FEuroGP 2013, volume 7831 of LNCS, pages 145-156.
Springer-Verlag, 2013.

S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology, Intelligence,and Technology. MIT Press,
Cambridge, MA, USA, 2000.

C. Ofria and C. O. Wilke. Avida: a software platform
for research in computational evolutionary biology.
Artif. Life, 10(2):191-229, 2004.

S. Silva and J. Almeida. Gplab—a genetic
programming toolbox for matlab. In L. Gregersen,
editor, Proceedings of the Nordic MATLAB
conference, pages 273-278, 2003.

J. Sun, W. Sverdlik, and S. Tout. Parallel hybrid
clustering using genetic programming and
multi-objective fitness with density (pyramid). In
Proceedings of the 2006 International Conference on
Data Mining, DMIN 2006, pages 197-203, 2006.

5 5

(c) Generation 134

5 5

(d) Generation 200

Figure 10: Evolution of the best solutions found at
progressive generations for Problem 5 with NS-GP-

40.

(22]

23]

(24]

25]

L. Trujillo, Y. Martinez, E. Galvan-Lépez, and

P. Legrand. Predicting problem difficulty for genetic
programming applied to data classification. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages
1355-1362, New York, NY, USA, 2011. ACM.

L. Trujillo, G. Olague, E. Lutton, and F. F. De Vega.
Discovering several robot behaviors through
speciation. In Proceedings of the 2008 conference on
Applications of evolutionary computing, Evo’08, pages
164—174. Springer-Verlag, 2008.

L. Trujillo, G. Olague, E. Lutton, F. Fernandez de
Vega, L. Dozal, and E. Clemente. Speciation in
behavioral space for evolutionary robotics. Journal of
Intelligent & Robotic Systems, 64(3-4):323-351, 2011.
N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. Mckay, and
E. Galvan-Lépez. Semantically-based crossover in
genetic programming: application to real-valued
symbolic regression. Genetic Programming and
Evolvable Machines, 12(2):91-119, 2011.

B. G. Woolley and K. O. Stanley. Exploring promising
stepping stones by combining novelty search with
interactive evolution. CoRR, abs/1207.6682, 2012.

R. Xu and I. Wunsch, Donald. Survey of clustering
algorithms. Neural Networks, IEEE Transactions on,
16(3):645-678, may 2005.

M. Zhang and W. Smart. Using gaussian distribution
to construct fitness functions in genetic programming
for multiclass object classification. Pattern Recogn.
Lett., 27(11):1266-1274, 2006.

